Technology Review of Composting Toilets Basic Overview of Composting Toilets (With Or Without Urine Diversion)

Total Page:16

File Type:pdf, Size:1020Kb

Technology Review of Composting Toilets Basic Overview of Composting Toilets (With Or Without Urine Diversion) Technology review of composting toilets Basic overview of composting toilets (with or without urine diversion) 1 Imprint Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sustainable sanitation - ecosan program Postfach 5180, 65726 Eschborn, Germany T +49 61 96 79-4220 F +49 61 96 79-80 4220 E [email protected] I www.giz.de/ecosan Place and date of publication: Eschborn, September 2011 Author: Wolfgang Berger Responsible editor: Dr. Elisabeth von Muench Acknowledgements: We thank Patrick Bracken and Jürgen Stäudel for Design: their critical comments and editing work during the Martina Winker (GIZ) reviewing process. Photos: Contact: Cover: © Wolfgang Berger, Emmanuel Morin Dr. Elisabeth von Muench, GIZ ([email protected]) Back: © Wolfgang Berger, Eduard Le Douarin 2 Contents 1 Summary and target audience .............................................................................................................................................. 5 2 Introduction ............................................................................................................................................................................. 5 2.1 Scope of this document ................................................................................................................................................... 5 2.2 General description .......................................................................................................................................................... 5 2.3 Functional principles ........................................................................................................................................................ 6 2.3.1 Biological composting process .................................................................................................................................. 6 2.3.2 Bulking material ........................................................................................................................................................ 6 2.3.3 Ventilation ................................................................................................................................................................. 6 2.3.4 Hygiene (pathogen removal) ..................................................................................................................................... 7 2.3.5 Optimum water content ............................................................................................................................................. 7 2.3.6 Management and reuse of leachate ......................................................................................................................... 8 2.4 Available technologies ..................................................................................................................................................... 8 2.4.1 Toilet and storage facility in one unit or separated .................................................................................................... 8 2.4.2 Single-vault or multiple-vault toilets .......................................................................................................................... 8 2.4.3 Urine diversion versus “mixed composting” .............................................................................................................. 8 2.5 Costs ................................................................................................................................................................................ 8 2.5.1 Owner-built or commercially manufactured............................................................................................................... 8 2.5.2 Low-tech or high-tech systems ................................................................................................................................. 9 2.5.3 Cost benefits ............................................................................................................................................................. 9 2.6 Worldwide applicability ..................................................................................................................................................... 9 3 General recommendations for operation ............................................................................................................................. 9 3.1 Overview .......................................................................................................................................................................... 9 3.2 Cleaning ........................................................................................................................................................................... 9 3.3 Maintenance .................................................................................................................................................................... 9 3.4 Composting and secondary treatment ........................................................................................................................... 10 3.5 Application and reuse of compost .................................................................................................................................. 10 3.6 Hygienic precautions and directives ............................................................................................................................... 10 4 Single-vault composting toilets .......................................................................................................................................... 11 4.1 Functional principles ...................................................................................................................................................... 11 4.1.1 The Arborloo ........................................................................................................................................................... 11 4.2 Operation and maintenance ........................................................................................................................................... 11 4.3 Extent of application ....................................................................................................................................................... 11 4.4 Hygiene (pathogen removal) .......................................................................................................................................... 12 4.5 Cost data ....................................................................................................................................................................... 12 4.6 Good practice examples ................................................................................................................................................ 12 5 Multiple-vault composting toilets ........................................................................................................................................ 12 5.1 Functional principles ...................................................................................................................................................... 12 5.1.1 Rotating multi-chamber ........................................................................................................................................... 12 5.1.2 Movable squatting plate .......................................................................................................................................... 13 5.1.3 Fossa alterna .......................................................................................................................................................... 13 5.2 Operation and maintenance ........................................................................................................................................... 