Supplementary Material (ESM) Traits and Centralities in a Marine Food Web

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Material (ESM) Traits and Centralities in a Marine Food Web Electronic supplementary material (ESM) Traits and centralities in a marine food web Body size and mobility explain species centralities in the Gulf of California food web Rubén Olmo Gilabert1, Andrés Felipe Navia2, Gustavo De La Cruz-Agüero1, Juan Carlos Molinero3, Ulrich Sommer3, Marco Scotti3,* 1CICIMAR Centro Interdisciplinario de Ciencias Marinas del Instituto Politécnico Nacional Apartado Postal 592, CP 23094, La Paz, Baja California Sur, México 2Fundación colombiana para la investigación y conservación de tiburones y rayas, SQUALUS. Calle 10° # 72-35, Apto. 301E, Cali, Valle, Colombia 3GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 1 Electronic supplementary material (ESM) Traits and centralities in a marine food web List of references consulted to retrieve node properties: diet, traits and attributes node name diet traits and attributes Seagrasses SEAG Other seagrasses 336 RUPPI Ruppia maritima 337-338 AVICE Avicennia germinans 337-338, 342 MANGL Rhizophora mangle 337-338, 342 PHYLL Phyllospadix torreyi 338-339, 341 SALIC Salicornia sp. 338 ZOSTE Zostera sp. 337-341 Macroalgae ALGAE Other macroalgae 344 CALCA Calcareous algae 343 CHLOR Chlorophyta 343 CLAPH Cladophora sp. 343, 354 ENTER Enteromorpha sp. 343, 354 MACPI Sargassum sinicola 343 PHAEO Phaeophyceae 343 RHODO Rhodophyta 343 SARGA Sargassum sp. ULVAL Ulvales 343 Phytoplankton PHYTO Other phytoplankton 345 CIANO Cyanobacteria 346-347 DIAT1 Bidulphia sp. 345, 347-348 DIAT2 Chaetoceros sp. 345, 347 DIAT3 Cocinodiscus sp. 345, 347 DIAT4 Ditylum sp. 345, 347 DIAT5 Melosira sp. 345, 347, 349 DIAT6 Navicula sp. 345, 347, 349-350 2 Electronic supplementary material (ESM) Traits and centralities in a marine food web DIAT7 Rhizosolenia sp. 345, 347 DIAT8 Skeletonema sp. 345, 347 DIATO Other diatoms 347, 351 DINO1 Ceratium sp. 346-347, 350, 352 DINO2 Triposolenia sp. 342, 347, 353 DINO3 Peridinium sp. 347, 355 DINOF Other dinoflagellates 346-347, 350, 356 Zooplankton ZOOPL Other zooplankton 1-6 374 ACAN1 Acanthochiasma sp. 5, 7-8 375 ACAN2 Acantholithium sp. 5, 7-8 375 ACAN3 Acanthometra sp. 5, 7-8 375 ACAN4 Astrolithium sp. 5, 7-8 375 ACAN5 Gigartacon sp. 5, 7-8 375 ACAN6 Phylostaurus sp. 5, 7-8 375 AMPHI Amphipoda 9-12 377-378 CLADO Cladocera 13 379 COPEP Copepoda 7, 13-15 377, 380 CTENO Ctenophora 16-17 377 EUPHA Euphausiacea 18-19 374, 381 FORAM Foraminifera 5 382 HYDRO Hydrozoa 16 377, 383 ISOPO Isopoda 20 378 OSTRA Ostracoda 21 384-385 PROTO Protozoa 5, 7-8 386 RADI1 Sphaerozoum sp. 4, 22-24 353 RADI2 Tetraplagia 4, 22-24 386-389 RADI3 Thalassoxantium sp. 4, 22-24 386-389 RADI4 Triplagiacantha sp. 4, 22-24 386-389 RADIO Radiolaria 4, 22-24 386-389 ROTIF Rotifera 2, 7 367 SCYPH Scyphozoa 16, 25 354, 367 Macroinvertebrates ASCI Tunicates and ascidians 4, 13, 26 390 3 Electronic supplementary material (ESM) Traits and centralities in a marine food web BIVAL Bivalvia 27-29 367, 391-392 BRYOZ Bryozoa 30 393-394 CHAET Chaetognatha 31-32 367, 395-396 CHITO Chitons 33-34 367, 392 CIRRI Barnacles 35-37 367, 392 CORAL Corals 3, 20, 279 400, 406 GASTR Gastropoda 5, 38-40 392, 396-397 MEIO Meiobenthos 28, 41 398 OLIGO Oligochaeta 42 399 