Surgeons Trial a Ground-Breaking New Assistant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide for Lighting the Stage
A Guide for Lighting the Stage visual environment technologies | etcconnect.com ETC® and ColorSource are either registered trademarks or trademarks of Electronic Theatre Controls, Inc. in the United States and other countries. All other trademarks, both marked and not marked, are the property of their respective owners. This content may be used, copied and freely distributed for educational purposes without written permission from ETC. Introduction The aim of this guide is to help teachers better understand and explain the basic elements of stage lighting. This resource is intended to supplement existing teaching materials, providing additional information and relevant product examples to add colour to lessons and presentations. The content can be applied to a variety of venues, including school halls, drama studios, college and university venues, dance venues, village halls, arts centres, concerts and student television studios. The following chapters cover basic illumination techniques using the ColorSource family of products from ETC and provide a pathway towards more artistic lighting designs. The guide is supported by an optional set of posters, available from ETC (send an email to [email protected] to request a poster set). Founded in 1975, ETC is a global leader in the manufacture of lighting and rigging technology for entertainment and architectural applications. ETC products are found in small and large venues worldwide. All ETC products are made to the same high standards, which is why they are used in so many professional and amateur venues. The ETC ColorSource family of equipment delivers LED lighting on a budget by offering high quality lighting, data distribution and power control in a plug- and-play format. -
Sustainable Home Guidelines
Contents Light for comfort and health 3 Glazing for natural daylight 4 Energy efficient lighting 5 Healthy lighting 6 Lights and lamps 7 A lighting plan for your home 8 Further information 10 This chapter is part of the Waitakere City Council’s Sustainable Home Guidelines. The complete set can be obtained through most libraries or from the Waitakere City Council, Private Bag 93109, Henderson, Waitakere City 0650, New Zealand, phone (09) 839 0400, email: [email protected]. The guidelines are also available on the council’s web site: http://www.waitakere.govt.nz WAITAKERE CITY COUNCIL’S SUSTAINABLE HOME GUIDELINES / LIGHT & LIGHTING / PAGE 2 Light for comfort and health Why do we need light? Besides being essential for vision, light affects human performance, alertness and mood. It influences body rhythms such as sleep patterns, ovulation and hormone secretion. The absorption of sunlight by our skin is also a necessary part of our body’s chemistry. Without sunlight there would be no life. Insufficient sunlight may cause depression and lethargy. How much light do we need? In order to see properly without eye strain we need a minimum light quantity or intensity. The light output onto a surface is measured in lux. lux = the number of lumens per square metre of surface: In offices a minimum of 500 lux In schools a minimum of 300 lux In homes a minimum of 200 lux. What kind of light do we want? The quality of the light is important too: the more natural light available, the better. Natural light offers us a balanced light spectrum with a full range of different wavelengths. -
Nonresidential Lighting and Electrical Power Distribution Guide
NONRESIDENTIAL LIGHTING AND ELECTRICAL POWER DISTRIBUTION A guide to meeting or exceeding California’s 2016 Building Energy Efficiency Standards DEVELOPED BY THE CALIFORNIA LIGHTING TECHNOLOGY CENTER, UC DAVIS © 2016, Regents of the University of California, Davis campus, California Lighting Technology Center Guide Prepared by: California Lighting Technology Center (CLTC) University of California, Davis 633 Pena Drive Davis, CA 95618 cltc.ucdavis.edu Project Partners: California Energy Commission Energy Code Ace This program is funded by California utility customers under the auspices of the California Public Utilities Commission and in support of the California Energy Commission. © 2016 Pacific Gas and Electric Company, San Diego Gas and Electric, Southern California Gas Company and Southern California Edison. All rights reserved, except that this document may be used, copied, and distributed without modification. Neither PG&E, Sempra, nor SCE — nor any of their employees makes any warranty, express of implied; or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any data, information, method, product, policy or process disclosed in this document; or represents that its use will not infringe any privately-owned rights including, but not limited to patents, trademarks or copyrights. NONRESIDENTIAL LIGHTING & ELECTRICAL POWER DISTRIBUTION 1 | INTRODUCTION CONTENTS The Benefits of Efficiency ................................. 5 About this Guide ................................................7 -
