Immunology/Inflammation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bufadienolides from the Skin Secretions of the Neotropical Toad Rhinella Alata (Anura: Bufonidae): Antiprotozoal Activity Against Trypanosoma Cruzi
molecules Article Bufadienolides from the Skin Secretions of the Neotropical Toad Rhinella alata (Anura: Bufonidae): Antiprotozoal Activity against Trypanosoma cruzi Candelario Rodriguez 1,2,3 , Roberto Ibáñez 4 , Luis Mojica 5, Michelle Ng 6, Carmenza Spadafora 6 , Armando A. Durant-Archibold 1,3,* and Marcelino Gutiérrez 1,* 1 Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Apartado 0843-01103, Panama; [email protected] 2 Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India 3 Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 0824-03366, Panama 4 Smithsonian Tropical Research Institute (STRI), Balboa, Ancon P.O. Box 0843-03092, Panama; [email protected] 5 Centro Nacional de Metrología de Panamá (CENAMEP AIP), Apartado 0843-01353, Panama; [email protected] 6 Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, Apartado 0843-01103, Panama; [email protected] (M.N.); [email protected] (C.S.) * Correspondence: [email protected] (A.A.D.-A.); [email protected] (M.G.) Abstract: Toads in the family Bufonidae contain bufadienolides in their venom, which are charac- Citation: Rodriguez, C.; Ibáñez, R.; terized by their chemical diversity and high pharmacological potential. American trypanosomiasis Mojica, L.; Ng, M.; Spadafora, C.; is a neglected disease that affects an estimated 8 million people in tropical and subtropical coun- Durant-Archibold, A.A.; Gutiérrez, M. tries. In this research, we investigated the chemical composition and antitrypanosomal activity Bufadienolides from the Skin of toad venom from Rhinella alata collected in Panama. -
Review CCR5 Antagonists: Host-Targeted Antivirals for the Treatment of HIV Infection
Antiviral Chemistry & Chemotherapy 16:339–354 Review CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection Mike Westby* and Elna van der Ryst Pfizer Global R&D, Kent, UK *Corresponding author: Tel: +44 1304 649876; Fax: +44 1304 651819; E-mail: [email protected] The human chemokine receptors, CCR5 and suggest that these compounds have a long plasma CXCR4, are potential host targets for exogenous, half-life and/or prolonged CCR5 occupancy, which small-molecule antagonists for the inhibition of may explain the delay in viral rebound observed HIV-1 infection. HIV-1 strains can be categorised by following compound withdrawal in short-term co-receptor tropism – their ability to utilise CCR5 monotherapy studies. A switch from CCR5 to (CCR5-tropic), CXCR4 (CXCR4-tropic) or both (dual- CXCR4 tropism occurs spontaneously in approxi- tropic) as a co-receptor for entry into susceptible mately 50% of HIV-infected patients and has been cells. CCR5 may be the more suitable co-receptor associated with, but is not required for, disease target for small-molecule antagonists because a progression. The possibility of a co-receptor natural deletion in the CCR5 gene preventing its tropism switch occurring under selection pressure expression on the cell surface is not associated by CCR5 antagonists is discussed. The completion with any obvious phenotype, but can confer of ongoing Phase IIb/III studies of maraviroc, resistance to infection by CCR5-tropic strains – the aplaviroc and vicriviroc will provide further insight most frequently sexually-transmitted strains. into co-receptor tropism, HIV pathogenesis and The current leading CCR5 antagonists in clinical the suitability of CCR5 antagonists as a potent development include maraviroc (UK-427,857, new class of antivirals for the treatment of HIV Pfizer), aplaviroc (873140, GlaxoSmithKline) and infection. -
New Therapeutic Property of Dimebon As a Neuroprotective Agent
Send Orders for Reprints to [email protected] Current Medicinal Chemistry, 2016, 23, 1-12 1 REVIEW ARTICLE New Therapeutic Property of Dimebon as a Neuroprotective Agent Aleksey Ustyugov1, Elena Shevtsova1, George E. Barreto2,3, Ghulam Md Ashraf 4, Sergey O. Bachurin1 and Gjumrakch Aliev1,5,6,* 1Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy Proezd 1, Cher- nogolovka, 142432, Russia; 2Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Uni- versidad Javeriana, Bogotá D.C., Colombia; 3Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile; 4King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Ara- bia; 5GALLY International Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San An- tonio, TX, 78229, USA; 6School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA, 30097, USA Abstract: Dimebon (or Latrepirdine) was