Medipo – Medical Image Processing Online a Web Based Decision Support and Educational Tool for Medical Image Processing

Total Page:16

File Type:pdf, Size:1020Kb

Medipo – Medical Image Processing Online a Web Based Decision Support and Educational Tool for Medical Image Processing MedIPO – Medical Image Processing Online A Web Based Decision Support and Educational Tool for Medical Image Processing Bengisu Cagiltay, Bilkent University, Turkey <[email protected]> Mert Ege Can, Bilkent University, Turkey <[email protected]> Imge Gokalp, Bilkent University, Turkey <[email protected]> Caner Sezginer, Bilkent University, Turkey <[email protected]> Abstract: Today, Magnetic Resonance Imaging (MRI) technology makes very serious contributions to medical science in order to make various decisions before surgery. However, surgeons working on MRI are required to make serious decisions about the location of tumor and their volume, size and shape. They have to make plans to minimize the damage to the patient while separating tumorous areas from the healthy tissues. This planning can be done manually by working on a large number of MRI with different sections or by means of a software. However, gaining these skills is a challenge for the surgical education programs. In this study a system is developed to analyze the patient data, detect and record abnormal masses with a semi-automated image processing tool for pre-surgery decision support and educational purposes. Through this database, this study aims to provide case-based try-and-error type practice alternatives to the surgical residents. MedIPO provides a web based system which allows its users to upload, view and analyze medical images online by providing a semi- automated image processing system. By such a practice it is aimed to improve the beginner level of surgical residents’ skills on better detecting the locations of abnormal masses to improve efficiency for the pre-surgery decision making process. This study summarizes the main concept of the system development, the used algorithms as well as the user interface for analyzing the MRI data for educational purposes. I. Introduction and Background of the Study Surgeons are required to analyze the MRI data of a patient and make a surgical plan prior to the surgeries such as brain surgery. However, there are not many educational tools to provide try-and error type of training for the surgery education programs. Today currently there exists some medical image processing systems available in the market such as Osirix Lite, 3D Slicer, AnalyzeDirect, Online DICOM Viewer and MicroDICOM. However, when compared to MedIPO, these systems have some limitations for educational purposes when their prices and functionalities are considered. For instance, Osirix Lite is a desktop application that allows to open and view DICOM [1] type images. The software has features such as image processing, image visualization, advanced post-processing techniques in 2D and 3D, fast performance, FDA & CE certification [2]. However, as it is a desktop application it has to be installed the computer for being used. Additionally, its cost for each installation might create a serious limitation for the educational purposes and it does not provide any guidance for the decisions being made. Another software 3D Slicer is a free desktop software package for image analysis and scientific visualization of DICOM images [3]. It has features like image processing, scientific visualization (3D) and image analysis. However, it does not automate image processing features, it has a lower quality user interface and since it is a desktop application this software also has limitations for educational purposes. Analyze Direct is a software that presents image processing, visualization and analysis tools [4]. However, its image processing features are manual and as it is a desktop application it has a cost for each installation, therefore it has limitations for educational purposes. Online DICOM Viewer is a web-based application that users can post medical DICOM images to view and save [5]. As it is free to use, web based and has visualization features, it is more beneficial for the educational purposes when compared to the previous products. However, it does not have any image processing features and it is not suitable for advanced processes which limits its educational use. MicroDicom is an application for primary processing and preservation of medical images in DICOM format [6]. MicroDicom includes viewing and saving medical images in DICOM format, brightness/contrast control, zooming and panning DICOM images, medical image processing operation. However, it has manual image processing features thus it is considered slow for responses when compared to automated systems. After conducting analysis of these tools, it has been decided that a system which does not require any installation of additional software and hardware, which is web-based and free of charge, which allows to store, compare, download and also provide automated image processing capabilities would allow much more accessibility to medical doctors and speed up their decision support and learning processes. Accordingly, Medical Image Processing Online (MedIPO) is developed to satisfy these requirements stated, in order to better support the medical education systems. MedIPO System MedIPO is a web based system which allows its users to upload and analyze MR images quickly and easily, online. The target audiences of this system are medical doctors. The system aims to provide an online viewer and image analyzer for medical doctors by providing a detailed and intractable interface. MedIPO can be used for pre-surgery planning, practice and educational purposes. The users are required to upload files in DICOM format [1]. For ethical reasons, the uploaded MR images will be automatically anonymized by the system. The system enables a medical doctor to specify the region of interest and it conducts a semi-automated segmentation of this region (e.g. ventricles of the brain, cortices, cerebellum, tumor, etc.). The system also allows the user to enter manual annotation and corrections in addition to the segmentation results. The final packages of the software are based on the Client-Server relations. The client and server packages share the Model-View-Controller (MVC) design pattern and the sub layers of the packages are designed according to the MVC structure. A visual representation of the package structure is presented in Figure 1. Figure 1: Package Structure Since MedIPO system is a web based application, the system does not require any direct external hardware components. The hardware-software interaction occurs between the web browser and the machine. The application requires internet connection on the machine in order to provide data transaction between the server and the client. As seen in Figure 2, the web browser interacts with Java servlets over HTTP requests. Figure 2: Hardware Software Mapping The main aim of MedIPO software is to provide a system with zero-footprint, which indicates that the system does not require any client side install or download. This allows the users to view and edit the medical images online, purely over the browser. In order to achieve zero-footprint software, all the data related to the system such as login information and DICOM images to be stored in the server’s internal disks. II. Algorithms and Design Decisions Two of the major algorithms used for the software are named as Magic Wand and Magic Grid. A brief description for both of the algorithms will be explained in this section. Magic Wand Magic Wand algorithm is a simple algorithm used for border detection of a selected region of interest. This algorithm works by taking an input from the user which specifies the region of interest. The pixels around the region of interest are collected in this algorithm and according to a specified threshold, the neighboring pixels are either selected or not. The same action is repeated for every new pixel added to the region of interest. One of the major design decisions based on the Magic Wand algorithm is due to the success rate of this algorithm. Magic Wand algorithm has a high success rate in clear, closed boundary images. However, since tumors might not always visualize clearly, in some images this algorithm did not provide highly accurate results. Therefore, one major design decision during the algorithm development of Magic Wand was to develop a separate algorithm that is less dependent on the color differences of pixels, which is the following algorithm Magic Grid. Magic Grid Magic Grid algorithm is based on the image processing algorithm of Superpixels (Slic). Magic Grid uses the Slic algorithm as a baseline, the original image is divided into Slics. Later, these Slic’s are presented to the user interface in order to interact with the user. The user selects the region of interest by clicking on the Slic’s and creates a region called “mask”. This mask is used in order to reference the neighbor images (i.e. previous and next images) or the original image itself. By using this mask, the region of interest is transferred to the previous and next images by adjusting the pixel values. The algorithm checks whether a pixel of a superpixel overlaps more than 50%, and the pixel’s color difference is less than the specified threshold. If both of these conditions are true, the new superpixel is selected in the neighboring images. As a design decision made during the algorithm development of Magic Grid, the primary algorithm consisted a different design from explained above. The primary design used the center points of Slic’s with combination of the threshold value. However, in order to provide more accurate results while using the Magic Grid algorithm, the design is changed to the approach explained above. III. System Workflow Server Workflow Server-side workflow is responsible for analyzing the process of a generated response after a request is received from the client. According to the request type, the data layer will decide on the relevant flow for the request which might be one of the following: Magic Wand, Magic Grid or Upload. In all three paths, after the request-specific processes are completed, a response is generated and returned to the server.
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs
    Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Doug Dean Final Project Presentation ENGN 2500: Medical Image Analysis May 16, 2011 Tuesday, May 17, 2011 Outline • Review of the problem presented in the paper: “A comparison of angled sagittal MRI and conventional MRI in the diagnosis of herniated disc and stenosis in the cervical foramen” (Authors: Shim JH, Park CK, Lee JH, et. al) • Approach to solve this problem • Data Acquisition • Analysis Methods • Results • Discussion/Conclusions Tuesday, May 17, 2011 Review of Problem • Difficult to identify herniated discs and spinal stenosis using conventional (2D) MRI techniques • These conventional methods result in patients condition being misdiagnosed. “Conventional MRI”: Images acquired along one of three anatomical planes Tuesday, May 17, 2011 3D reconstructive CT Axial, T2-weighted Image: Image shows that the Cervical Foramen is cervical foramina are directed at 45 degrees directed downward around with respect to coronal 10-15 degrees with plane. respect to axial plane Tuesday, May 17, 2011 Orientation of Images Conventional MRI: Sagittal Protocol Oblique MRI: Sagittal Protocol Tuesday, May 17, 2011 Timeline • Week 1 (4/11-4/16) • Work on developing MR imaging protocols and sequences • Recruit volunteers (~4-5 volunteers) • Week 2 (4/17-4/23) • Continue developing imaging sequences and begin data acquisition at the MRI facility • Assisted by Dr. Deoni • Week 3&4 (4/24-5/7) • Continue developing and testing sequence • 4/27/2011: Acquisition of first subject • Mid Project Presentation: Describe the imaging protocols, present data that had been acquired from previous week, describe what still needs to be done.