Industrial Lighting a Primer
Industrial Lighting A Primer All through history people have sought better ways to illuminate their work. Even the cavemen needed torches to allow them to draw on the walls of their underground caverns. Fire brought both light and heat for thousands of years before crude lamps of animal fat gave way to the candle for general indoor illumination used around the world. Roman Grease Lamp An offshoot of the common candlestick became what we now call the Lacemakers Globe. This quite possibly could qualify as the world’s first industrial light source! It was observed that when a candle flame was aligned behind a rounded glass bottle filled with water, a magnifying and focusing effect was produced, in addition to simply lighting up a small area. This was high technology of the first order! No longer did the lacemaker have to pack it in when the sun went down, for soon the new Lacemaker’s Globe became fairly common in European Cottage Industry, enabling the production of lace at a greater rate than ever before. It is also not too much of a stretch to conclude that the repetitive patterns of the lacemaker could be looked upon as a forerunner to the theory of mass production, along with the pin makers who toiled away in the ‘second tier’ of the feeble light pool cast by the globe, hammering heads onto straightened bits of wire in order to make the common pin. This was mighty slim pickings by today’s standards to be sure, but just a few hundred years ago it represented a revolutionary increase in handiwork production after the sun went down, for the very first time in history. -
The Complete Guide to Under Cabinet Lighting
THE COMPLETE GUIDE TO UNDER CABINET LIGHTING Annie Josey & Christopher Johnson Pegasus Lighting www.pegasuslighting.com Copyright © Pegasus Lighting 2013 All Rights Reserved 2 Table of Contents 1 – The Essentials of Great Lighting 2 – Choosing Under Cabinet Lights 3 – How to Install Under Cabinet Lights 4 – Under Cabinet Lighting Maintenance 5 – Beyond the Cabinet: Lights in Uncommon Places 6 – Glossary Notes 3 1 The Essentials Of Great Lighting Today, the kitchen has to be multifunctional. It’s not only a place to prepare and eat food, but also a place to relax, a place to entertain, and a place to enjoy. It should be inviting, bright, functional, and easy to control. The right kitchen lighting will help you stay clean, organized, and safe, while letting you create the perfect atmosphere for an early morning baking frenzy, board games with the kids on a rainy afternoon, or spending a couple’s night in. Most of all, light layering (having multiple light sources for different purposes) is the most important, all-encompassing rule in kitchen lighting design. A single light source never does any space justice. You need different sources of light for different purposes. Ambient lighting, task lighting, accent lighting, safety lighting, and mood lighting are all essential parts of great kitchen design. This book will first and foremost address task lighting in the kitchen. Under cabinet lights are the most popular, attractive, and handy kind of task lighting for the kitchen. Lighting designers agree that the path to any beautiful, functional kitchen starts with excellent task lights. Kitchen task lights have one simple purpose – to help you out. -
Download Publication
Consumer Factsheet Home lighting Lighting is an important parameter in home design, enabling safety and comfort for the performance of everyday tasks, such as walking, reading, cooking, etc. The purpose of this factsheet is to inform people about the properties of the most common household lights and assist them choose the right light bulb for their needs. Which lighting types should I use in my home? There are three main types of light bulbs that can be used in home interiors: Light Emitting Diodes (LEDs); Fluorescents and Compact Fluorescent bulbs; and halogen bulbs. The choice of lighting source depends on many parameters, such as the use of the space and the lighting levels required, the cost of the bulb and its useful life, the energy that it consumes, the colour of the light it emits, etc. Two main lighting techniques are used in home environments: general lighting and task lighting. General lighting is used to light a large space, e.g. a dining room or a bedroom. General lighting can be provided by natural light, artificial light or a combination of the two. Task lighting is the lighting used to increase the amount of light in a specific, smaller area, such as on a desk, on the kitchen counter, etc. Task lighting is usually provided by fixtures, as artificial light is more easily controlled than natural light. Both general and task lighting can be tailored to a resident’s needs. The following paragraphs describe the main types of bulbs used in homes and their characteristics. Useful information for general and task lighting is also provided. -
Electrodeposition of Highly Ordered Macroporous Iridium Oxide Through Self- Assembled Colloidal Templates