initially used as an anti-histamergic drug but later new therapeutic properties were rediscovered, adding to a growing body of “old” agents with prominent neuroprotective effects. In the present manuscript, we are focusing on our latest study on Dimebon with regard to brain’s pathological processes using in vivo protei- A R T I C L E H I S T O R Y nopathy models. In the study, neurodegenerative pathology has been attributed to a group of aggregate-prone proteins: hyperphosphorylated tau, fused in sarcoma and γ-synuclein , which Received: March 13, 2016 Revised: June 08, 2016 are involved in a number of neurological disorders. We have also presented our in vitro Accepted: July 24, 2016 model based on overexpression of an aberrant mutant form of transactive response DNA DOI: 10.2174/0929867323666160804 binding 43 kDa protein in cultured SH-SY5Y neuroblastoma cells. -
Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation
www.sciencemag.org/cgi/content/full/327/5963/348/DC1 Supporting Online Material for Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation Jason Rihel,* David A. Prober, Anthony Arvanites, Kelvin Lam, Steven Zimmerman, Sumin Jang, Stephen J. Haggarty, David Kokel, Lee L. Rubin, Randall T. Peterson, Alexander F. Schier* *To whom correspondence should be addressed. E-mail: [email protected] (A.F.S.); [email protected] (J.R.) Published 15 January 2010, Science 327, 348 (2010) DOI: 10.1126/science.1183090 This PDF file includes: Materials and Methods SOM Text Figs. S1 to S18 Table S1 References Supporting Online Material Table of Contents Materials and Methods, pages 2-4 Supplemental Text 1-7, pages 5-10 Text 1. Psychotropic Drug Discovery, page 5 Text 2. Dose, pages 5-6 Text 3. Therapeutic Classes of Drugs Induce Correlated Behaviors, page 6 Text 4. Polypharmacology, pages 6-7 Text 5. Pharmacological Conservation, pages 7-9 Text 6. Non-overlapping Regulation of Rest/Wake States, page 9 Text 7. High Throughput Behavioral Screening in Practice, page 10 Supplemental Figure Legends, pages 11-14 Figure S1. Expanded hierarchical clustering analysis, pages 15-18 Figure S2. Hierarchical and k-means clustering yield similar cluster architectures, page 19 Figure S3. Expanded k-means clustergram, pages 20-23 Figure S4. Behavioral fingerprints are stable across a range of doses, page 24 Figure S5. Compounds that share biological targets have highly correlated behavioral fingerprints, page 25 Figure S6. Examples of compounds that share biological targets and/or structural similarity that give similar behavioral profiles, page 26 Figure S7. -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
Histamine Receptors
Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity. -
CSID-Abstracts.Pdf
The 5th Annual Meeting of Chinese Society of Investigative Dermatology contents Contents E-poster PO-001 Protective properties on oxidative damage of Isorhamnetin and Kaempferol extracted from Vernonia anthelmintica (L.) Willd seeds in human primary melanocytes and keratinocytes ---------------------------------------------------------------------------- HuWen,Wang Hongjuan,Zhang Kunjie,etc 1 PO-002 Effect of IL-17A on NF-κB signaling pathway in human epidermal keratinocytes --------------------------------------------------------------------------------- LiShuang,Hou Shaowei,Feng Jian,etc 2 PO-003 Metabolomics profiling reveals alterations of amino acid and carnitine are metabolic signatures in psoriasisChenChao,Hou Guixue,Zeng Chunwei,etc -------------------------------------------------------------------------- 3 PO-004 Lysophosphatidylcholine promotes the development of psoriasis through metabolic reprogramming ------------------------------------------------------------------------------------ Panpan Liu,Cong Peng,Xiang Chen 4 PO-005 Circular RNA circLOC101928570 suppress systemic lupus erythematosus progression via targeting the miR-150/c-myb axis ---------------------------------------------------- Xingwang Zhao,Longlong Zhang,Junkai Guo,etc 5 PO-006 A novel role of IL-17A in contributing to the impaired suppressive function of Tregs in psoriasis ----------------------------------------------------------------------------------- Yanghe Liu,Luting Yang,Gang Wang 6 PO-007 Expression of co-inhibitory receptors in psoriasis and correlation -
PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
Aplaviroc (APL, 873140)