    [Show full text]
  • MITK-Modelfit: a Generic Open-Source Framework for Model Fits and Their Exploration in Medical Imaging – Design, Implementatio
    MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging – design, implementation and application on the example of DCE-MRI Charlotte Debus1-5,*,#, Ralf Floca5,6,*,#, Michael Ingrisch7, Ina Kompan5,6, Klaus Maier-Hein5,6,8, Amir Abdollahi1-5, and Marco Nolden6 1German Cancer Consortium (DKTK), Heidelberg, Germany 2Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany 3Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany 4National Center for Tumor Diseases (NCT), Heidelberg, Germany 5Heidelberg Institute of Radiation Oncology (HIRO), Germany 6Division of Medical Image Computing, German Cancer Research Center DKFZ, Germany 7Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Germany 8Section Pattern Recognition, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany # Correspondence: Charlotte Debus, PhD Department of Translational Radiation Oncology Heidelberg Ion-Beam Therapy Center (HIT) Im Neuenheimer Feld 450 69120 Heidelberg, Germany Email: [email protected] Phone: +49 6221 6538281 Ralf Floca, PhD Division of Medical Image Computing German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 69120 Heidelberg, Germany Email: [email protected] Phone: + 49 6221 42 2560 * Shared first-authors 1 Abstract Background: Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in dynamic contrast- enhanced (DCE) magnetic resonance imaging (MRI)/computed tomography (CT), apparent diffusion coefficient calculations and intravoxel incoherent motion modeling in diffusion-weighted MRI and Z- spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions.
    [Show full text]
  • Survey of Databases Used in Image Processing and Their Applications
    International Journal of Scientific & Engineering Research Volume 2, Issue 10, Oct-2011 1 ISSN 2229-5518 Survey of Databases Used in Image Processing and Their Applications Shubhpreet Kaur, Gagandeep Jindal Abstract- This paper gives review of Medical image database (MIDB) systems which have been developed in the past few years for research for medical fraternity and students. In this paper, I have surveyed all available medical image databases relevant for research and their use. Keywords: Image database, Medical Image Database System. —————————— —————————— 1. INTRODUCTION Measurement and recording techniques, such as electroencephalography, magnetoencephalography Medical imaging is the technique and process used to (MEG), Electrocardiography (EKG) and others, can create images of the human for clinical purposes be seen as forms of medical imaging. Image Analysis (medical procedures seeking to reveal, diagnose or is done to ensure database consistency and reliable examine disease) or medical science. As a discipline, image processing. it is part of biological imaging and incorporates radiology, nuclear medicine, investigative Open source software for medical image analysis radiological sciences, endoscopy, (medical) Several open source software packages are available thermography, medical photography and for performing analysis of medical images: microscopy. ImageJ 3D Slicer ITK Shubhpreet Kaur is currently pursuing masters degree OsiriX program in Computer Science and engineering in GemIdent Chandigarh Engineering College, Mohali, India. E-mail: MicroDicom [email protected] FreeSurfer Gagandeep Jindal is currently assistant processor in 1.1 Images used in Medical Research department Computer Science and Engineering in Here is the description of various modalities that are Chandigarh Engineering College, Mohali, India. E-mail: used for the purpose of research by medical and [email protected] engineering students as well as doctors.