POLYC Polychaeta 43-44 367, 400 PORIF Porifera 45 401 PTERO Pteropoda 46-47 375, 402 STOMA Stomatopoda 28, 48-49 403-405 WORM Worms 5 367 Echinoderms OPHI Ophiuroidea 50 354, 359, 403, 406-408 SEACU Holothuroidea 16, 25 SEAST Asteroidea 40, 51-53 359, 397, 403, 407-410 SEAUR Euechinoidea 54-57 354, 357, 403, 408 Shrimps FACAD Farfantepenaeus californiensis 28, 49, 58-59 359, 397, 403, 411-413 LITOA Litopenaeus stylirostris 28, 49, 58, 61 412, 414 PASIP Pasiphaea sp. 62-63 354, 359, 403, 415-417 SERGE Sergestes sp. 64-66 354, 359, 403, 415-417 SERPH Sergia phorca 64-66 354, 359, 403, 415-416 SICYO Sicyonia sp. 28, 49, 67 359, 397, 411-412, 418-419 Crabs PLEPL Pleuroncodes planipes 5, 41, 68 359, 417, 420, 423-425 CALAR Callinectes arcuatus 69-70 354, 359, 367, 424 CALBE Callinectes bellicosus 70 424-427 CRABS Benthic crabs 5, 28, 49, 71 359-361, 367 PANIN Panulirus inflatus 72-73 359-361, 367, 397 PORTU Portunus spp. 28, 49, 70, 74-76 359, 361, 428 4 Electronic supplementary material (ESM) Traits and centralities in a marine food web Cephalopods DOGIG Dosidicus gigas 77-79 359-361, 367, 397,429-435 LOLLI Lolliguncula sp. 80 359-361, 436-438 OCTO Octopus 28, 41, 49, 81-82 367, 439 ONBAN Onychoteuthis banksii 83-84 359-361, 397, 440-442 SEPIA Sepia sp. 10, 85 30, 443 STHEO Sthenoteuthis oualaniensis 86 359-361, 367, 397, 434, 435, 441 Reptiles CHEMY Chelonia mydas 3, 87 359-361, 367, 444-445 PEPLA Pelamis platurus 88-89 30, 359-361, 446 Sea birds HYCA Hydroprogne caspia 90-92 359-361, 448-449 LARA Larus atricilla 93-94 359-361, 448-449 LARDE Larus delawarensis 95-96 359-361, 448-449 OCMIC Oceanodroma microsoma 97 359-361, 448, 450 PANHA Pandion haliaetus 98 359-361,448 PELOC Pelecanus occidentalis 99-100 359-36, 448, 450 PHALA Phalacrocorax auritus 101-102 359-361, 448, 450, 452 RYNIG Rynchops niger 103-105 359-361, 448, 450 STERA Sternula antillarum 99, 106-110 359-361, 448 SULEU Sula leucogaster 111-112 359-361, 448, 455-456 Seals ZACAL Zalophus californianus 113-114 30, 357, 359-361, 367, 397 Baleen whales BALED Balaenoptera edeni 115-117 354, 357, 367, 458-460 BAMUS Balaenoptera musculus 115-118 354, 357, 367, 458-460 BAPHY Balaenoptera physalus 115-119 354, 357, 367, 458-460 ESROB Eschrichtius robustus 115 30, 357, 359-361, 397 Other whales and dolphins DELCA Delphinus capensis 116, 120-121 30, 357, 359-361, 367 GLOMA Globicephala macrorhynchus 115 30, 357, 359-361, 367, 397 5 Electronic supplementary material (ESM) Traits and centralities in a marine food web GRAGR Grampus griseus 115 30, 357, 359-361, 367, 397 ORCOR Orcinus orca 115, 123 30, 357, 359-361, 367, 397 PHOSI Phocaena sinus 124-125 30, 357, 359-361, 367, 397 PHYMA Physeter macrocephalus 115, 118, 126-127 30, 357, 359-361, 397, 433, 465 STELO Stenella longirostris 115 30, 357, 359-361, 367, 397 TUTRU Tursiops truncatus 115, 128 30, 357, 359-361, 367, 397 ZICAV Ziphius cavirostris 115 357, 359-361, 367, 397 Rays PSEPR Pseudobatos productus 129-132 30, 358-361, 367, 371-372 AENAR Aetobatis narinari 133 30, 358-361 DASDI Dasyatis dipterura 132, 134-135 30, 358-361 DIPOM Diplobatis ommata 136 30, 357-361 GYMAR Gymnura marmorata 132 30, 357-361, 372 MABIR Manta birostris 137-139 30, 358-361, 372 MYLCA Myliobatis californica 129 30, 358-361, 367 NAREN Narcine entemedor 132, 136, 140 30, 357-361, 372 PLATR Platyrhinoidis