Electrodeposition of highly ordered macroporous iridium oxide through self- assembled colloidal templates Jin Hu,a Mamdouh Abdelsalam,a Philip Bartlett,a Robin Cole,b Yoshihiro Sugawara,b Jeremy Baumberg,b Sumeet Mahajana,b and Guy Denuaulta aSchool of Chemistry, University of Southampton, Southampton UK SO17 1BJ. E- mail: [email protected] bNanoPhotonics Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE Please cite this paper as: Journal of Materials Chemistry, 2009, 19, 3855-3858 The publisher’s version of this paper is available here: http://dx.doi.org/10.1039/B900279K Related articles by Dr Guy Denuault can be found below: S.A.G. Evans, J.M. Elliott, L.M. Andrews, P.N. Bartlett, P.J. Doyle, G. Denuault, Detection of hydrogen peroxide at mesoporous platinum microelectrodes, Anal. Chem., 74 (2002) 1322-1326. (doi: 10.1021/ac011052p) T. Imokawa, K.-J. Williams, G. Denuault, Fabrication and Characterization of Nanostructured Pd Hydride pH Microelectrodes, Anal. Chem., 78 (2006) 265-271. (doi: 10.1021/ac051328j) CREATED USING THE RSC ARTICLE TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS ARTICLE TYPE www.rsc.org/xxxxxx | XXXXXXXX Electrodeposition of highly ordered macroporous iridium oxide through self-assembled colloidal templates Jin Hu,a Mamdouh Abdelsalam,a Philip Bartlett,a Robin Cole,b Yoshihiro Sugawara,b Jeremy Baumberg,b Sumeet Mahajanb and Guy Denuault*a 5 Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X First published on the web Xth XXXXXXXXX 200X DOI: 10.1039/b000000x Iridium oxide electrodeposited through a self-assembled colloidal template has an inverse opal structure. -
Pilot Project in Rural Western Madhya Pradesh, India, to Assess the Feasibility of Using LED And
View metadata, citation and similar papers at core.ac.uk brought to you by CORE JBUR-4452; No. of Pages 9 provided by Cronfa at Swansea University b u r n s x x x ( 2 0 1 4 ) x x x – x x x Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/burns Pilot project in rural western Madhya Pradesh, India, to assess the feasibility of using LED and solar-powered lanterns to remove kerosene lamps and related hazards from homes a, a a c b S. Chamania *, R. Chouhan , A. Awasthi , R. Bendell , N. Marsden , d b b J. Gibson , I.S. Whitaker , T.S. Potokar a Interburns Training Centre at Choithram Hospital, Indore, Madhya Pradesh, India b Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK c Interburns, UK d University of Cardiff Medical School, Cardiff, UK a r t i c l e i n f o a b s t r a c t Article history: Background: Globally, 300,000 deaths are estimated to occur annually and the incidence is far Accepted 3 September 2014 greater as a large majority of burns are small and go unreported. Ninety-five percent of the global burden of burns is found in low- and middle-income countries; however, there is Keywords: relatively little in the literature regarding effective primary prevention in these areas. Flame is the most common cause of burn in Madhya Pradesh, the central state of India. The most Kerosene lamp common demographic among the burn unit inpatient of Choithram hospital Indore, is Kerosene burns young women from 21 to 40 years of age, whose burns are primarily caused by kerosene Sustainable lighting lamps. -
Nano and Giga [Front]
NANO & GIGA CHALLENGES 2007 12-16 MARCH TEMPE, AZ ARIZONA STATE UNIVERSITY NANO & GIGA CHALLENGES 2007 will provide a forum for academics, students, industrial researches, investors and business development professionals from around the world to discuss cutting-edge nanotechnology as it relates to advanced silicon based micro- and optoelectronics. CMOS technology has sustained exponential progress (Moore's Law) for four decades. However, scientists and engineers agree that this progress will run into what is called the red brick wall of technical and economic limitations some time during the next decade. The use of nanotechnology is vital to the development of future electronics and photonics. DON’T MISS YOUR CHANCE TO BE PART OF THIS UNIQUE INTERNATIONAL FORUM. 31nm ADDITIONAL INFO >> VISIT www.AtomicScaleDesign.Net/ngc2007 eMAIL [email protected] << SELECTED SPEAKERS >> NICOLAAS BLOEMBERGEN > Professor, University of Arizona, Nobel Laureate, Physics, 1981 JOHN POLYANI > Professor, University of Toronto, Nobel Laureate, Chemistry, 1986 HIROSHI IWAI > Professor, Tokyo Institute of Technology MARK REED > Distinguished Professor, Yale University JEREMY BAUMBERG > Professor, University of Southampton OTTO SANKEY > Professor, Arizona State University ROBERT CHAU > Director, Transistor Research and Nanotechnology, Intel YOSHIRO HIRAYAMA > Executive manager, NTT Basic Research Laboratories KERYN LIAN > Senior Fellow, Motorola Labs STANLEY WILLIAMS > Director, Quantum Science Research, HP Labs NIKOLAI ZHITENEV > Senior Research Fellow, -
Dr. SHAHAB AHMAD