    [Show full text]
  • PDF File, 212 KB
    Multimedia Appendix 2. List of OS Projects Contacted for Survey Project Name Web Page 3D Slicer http://www.slicer.org/ Apollo http://www.fruitfly.org/annot/apollo/ Biobuilder http://www.biomedcentral.com/1471-2105/5/43 Bioconductor http://www.bioconductor.org Biojava http://www.biojava.org/ Biomail Scientific References Automation http://biomail.sourceforge.net/biomail/index.html Bioperl http://bioperl.org/ Biophp http://biophp.org Biopython http://www.biopython.org/ Bioquery http://www.bioquery.org/ Biowarehouse http://bioinformatics.ai.sri.com/biowarehouse/ Cd-Hit Sequence Clustering Software http://bioinformatics.org/cd-hit/ Chemistry Development Kit http://almost.cubic.uni-koeln.de/cdk/ Coasim http://www.daimi.au.dk/~mailund/CoaSim/ Cytoscape http://www.cytoscape.org Das http://biodas.org/ E-Cell System http://sourceforge.net/projects/ecell/ Emboss http://emboss.sourceforge.net/ http://www.ensembl.org/info/software/versions.htm Ensemble l Eviewbox Dicom Java Project http://sourceforge.net/projects/eviewbox/ Freemed Project http://bioinformatics.org/project/?group_id=298 Ghemical http://www.bioinformatics.org/ghemical/ Gnumed http://www.gnumed.org Medical Dataserver http://www.mii.ucla.edu/dataserver Medical Image Analysis http://sourceforge.net/projects/mia Moby http://biomoby.open-bio.org/ Olduvai http://sourceforge.net/projects/olduvai/ Openclinica http://www.openclinica.org Openemed http://openemed.org/ Openemr http://www.oemr.org/ Oscarmcmaster http://sourceforge.net/projects/oscarmcmaster/ Probemaker http://probemaker.sourceforge.net/
    [Show full text]
  • Automated Malware Analysis Report for Microdicom-3.0.1
    ID: 153765 Sample Name: MicroDicom- 3.0.1-x64.exe Cookbook: default.jbs Time: 13:55:16 Date: 18/07/2019 Version: 26.0.0 Aquamarine Table of Contents Table of Contents 2 Analysis Report MicroDicom-3.0.1-x64.exe 4 Overview 4 General Information 4 Detection 4 Confidence 5 Classification 5 Analysis Advice 5 Mitre Att&ck Matrix 6 Signature Overview 6 AV Detection: 6 Spreading: 6 Networking: 6 Key, Mouse, Clipboard, Microphone and Screen Capturing: 6 System Summary: 7 Data Obfuscation: 7 Persistence and Installation Behavior: 7 Boot Survival: 7 Hooking and other Techniques for Hiding and Protection: 7 Malware Analysis System Evasion: 7 Anti Debugging: 8 HIPS / PFW / Operating System Protection Evasion: 8 Language, Device and Operating System Detection: 8 Behavior Graph 8 Simulations 8 Behavior and APIs 8 Antivirus and Machine Learning Detection 9 Initial Sample 9 Dropped Files 9 Unpacked PE Files 9 Domains 9 URLs 9 Yara Overview 9 Initial Sample 9 PCAP (Network Traffic) 9 Dropped Files 9 Memory Dumps 9 Unpacked PEs 9 Joe Sandbox View / Context 10 IPs 10 Domains 10 ASN 10 JA3 Fingerprints 10 Dropped Files 10 Screenshots 10 Thumbnails 10 Startup 11 Created / dropped Files 11 Domains and IPs 17 Contacted Domains 17 URLs from Memory and Binaries 17 Contacted IPs 17 Static File Info 17 General 18 File Icon 18 Static PE Info 18 General 18 Entrypoint Preview 18 Rich Headers 19 Copyright Joe Security LLC 2019 Page 2 of 44 Data Directories 19 Sections 20 Resources 20 Imports 20 Possible Origin 21 Network Behavior 21 Code Manipulations 21 Statistics 21
    [Show full text]
  • Whole Body Computed Tomography with Advanced Imaging Techniques: a Research Tool for Measuring Body Composition in Dogs
    Hindawi Publishing Corporation Journal of Veterinary Medicine Volume 2013, Article ID 610654, 6 pages http://dx.doi.org/10.1155/2013/610654 Research Article Whole Body Computed Tomography with Advanced Imaging Techniques: A Research Tool for Measuring Body Composition in Dogs Dharma Purushothaman,1 Barbara A. Vanselow,2 Shu-Biao Wu,1 Sarah Butler,3 and Wendy Yvonne Brown1 1 School of Environmental and Rural Science, Department of Animal Science, University of New England, Armidale, NSW 2351, Australia 2 NSW Department of Primary Industries, Beef Industry Centre, University of New England, Armidale, NSW 2351, Australia 3 North Hill Vet Clinic, Armidale, NSW 2350, Australia Correspondence should be addressed to Wendy Yvonne Brown; [email protected] Received 6 May 2013; Revised 14 September 2013; Accepted 17 September 2013 Academic Editor: Juan G. Chediack Copyright © 2013 Dharma Purushothaman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of computed tomography (CT) to evaluate obesity in canines is limited. Traditional CT image analysis is cumbersome and uses prediction equations that require manual calculations. In order to overcome this, our study investigated the use of advanced image analysis software programs to determine body composition in dogs with an application to canine obesity research. Beagles and greyhounds were chosen for their differences in morphology and propensity to obesity. Whole body CT scans with regular intervals were performed on six beagles and six greyhounds that were subjected to a 28-day weight-gain protocol.