triseriata 141-142 30, 357-361, 371-372 PSEGL Pseudobatos glaucostigma 135-136 30, 358-361 PSELE Pseudobatos leucorhynchus 143 30, 358-361 RAJIN Raja inornata 144 354, 358-361, 370-371, 373, 468 RHIST Rhinoptera steindachneri 135, 145 30, 357-361, 372 URAS Urotrygon aspidura 135 30, 357 URHA Urolophus halleri 136, 146 30 URORO Urotrygon rogersi 135-136 30, 358-361 ZAPEX Zapteryx exasperata 147 30, 358-361 Sharks ALOSU Alopias superciliosus 148 30, 357-361 ALOVU Alopias vulpinus 149-150 30, 357-361, 371 CACA Carcharodon carcharias 151-153 30, 357-361, 367, 470-471 CARFA Carcharhinus falciformis 154-155 30, 357-361, 367, 471-472 CARLE Carcharhinus leucas 154 30, 357-361, 367, 471-472 CARLI Carcharhinus limbatus 154 30, 357-361, 367, 471-472 CAROB Carcharhinus obscurus 156-157 30, 357-361, 367, 471-472 GALCU Galeocerdo cuvier 133, 158 30, 357-361 6 Electronic supplementary material (ESM) Traits and centralities in a marine food web GINCI Ginglymostoma cirratum 133 30, 357-361, 367 HEFRA Heterodontus francisci 159-160 30, 357-361, 367 ISURO Isurus oxyrinchus 161-162 30, 357-361, 367, 473 MUCAL Mustelus californicus 129 30, 357-361, 371 MUHEN Mustelus henlei 129 30,357-361, 371 MULUN Mustelus lunulatus 163 30, 357-361, 473 NEBRE Negaprion brevirostris 133, 154 30, 357-361 NOCEP Notorynchus cepedianus 164-166 30, 358-361, 367, 371 PARXA Parmaturus xaniurus 167-168 30, 357-361, 371 PRIG Prionace glauca 169-170 30, 357-361, 367, 371, 473 RHILO Rhizoprionodon longurio 171-172 30, 357-361, 371-372 RHITY Rhincodon typus 173-174 30, 357-361, 367 SPHYL Sphyrna lewini 154, 175-176 30, 357-361, 367 SPHYT Sphyrna tiburo 154 30, 357-361, 367 SPHYZ Sphyrna zygaena 156, 177-178 30, 357-361, 473 SQUCA Squatina californica 179-180 30, 357-361, 473 TRISE Triakis semifasciata 129, 181-182 30, 357-361, 371 Acanthuridae PRIPU Prionurus punctatus 183-185 30, 357-361, 366, 369-370 Apogonidae APORE Apogon retrosella 185-187 30, 357-361, 366, 369-370 Atherinopsidae ATAF Atherinops affinis 188-191 354, 358-361, 370, 372 Balistidae BALPO Balistes polylepis 185, 192 30, 357-361, 366, 369-370 SUVER Sufflamen verres 185 30, 357-361, 369-370 Bathylagidae LEUST Leuroglossus stilbius 193 357-361, 481 Batrachoididae PORAN Porichthys analis 194 30, 354, 358-361, 370, 484-485 7 Electronic supplementary material (ESM) Traits and centralities in a marine food web PORMI Porichthys mimeticus 195 30, 354, 358-361, 370, 485 Belonidae STREX Strongylura exilis 196 358-361, 370 TYCRO Tylosurus crocodilus 186, 197 358-361, 370 Carangidae ALECI Alectis ciliaris 198 30, 357-361 CAROT Carangoides otrynter 198 30, 357-361 CHORQ Chloroscombrus orqueta 198 30, 357-361 ELBI Elagatis bipinnulata 199 354, 358-365 OLIAL Oligoplites altus 200 30, 357-361 OLIRE Oligoplites refulgens 197, 201 30, 357 SEBRE Selene brevoortii 198 30, 357-361 SECRU Selar crumenophthalmus 198, 202 30, 357-361, 366 SEPER Selene peruviana 198, 203-204 30, 357-361 SERLA Seriola lalandi 114, 205 30, 357-361, 367-368 TRASY Trachurus symmetricus 206-207 30, 358-361 Centropomidae CENIG Centropomus nigrescens
Recommended publications
  • The Fishing and Illegal Trade of the Angelshark DNA Barcoding