Hepatotoxicity observed in clinical trials of aplaviroc (APL, 873140) WG Nichols1, HM Steel1, TM Bonny1, SS Min1, L Curtis1, K Kabeya2, N Clumeck2 1 GlaxoSmithKline, Research Triangle Park, USA; 2 CHU-Saint-Pierre, Brussels, Belgium. Aplaviroc (APL, 873140, Ono 4128) O CH3 O HO • Specific CCR5 antagonist O N OH N NH • Potent HIV entry inhibitor O – mean 1.66 log10 decline at nadir in HIV-RNA after 10d monotherapy1 • Safety profile supported further study in humans 1 Lalezari J et al. AIDS 2005;19:1443–1448. Aplaviroc Phase 2b Program CCR100136 CCR102881 • 195 treatment-naïve • 147 treatment-naïve subjects randomized to subjects randomized to – APL 200mg BID / LPV/r – APL 600mg BID / Combivir – APL 400mg BID / LPV/r – APL 800mg BID / Combivir – APL 800mg QD / LPV/r – Combivir / efavirenz – LPV/r / Combivir – 2:2:1 randomisation – 2:2:2:1 randomization Sentinel case: Severe hepatitis • 39 year old HIV+ male – CD4 283 cells/mm3 – HBV/HCV negative – Normal AST/ALT/bilirubin • APL 800mg BID + COM • Day 59: developed severe hepatic cytolysis • Liver biopsy: – Chronic inflammatory infiltrate, mod intensity Liver biopsy (portal area) – Consistent with drug-induced hepatotoxicity CCR102881 Individual Patient LFT Plots ALP ALT AST BILT CK 70 60 50 40 30 APL RX 20 LFT Values (x ULN) 10 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Study Day Review of Liver Enzyme Elevations in APL Phase IIb trials • 336 subjects received treatment – 282 subjects on APL – median duration of therapy: 13 wks • Central Lab database query to identify – any Grade -
Toxicology in Antiquity
TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). -
Copyrighted Material
Index Note: page numbers in italics refer to figures; those in bold to tables or boxes. abacavir 686 tolerability 536–537 children and adolescents 461 acamprosate vascular dementia 549 haematological 798, 805–807 alcohol dependence 397, 397, 402–403 see also donepezil; galantamine; hepatic impairment 636 eating disorders 669 rivastigmine HIV infection 680 re‐starting after non‐adherence 795 acetylcysteine (N‐acetylcysteine) learning disability 700 ACE inhibitors see angiotensin‐converting autism spectrum disorders 505 medication adherence and 788, 790 enzyme inhibitors obsessive compulsive disorder 364 Naranjo probability scale 811, 812 acetaldehyde 753 refractory schizophrenia 163 older people 525 acetaminophen, in dementia 564, 571 acetyl‐L‐carnitine 159 psychiatric see psychiatric adverse effects acetylcholinesterase (AChE) 529 activated partial thromboplastin time 805 renal impairment 647 acetylcholinesterase (AChE) acute intoxication see intoxication, acute see also teratogenicity inhibitors 529–543, 530–531 acute kidney injury 647 affective disorders adverse effects 537–538, 539 acutely disturbed behaviour 54–64 caffeine consumption 762 Alzheimer’s disease 529–543, 544, 576 intoxication with street drugs 56, 450 non‐psychotropics causing 808, atrial fibrillation 720 rapid tranquillisation 54–59 809, 810 clinical guidelines 544, 551, 551 acute mania see mania, acute stupor 107, 108, 109 combination therapy 536 addictions 385–457 see also bipolar disorder; depression; delirium 675 S‐adenosyl‐l‐methionine 275 mania dosing 535 ADHD -
Baicalein Inhibits Benzo [A] Pyrene-Induced Toxic Response by Downregulating Src Phosphorylation and by Upregulating NRF2-HMOX1 System
antioxidants Article Baicalein Inhibits Benzo[a]pyrene-Induced Toxic Response by Downregulating Src Phosphorylation and by Upregulating NRF2-HMOX1 System Yuka Tanaka 1 , Takamichi Ito 1, Gaku Tsuji 1,2 and Masutaka Furue 1,2,3,* 1 Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; [email protected] (Y.T.); [email protected] (T.I.); [email protected] (G.T.) 2 Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan 3 Division of Skin Surface Sensing, Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan * Correspondence: [email protected]; Tel.: +81-92-642-5581; Fax: +81-92-642-5600 Received: 1 June 2020; Accepted: 8 June 2020; Published: 9 June 2020 Abstract: Benzo[a]pyrene (BaP), a major environmental pollutant, activates aryl hydrocarbon receptor (AHR), induces its cytoplasmic-to-nuclear translocation and upregulates the production of cytochrome P450 1A1 (CYP1A1), a xenobiotic metabolizing enzyme which metabolize BaP. The BaP-AHR-CYP1A1 axis generates reactive oxygen species (ROS) and induces proinflammatory cytokines. Although the anti-inflammatory phytochemical baicalein (BAI) is known to inhibit the BaP-AHR-mediated CYP1A1 expression, its subcellular signaling remains elusive. In this study, normal human epidermal keratinocytes and HaCaT keratinocytes were treated with BAI, BaP, or BAI + BaP, and assessed for the CYP1A1 expression, antioxidative pathways, ROS generation, and proinflammatory cytokine expressions. BAI and BAI-containing herbal medicine Wogon and Oren-gedoku-to could inhibit the BaP-induced CYP1A1 expression.