    [Show full text]
  • Schmidt BT 2020.Pdf
    FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT • DEPARTMENT INFORMATIK Lehrstuhl für Informatik 10 (Systemsimulation) Investigation and Implementation of Visualization and Reconstruction Options for Breast-CT Simon Schmidt Bachelorthesis Investigation and Implementation of Visualization and Reconstruction Options for Breast-CT Simon Schmidt Bachelorthesis Aufgabensteller: Prof. Dr.-Ing. Harald Köstler Betreuer: Dr. David Heinemann (AB-CT) Bearbeitungszeitraum: 1.6.2020 – 2.11.2020 Erklärung: Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähn- licher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet. Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Systemsimulati- on (Informatik 10), wird für Zwecke der Forschung und Lehre ein einfaches, kostenloses, zeitlich und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der Ba- chelorthesis einschließlich etwaiger Schutzrechte und Urheberrechte eingeräumt. Erlangen, den 1. November 2020 . Abstract The nu:view Breast-CT is the worlds first spiral Breast-CT. While already in clinical use, the system is still under on-going development. In the current clinical workflow, the acquired scans have to be reconstructed and then transferred to the clinical network before they can be reviewed on a workstation in another room. As the necessary amount of data for a single scan is huge, this can take long times. The goal of this thesis was therefore, to improve on those weak points by investigating viewing options which could be used in close proximity to the scanner.
    [Show full text]
  • Vendor Questions and Answers
    COMMUNITY COLLEGE OF ALLEGHENY COUNTY PURCHASING DEPARTMENT 800 ALLEGHENY AVENUE, PITTSBURGH, PA 15233 ADDENDUM 1 REQUEST FOR PROPOSAL 3104 NETWORK ACCESS CONTROL SOLUTION APRIL 10, 2018 The following additional information is hereby made a part of this RFP: **************************************************************************** See the accompanying vendor compliance matrix. See accompanying “Addendum A” (partial listing of network devices and protocols/services/applications that NAC solution must support). The protocols include listing from the current RFPs’ appendixes. It should be noted this is not an all-inclusive list, the chosen NAC solution should support all standard protocols or provide explanation of non- support. See accompanying Addendum B - Partial listing existing desktop and server software applciartions (referred to in questions 27 on page 9 of the RFP). “Addendum C” – listing of existing college network equipment Vendor Questions and Answers: 1. What is the VPN Gateway technology being used? (sec 2.1) Fortinet FortiGate 2. Can further clarifications be made regarding "specific settings to the endpoint to operate." be identified? Is the provisioning of administrative accounts per host impacted by this function? (Section 3.1 statement 7) It is desired that the proposed NAC solution should not require or expect any specific setting or component on the end-user system to be exist or configured in order the NAC solution to provide all its functionality. If the NAC solution requires certain software component(s) to exist on the end user systems, the vendors must provide detailed information about their proposed system and how it would function in the college’s environment. 3. Please elaborate on what "relevant information" refers to, respective to information being shared with other college systems.
    [Show full text]
  • Evaluation of DICOM Viewer Software for Workflow Integration in Clinical Trials
    Evaluation of DICOM Viewer Software for Workflow Integration in Clinical Trials Daniel Haak1*, Charles-E. Page, Klaus Kabino, Thomas M. Deserno Department of Medical Informatics, Uniklinik RWTH Aachen, 52057 Aachen, Germany ABSTRACT The digital imaging and communications in medicine (DICOM) protocol is nowadays the leading standard for capture, exchange and storage of image data in medical applications. A broad range of commercial, free, and open source software tools supporting a variety of DICOM functionality exists. However, different from patient’s care in hospital, DICOM has not yet arrived in electronic data capture systems (EDCS) for clinical trials. Due to missing integration, even just the visualization of patient’s image data in electronic case report forms (eCRFs) is impossible. Four increasing levels for integration of DICOM components into EDCS are conceivable, raising functionality but also demands on interfaces with each level. Hence, in this paper, a comprehensive evaluation of 27 DICOM viewer software projects is performed, investigating viewing functionality as well as interfaces for integration. Concerning general, integration, and viewing requirements the survey involves the criteria (i) license, (ii) support, (iii) platform, (iv) interfaces, (v) two- dimensional (2D) and (vi) three-dimensional (3D) image viewing functionality. Optimal viewers are suggested for applications in clinical trials for 3D imaging, hospital communication, and workflow. Focusing on open source solutions, the viewers ImageJ and MicroView are superior for 3D visualization, whereas GingkoCADx is advantageous for hospital integration. Concerning workflow optimization in multi-centered clinical trials, we suggest the open source viewer Weasis. Covering most use cases, an EDCS and PACS interconnection with Weasis is suggested.