    Fisheries Research 206 (2018) 193–197 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres The fishing and illegal trade of the angelshark: DNA barcoding against T misleading identifications ⁎ Ingrid Vasconcellos Bunholia, Bruno Lopes da Silva Ferrettea,b, , Juliana Beltramin De Biasia,b, Carolina de Oliveira Magalhãesa,b, Matheus Marcos Rotundoc, Claudio Oliveirab, Fausto Forestib, Fernando Fernandes Mendonçaa a Laboratório de Genética Pesqueira e Conservação (GenPesC), Instituto do Mar (IMar), Universidade Federal de São Paulo (UNIFESP), Santos, SP, 11070-102, Brazil b Laboratório de Biologia e Genética de Peixes (LBGP), Instituto de Biociências de Botucatu (IBB), Universidade Estadual Paulista (UNESP), Botucatu, SP, 18618-689, Brazil c Acervo Zoológico da Universidade Santa Cecília (AZUSC), Universidade Santa Cecília (Unisanta), Santos, SP, 11045-907, Brazil ARTICLE INFO ABSTRACT Handled by J Viñas Morphological identification in the field can be extremely difficult considering fragmentation of species for trade Keywords: or high similarity between congeneric species. In this context, the shark group belonging to the genus Squatina is Conservation composed of three species distributed in the southern part of the western Atlantic. These three species are Endangered species classified in the IUCN Red List as endangered, and they are currently protected under Brazilian law, which Fishing monitoring prohibits fishing and trade. Molecular genetic tools are now used for practical taxonomic identification, parti- Forensic genetics cularly in cases where morphological observation is prevented, e.g., during fish processing. Consequently, DNA fi Mislabeling identi cation barcoding was used in the present study to track potential crimes against the landing and trade of endangered species along the São Paulo coastline, in particular Squatina guggenheim (n = 75) and S.
    [Show full text]
  • Índice General
    INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS DEPARTAMENTO DE PESQUERÍAS Y BIOLOGÍA MARINA PATRONES LATITUDINALES DE COMPOSICIÓN Y DIVERSIDAD FUNCIONAL DE PECES ASOCIADOS A LA PESCA DE CAMARÓN DEL PACÍFICO MEXICANO TESIS QUE PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS MARINAS PRESENTA DEIVIS SAMUEL PALACIOS SALGADO LA PAZ, B.C.S., JUNIO DE 2011 SIP-14 BIS .INSTITUTO POLITÉCNICO NACIONAL SECRETARIA DE INVESTIGACIÓN Y POSGRADO ACTA DE REVISIÓN DE TESIS En la Ciudad de La Paz, B.C.S., siendo las 12:00 horas del día 23 del mes de Mayo del 2011 se reunieron los miembros de la Comisión Revisora de Tesis designada por el Colegio de Profesores de Estudios de Posgrado e Investigación de CICIMAR para examinar la tesis titulada: "PATRONES LATITUDINALES DE COMPOSICIÓN Y DIVERSIDAD FUNCIONAL DE PECES ASOCIADOS A LA PESCA DE CAMARÓN DEL PACÍFICO MEXICANO" Presentada por el alumno: PALACIOS SALDADO DEIVIS SAMUEL Apellido paterno materno nombre(s) Con registro: o 7 2 1 9 Aspirante de: DOCTORADO EN CIENCIAS MARINAS Después de intercambiar opiniones los miembros de la Comisión manifestaron APROBAR LA DEFENSA DE LA TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes. LA COMISIÓN REVISORA Directores de Tesis DR. MAN TINA REJÓN or de DR. FRANCISCO ARREGUIN SÁ DR. LEONARDO ANDR lA CÁRDENAS DR. HORACIO PÉREZ ESPAÑA PRESIDENTE DEL COLEGIO DE PROFESORES IPN CICIMAR DIRECCIÓN INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO CARTA CESIÓN DE DERECHOS En la Ciudad de La Paz, B.C.S., el día 01 del mes Junio del año 2011 el (la) que suscribe MC.