Dr. SHAHAB AHMAD Assistant Professor Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), New Delhi-110 025, India. Email: [email protected] [email protected] ACADEMICS Ph.D. Physics (July 2010-2014): Department of Physics, Indian Institute of Technology Delhi, New Delhi-India (www.iitd.ac.in) M.Tech. (Nanotechnology) (2008-2010): Department of Applied Physics, Aligarh Muslim University, Aligarh, UP, India (www.amu.ac.in) M.Sc. (Physics) (2006-2008): Department of Physics, Aligarh Muslim University, India (www.amu.ac.in) EXPERIENCE (After PhD Thesis Submission) Assistant Professor (30th June 2017- Till present, Permanent) Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), New Delhi, India. (https://www.jmi.ac.in/cnn) Research Associate (3rd Nov 2014- 30th June 2017) ~ 2 years and 8 months Research Area: Energy Storage and Optoelectronic Devices Supervisor: Dr. Michael De Volder, NanoManufacturing Lab, Institute for Manufacturing, Department of Engineering, University of Cambridge, UK. (www.nanomanufacturing.eng.cam.ac.uk) Project Associate (19th Aug 2014-2nd Nov 2014) ~ 2.5 months Supervisor: Prof. G. Vijaya Prakash, Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi-India. (www.iitd.ac.in) Visiting Scientist (18th May 2014-17th Aug 2014) ~ 3 months Host: Prof. Jeremy J. Baumberg (FRS), Nanophotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, UK. (http://www.np.phy.cam.ac.uk/) AWARDS AND ACHEIVEMENTS 1. Distinction in Doctoral Research Award from Indian Institute of Technology - Delhi (April 2016). 2. Best Oral Presentation Award, “International Winter School in Frontiers of Materials Science - 2018”, JNCASR, Bangalore, India (3-7 Dec 2018). -
Table of Contents
Table of Contents Schedule-at-a-Glance . 2 FiO + LS Chairs’ Welcome Letters . 3 General Information . 5 Conference Materials Access to Technical Digest Papers . 7 FiO + LS Conference App . 7 Plenary Session/Visionary Speakers . 8 Science & Industry Showcase Theater Programming . 12 Networking Area Programming . 12 Participating Companies . 14 OSA Member Zone . 15 Special Events . 16 Awards, Honors and Special Recognitions FiO + LS Awards Ceremony & Reception . 19 OSA Awards and Honors . 19 2019 APS/Division of Laser Science Awards and Honors . 21 2019 OSA Foundation Fellowship, Scholarships and Special Recognitions . 21 2019 OSA Awards and Medals . 22 OSA Foundation FiO Grants, Prizes and Scholarships . 23 OSA Senior Members . 24 FiO + LS Committees . 27 Explanation of Session Codes . 28 FiO + LS Agenda of Sessions . 29 FiO + LS Abstracts . 34 Key to Authors and Presiders . 94 Program updates and changes may be found on the Conference Program Update Sheet distributed in the attendee registration bags, and check the Conference App for regular updates . OSA and APS/DLS thank the following sponsors for their generous support of this meeting: FiO + LS 2019 • 15–19 September 2019 1 Conference Schedule-at-a-Glance Note: Dates and times are subject to change. Check the conference app for regular updates. All times reflect EDT. Sunday Monday Tuesday Wednesday Thursday 15 September 16 September 17 September 18 September 19 September GENERAL Registration 07:00–17:00 07:00–17:00 07:30–18:00 07:30–17:30 07:30–11:00 Coffee Breaks 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 15:30–16:00 15:30–16:00 13:30–14:00 13:30–14:00 PROGRAMMING Technical Sessions 08:00–18:00 08:00–18:00 08:00–10:00 08:00–10:00 08:00–12:30 15:30–17:00 15:30–18:30 Visionary Speakers 09:15–10:00 09:15–10:00 09:15–10:00 09:15–10:00 LS Symposium on Undergraduate 12:00–18:00 Research Postdeadline Paper Sessions 17:15–18:15 SCIENCE & INDUSTRY SHOWCASE Science & Industry Showcase 10:00–15:30 10:00–15:30 See page 12 for complete schedule of programs . -
Application of Link Integrity Techniques from Hypermedia to the Semantic Web
UNIVERSITY OF SOUTHAMPTON Faculty of Engineering and Applied Science Department of Electronics and Computer Science A mini-thesis submitted for transfer from MPhil to PhD Supervisor: Prof. Wendy Hall and Dr Les Carr Examiner: Dr Nick Gibbins Application of Link Integrity techniques from Hypermedia to the Semantic Web by Rob Vesse February 10, 2011 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE A mini-thesis submitted for transfer from MPhil to PhD by Rob Vesse As the Web of Linked Data expands it will become increasingly important to preserve data and links such that the data remains available and usable. In this work I present a method for locating linked data to preserve which functions even when the URI the user wishes to preserve does not resolve (i.e. is broken/not RDF) and an application for monitoring and preserving the data. This work is based upon the principle of adapting ideas from hypermedia link integrity in order to apply them to the Semantic Web. Contents 1 Introduction 1 1.1 Hypothesis . .2 1.2 Report Overview . .8 2 Literature Review 9 2.1 Problems in Link Integrity . .9 2.1.1 The `Dangling-Link' Problem . .9 2.1.2 The Editing Problem . 10 2.1.3 URI Identity & Meaning . 10 2.1.4 The Coreference Problem . 11 2.2 Hypermedia . 11 2.2.1 Early Hypermedia . 11 2.2.1.1 Halasz's 7 Issues . 12 2.2.2 Open Hypermedia . 14 2.2.2.1 Dexter Model . 14 2.2.3 The World Wide Web .