    [Show full text]
  • Transforming the Medical Imaging Workflow
    Transforming the Medical Imaging Workflow: How Mac systems and open source software combine to make full-featured diagnostic imaging solutions affordable for today’s radiologist. By Roger Katen, M.D. San Francisco, CA White Paper 2 Transforming the Medical Imaging Workflow Contents Page 3 Executive Summary Page 5 The New Realities of Medical Imaging The Digital Data Explosion The Rise of Imaging Workstations A Cost Conundrum Page 8 A Compelling Alternative: The Mac and OsiriX Workstation OsiriX: Full-Featured, Open Source Mac OS X and Mac Systems A New Solution for a New Reality Page 10 Mac Systems and OsiriX in the Radiology Workflow Image Generation Equipment Picture Archiving and Communications Systems (PACS) Creating a PACS Archive with OsiriX Database Sharing and Autorouting Storage System Page 16 Building an Imaging Workstation Environment with OsiriX Working with Large Datasets Supporting Medical-Quality Displays Requirements for High-Performance Processors Accelerating Image Retrieval Page 19 Enabling the Imaging Workflow Options for Advanced Visualization Starting and Sending a New DICOM Series to PACS Emailing and Printing Images Integrating with Hospital and Radiology Information Systems Exploring Alternatives to Windows RIS Systems Page 24 Collaborating Beyond the Office with OsiriX Virtual Private Networks Remote Visualization via Apple Remote Desktop Citrix/Windows Terminal Services Teleradiology Collaboration iChat and iChat Theater Page 28 Conclusion White Paper 3 Transforming the Medical Imaging Workflow Executive Summary Today more than ever, the healthcare industry is reaping the benefits of advances in diagnostic medical imaging. Dramatic breakthroughs in higher-resolution CT, MRI, ultrasound, and interventional technologies have enabled healthcare providers to deliver more informed diagnoses, pursue more effective treatments, collaborate more easily with colleagues, and communicate more clearly with patients.
    [Show full text]
  • Automated 3D Visualization of Brain Cancer
    AUTOMATED 3D VISUALIZATION OF BRAIN CANCER AUTOMATED 3D VISUALIZATION OF BRAIN CANCER By MONA AL-REI, MSc. A Thesis Submitted to the School of Graduate Studies In Partial Fulfillment of the Requirements for the Degree Master of eHealth Program McMaster University @ Copyright by Mona Al-Rei, June 2017 McMaster University Master of eHealth (2017) Hamilton, Ontario TITLE: 3D Brain Cancer Visualization. AUTHOR: Mona Al-Rei. SUPERVISOR: Dr. Thomas Doyle. SUPERVISRORY COMMITTEE: Dr. Reza Samavi, Dr. David Koff. NUMBER OF PAGES: xvii, 119. ii To my beloved and wounded country Yemen iii Abstract Three-dimensional (3D) visualization in cancer control has seen recent progress due to the benefits it offers to the treatment, education, and understanding of the disease. This work identifies the need for an application that directly processes two-dimensional (2D) DICOM images for the segmentation of a brain tumor and the generation of an interactive 3D model suitable for enabling multisensory learning and visualization. A new software application (M-3Ds) was developed to meet these objectives with three modes of segmentation (manual, automatic, and hybrid) for evaluation. M-3Ds software was designed to mitigate the cognitive load and empower health care professionals in their decision making for improved patient outcomes and safety. Comparison of mode accuracy was evaluated. Industrial standard software programs were employed to verify and validate the results of M-3Ds using quantitative volumetric comparison. The study determined that M-3Ds‘ hybrid mode was the highest accuracy with least user intervention for brain tumor segmentation and suitable for the clinical workflow. This paper presents a novel approach to improve medical education, diagnosis, treatment for either surgical planning or radiotherapy of brain cancer.
    [Show full text]