    [Show full text]
  • Body Size and Mobility Explain Species Centralities in the Gulf of California Food Web
    COMMUNITY ECOLOGY 20(2): 149-160, 2019 1585-8553 © The Author(s). This article is published with Open Access at www.akademiai.com DOI: 10.1556/168.2019.20.2.5 Body size and mobility explain species centralities in the Gulf of California food web R. Olmo Gilabert1, A. F. Navia2, G. De La Cruz-Agüero1, J. C. Molinero3, U. Sommer3 and M. Scotti3,4 1CICIMAR Centro Interdisciplinario de Ciencias Marinas del Instituto Politécnico Nacional, Apartado Postal 592, CP 23094, La Paz, Baja California Sur, México 2Fundación colombiana para la investigación y conservación de tiburones y rayas, SQUALUS. Calle 10° # 72-35, Apto. 301E, Cali, Valle, Colombia 3GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 4Corresponding author. Email: [email protected], phone: +49 (0) 431 600 4405 Keywords: Biodiversity; Centrality indices; Ecosystem functioning; Trait ecology. Abstract: Anthropic activities impact ecosystems worldwide thus contributing to the rapid erosion of biodiversity. The failure of traditional strategies targeting single species highlighted ecosystems as the most suitable scale to plan biodiversity management. Network analysis represents an ideal tool to model interactions in ecosystems and centrality indices have been extensively applied to quantify the structural and functional importance of species in food webs. However, many network studies fail in deciphering the ecological mechanisms that lead some species to occupy the most central positions in food webs. To address this question, we built a high-resolution food web of the Gulf of California and quantified species position using 15 centrality indices and the trophic level. We then modelled the values of each index as a function of traits and other attributes (e.g., habitat).
    [Show full text]
  • Cusk Eels, Brotulas [=Cherublemma Trotter [E
    FAMILY Ophidiidae Rafinesque, 1810 - cusk eels SUBFAMILY Ophidiinae Rafinesque, 1810 - cusk eels [=Ofidini, Otophidioidei, Lepophidiinae, Genypterinae] Notes: Ofidini Rafinesque, 1810b:38 [ref. 3595] (ordine) Ophidion [as Ophidium; latinized to Ophididae by Bonaparte 1831:162, 184 [ref. 4978] (family); stem corrected to Ophidi- by Lowe 1843:92 [ref. 2832], confirmed by Günther 1862a:317, 370 [ref. 1969], by Gill 1872:3 [ref. 26254] and by Carus 1893:578 [ref. 17975]; considered valid with this authorship by Gill 1893b:136 [ref. 26255], by Goode & Bean 1896:345 [ref. 1848], by Nolf 1985:64 [ref. 32698], by Patterson 1993:636 [ref. 32940] and by Sheiko 2013:63 [ref. 32944] Article 11.7.2; family name sometimes seen as Ophidionidae] Otophidioidei Garman, 1899:390 [ref. 1540] (no family-group name) Lepophidiinae Robins, 1961:218 [ref. 3785] (subfamily) Lepophidium Genypterinae Lea, 1980 (subfamily) Genypterus [in unpublished dissertation: Systematics and zoogeography of cusk-eels of the family Ophidiidae, subfamily Ophidiinae, from the eastern Pacific Ocean, University of Miami, not available] GENUS Cherublemma Trotter, 1926 - cusk eels, brotulas [=Cherublemma Trotter [E. S.], 1926:119, Brotuloides Robins [C. R.], 1961:214] Notes: [ref. 4466]. Neut. Cherublemma lelepris Trotter, 1926. Type by monotypy. •Valid as Cherublemma Trotter, 1926 -- (Pequeño 1989:48 [ref. 14125], Robins in Nielsen et al. 1999:27, 28 [ref. 24448], Castellanos-Galindo et al. 2006:205 [ref. 28944]). Current status: Valid as Cherublemma Trotter, 1926. Ophidiidae: Ophidiinae. (Brotuloides) [ref. 3785]. Masc. Leptophidium emmelas Gilbert, 1890. Type by original designation (also monotypic). •Synonym of Cherublemma Trotter, 1926 -- (Castro-Aguirre et al. 1993:80 [ref. 21807] based on placement of type species, Robins in Nielsen et al.
    [Show full text]
  • Atlantic Croaker Micropogonias Undulatus Contributor: J
    Atlantic Croaker Micropogonias undulatus Contributor: J. David Whitaker DESCRIPTION Taxonomy and Basic Description The Atlantic croaker is the only representative of the genus in the western North Atlantic. This species gets its name from the deep By Diane Rome Peebles from the Florida Division of Marine Resources Web Site. croaking sounds created by muscular action on the air bladder. It is one of 23 members of the family Sciaenidae found along the Atlantic and Gulf of Mexico coasts (Mercer 1987). The species has a typical fusiform shape, although it is somewhat vertically compressed. The fish is silvery overall with a faint pinkish-bronze cast. The back and upper sides are grayish, with brassy or brown spots forming wavy lines on the side (Manooch 1988). The gill cover has three to five prominent spines and there are three to five small chin barbels. It has a slightly convex caudal fin. Atlantic croaker south of Cape Hatteras reach maturity after one year at lengths of 140 to 180 mm (5.5 to 7 inches) and are thought to not survive longer than one or two years (Diaz and Onuf 1985). North of Cape Hatteras, the fish matures a year later at lengths greater than 200 mm (8 inches) and individuals may live several years. The Atlantic croaker reaches a maximum length of 500 mm (20 inches) (Hildebrand and Schroeder 1927). Catches of large Atlantic croaker appear to be relatively common on Chesapeake Bay, but large individuals of Atlantic croaker are rare in South Carolina. Bearden (1964) speculated that small croaker from South Carolina may migrate north, but limited tagging studies could not corroborate that assertion.
    [Show full text]
  • Taverampe2018.Pdf
    Molecular Phylogenetics and Evolution 121 (2018) 212–223 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus phylogeny, divergence times, and a major role for the benthic-to- T pelagic axis in the diversification of grunts (Haemulidae) ⁎ Jose Taveraa,b, , Arturo Acero P.c, Peter C. Wainwrightb a Departamento de Biología, Universidad del Valle, Cali, Colombia b Department of Evolution and Ecology, University of California, Davis, CA 95616, United States c Instituto de Estudios en Ciencias del Mar, CECIMAR, Universidad Nacional de Colombia sede Caribe, El Rodadero, Santa Marta, Colombia ARTICLE INFO ABSTRACT Keywords: We present a phylogenetic analysis with divergence time estimates, and an ecomorphological assessment of the Percomorpharia role of the benthic-to-pelagic axis of diversification in the history of haemulid fishes. Phylogenetic analyses were Fish performed on 97 grunt species based on sequence data collected from seven loci. Divergence time estimation Functional traits indicates that Haemulidae originated during the mid Eocene (54.7–42.3 Ma) but that the major lineages were Morphospace formed during the mid-Oligocene 30–25 Ma. We propose a new classification that reflects the phylogenetic Macroevolution history of grunts. Overall the pattern of morphological and functional diversification in grunts appears to be Zooplanktivore strongly linked with feeding ecology. Feeding traits and the first principal component of body shape strongly separate species that feed in benthic and pelagic habitats. The benthic-to-pelagic axis has been the major axis of ecomorphological diversification in this important group of tropical shoreline fishes, with about 13 transitions between feeding habitats that have had major consequences for head and body morphology.
    [Show full text]
  • Key to the Common Shallow-Water Brittle Stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228496999 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea Article · January 2007 CITATIONS READS 10 702 1 author: Christopher Pomory University of West Florida 34 PUBLICATIONS 303 CITATIONS SEE PROFILE All content following this page was uploaded by Christopher Pomory on 21 May 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea CHRISTOPHER M. POMORY 2007 Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA. [email protected] ABSTRACT A key is given for 85 species of ophiuroids from the Gulf of Mexico and Caribbean Sea covering a depth range from the intertidal down to 30 m. Figures highlighting important anatomical features associated with couplets in the key are provided. 2 INTRODUCTION The Caribbean region is one of the major coral reef zoogeographic provinces and a region of intensive human use of marine resources for tourism and fisheries (Aide and Grau, 2004). With the world-wide decline of coral reefs, and deterioration of shallow-water marine habitats in general, ecological and biodiversity studies have become more important than ever before (Bellwood et al., 2004). Ecological and biodiversity studies require identification of collected specimens, often by biologists not specializing in taxonomy, and therefore identification guides easily accessible to a diversity of biologists are necessary.
    [Show full text]
  • Two New Brittle Star Species of the Genus Ophiothrix
    Caribbean Journal of Science, Vol. 41, No. 3, 583-599, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Two New Brittle Star Species of the Genus Ophiothrix (Echinodermata: Ophiuroidea: Ophiotrichidae) from Coral Reefs in the Southern Caribbean Sea, with Notes on Their Biology GORDON HENDLER Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. [email protected] ABSTRACT.—Two new species, Ophiothrix stri and Ophiothrix cimar, inhabit shallow reef-platforms and slopes in the Southern Caribbean, and occur together at localities in Costa Rica and Panama, nearly to Colombia. What appears to be an undescribed species resembling O. cimar has been reported from eastern Venezuela. In recent years, reefs where the species were previously observed have deteriorated because of environmental degradation. As a consequence, populations of the new species may have been reduced or eradicated. The new species have previously been mistaken for O. angulata, O. brachyactis, and O. lineata. Ophiothrix lineata, O. stri, and O. cimar have in common a suite of morphological features pointing to their systematic affinity, and a similar pigmentation pattern consisting of a thin, dark, medial arm stripe flanked by two pale stripes. Ophiothrix lineata is similar to Indo-Pacific members of the subgenus Placophiothrix and closely resembles Ophiothrix stri. The latter is extremely similar to O. synoecina, from Colombia, and both can live in association with the rock-boring echinoid Echinometra lucunter. Although O. synoecina is a protandric hermaphrodite that reportedly broods its young externally, the new species are gonochoric and do not brood.
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Using Molecular Identification of Ichthyoplankton to Monitor
    Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 1 Using molecular identification of ichthyoplankton to monitor 2 spawning activity in a subtropical no-take Marine Reserve 3 4 5 6 Ana Luisa M. Ahern1, *, Ronald S. Burton1, Ricardo J. Saldierna-Martínez2, Andrew F. Johnson1, 7 Alice E. Harada1, Brad Erisman1,4, Octavio Aburto-Oropeza1, David I. Castro Arvizú3, Arturo R. 8 Sánchez-Uvera2, Jaime Gómez-Gutiérrez2 9 10 11 12 1Marine Biology Research Division, Scripps Institution of Oceanography, University of California 13 San Diego, La Jolla, California, USA 14 2Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, 15 Instituto Politécnico Nacional, CP 23096, La Paz, Baja California Sur, Mexico 16 3Cabo Pulmo National Park, Baja California Sur, Mexico 17 4The University of Texas at Austin, Marine Science Institute, College of Natural Sciences, 18 Port Aransas, Texas, USA 19 20 21 22 23 24 25 *Corresponding author: [email protected] 1 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 26 ABSTRACT: Ichthyoplankton studies can provide valuable information on the species richness 27 and spawning activity of fishes, complementing estimations done using trawls and diver surveys. 28 Zooplankton samples were collected weekly between January and December 2014 in Cabo 29 Pulmo National Park, Gulf of California, Mexico (n=48). Fish larvae and particularly eggs are 30 difficult to identify morphologically, therefore the DNA barcoding method was employed to 31 identify 4,388 specimens, resulting in 157 Operational Taxonomic Units (OTUs) corresponding 32 to species. Scarus sp., Halichoeres dispilus, Xyrichtys mundiceps, Euthynnus lineatus, 33 Ammodytoides gilli, Synodus lacertinus, Etrumeus acuminatus, Chanos chanos, Haemulon 34 flaviguttatum, and Vinciguerria lucetia were the most abundant and frequent species recorded.
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]