13 5.3 Extent of application ....................................................................................................................................................... 13 5.4 Hygiene (pathogen removal) .......................................................................................................................................... 13 5.5 Cost data ....................................................................................................................................................................... 13 5.6 Good practice examples ................................................................................................................................................ 13 5.6.1 Example 1 – Sirdo Seco ......................................................................................................................................... 13 5.6.2 Example 2 – Pacific Island CCD toilet .................................................................................................................... 14 6 Mobile bucket or bin toilets followed by composting of the excreta ............................................................................... 14 6.1 Functional principles ...................................................................................................................................................... 14 6.2 Operation and maintenance ........................................................................................................................................... 15 6.3 Extent of application ......................................................................................................................................................
Recommended publications
  • Non-Incineration Medical Waste Treatment Technologies
    Non-Incineration Medical Waste Treatment Technologies A Resource for Hospital Administrators, Facility Managers, Health Care Professionals, Environmental Advocates, and Community Members August 2001 Health Care Without Harm 1755 S Street, N.W. Unit 6B Washington, DC 20009 Phone: 202.234.0091 www.noharm.org Health Care Without Harm 1755 S Street, N.W. Suite 6B Washington, DC 20009 Phone: 202.234.0091 www.noharm.org Printed with soy-based inks on Rolland Evolution, a 100% processed chlorine-free paper. Non-Incineration Medical Waste Treatment Technologies A Resource for Hospital Administrators, Facility Managers, Health Care Professionals, Environmental Advocates, and Community Members August 2001 Health Care Without Harm www.noharm.org Preface THE FOUR LAWS OF ECOLOGY . Meanwhile, many hospital staff, such as Hollie Shaner, RN of Fletcher-Allen Health Care in Burlington, Ver- 1. Everything is connected to everything else, mont, were appalled by the sheer volumes of waste and 2. Everything must go somewhere, the lack of reduction and recycling efforts. These indi- viduals became champions within their facilities or 3. Nature knows best, systems to change the way that waste was being managed. 4. There is no such thing as a free lunch. Barry Commoner, The Closing Circle, 1971 In the spring of 1996, more than 600 people – most of them community activists – gathered in Baton Rouge, Up to now, there has been no single resource that pro- Louisiana to attend the Third Citizens Conference on vided a good frame of reference, objectively portrayed, of Dioxin and Other Hormone-Disrupting Chemicals. The non-incineration technologies for the treatment of health largest workshop at the conference was by far the one care wastes.
    [Show full text]
  • Reducing the Food Wastage Footprint
    toolkit.xps:Layout 1 13/06/13 11.44 Pagina 3 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-107741-2 (print) E-ISBN 978-92-5-107743-6 (PDF) © FAO 2013 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact- us/licence-request or addressed to [email protected]. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through publications- [email protected].
    [Show full text]
  • Medical Waste Treatment Technologies
    Medical Waste Treatment Technologies Ruth Stringer International Science and Policy Coordinator Health Care Without Harm Dhaka January 2011 Who is Health Care Without Harm? An International network focussing on two fundamental rights: • Right to healthcare • Right to a healthy environment Health Care Without Harm • Issues • Offices in – Medical waste –USA –Mercury – Europe – PVC – Latin America – Climate and health – South East Asia – Food • Key partners in – Green buildings –South Africa – Pharmaceuticals – India –Nurses – Tanzania – Safer materials –Mexico • Members in 53 countries Global mercury phase-out • HCWH and WHO partnering to eliminate mercury from healthcare • Part of UN Environment Programme's Mercury Products Partnership. • www.mercuryfreehealthcare.org • HCWH and WHO are principal cooperating agencies • 8-country project to reduce impacts from medical waste – esp dioxins and mercury • Model hospitals in Argentina, India, Latvia, Lebanon, the Philippines, Senegal and Vietnam • Technology development in Tanzania Incineration No longer a preferred treatment technology in many places Meeting modern emission standards costs millions of dollars Ash must be treated as hazardous waste Small incinerators are highly polluting Maintenance costs can be high, breakdowns common Decline in Medical Waste Incinerators in the U.S. 8,000 6,200 6,000 5,000 4,000 2,400 2,000 Incinerators 115 83 57 #of Medical Waste Waste Medical #of 0 1988 1994 1997 2003 2006 2008 Year SOURCES: 1988: “Hospital Waste Combustion Study-Data Gathering Phase,” USEPA, December 1998; 1994: “Medical Waste Incinerators-Background Information for Proposed Standards and Guidelines: Industry Profile Report for New and Existing Facilities,” USEPA, July 1994; 1997: 40 CFR 60 in the Federal Register, Vol.
    [Show full text]
  • Waste Technologies: Waste to Energy Facilities
    WASTE TECHNOLOGIES: WASTE TO ENERGY FACILITIES A Report for the Strategic Waste Infrastructure Planning (SWIP) Working Group Complied by WSP Environmental Ltd for the Government of Western Australia, Department of Environment and Conservation May 2013 Quality Management Issue/revision Issue 1 Revision 1 Revision 2 Revision 3 Remarks Date May 2013 Prepared by Kevin Whiting, Steven Wood and Mick Fanning Signature Checked by Matthew Venn Signature Authorised by Kevin Whiting Signature Project number 00038022 Report number File reference Project number: 00038022 Dated: May 2013 2 Revised: Waste Technologies: Waste to Energy Facilities A Report for the Strategic Waste Infrastructure Planning (SWIP) Working Group, commissioned by the Government of Western Australia, Department of Environment and Conservation. May 2013 Client Waste Management Branch Department of Environment and Conservation Level 4 The Atrium, 168 St George’s Terrace, PERTH, WA 6000 Locked Bag 104 Bentley DC WA 6983 Consultants Kevin Whiting Head of Energy-from-Waste & Biomass Tel: +44 207 7314 4647 [email protected] Mick Fanning Associate Consultant Tel: +44 207 7314 5883 [email protected] Steven Wood Principal Consultant Tel: +44 121 3524768 [email protected] Registered Address WSP Environmental Limited 01152332 WSP House, 70 Chancery Lane, London, WC2A 1AF 3 Table of Contents 1 Introduction .................................................................................. 6 1.1 Objectives ................................................................................
    [Show full text]
  • Designing an Evaluation Protocol for Composting Toilet Systems ______
    Designing an Evaluation Protocol for Composting Toilet Systems ______________________________________________________________ An Interactive Qualifying Project submitted to the Faculty of Worcester Polytechnic Institute in partial fulfilment of the requirements for the Degree of Bachelor of Science. By: Camryn Berry Zahava Preil Lena Sophia Thompson Date: February 26, 2020 Report Submitted to: Professor Seth Tuler and Professor Isa Bar-On This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects Abstract Two billion people worldwide lack access to adequate sanitation which ensures hygienic separation of human excreta from human contact. Composting toilets help address this health hazard by containing waste and reducing risk of disease. The goal of our project was to develop a cost-effective, user-friendly and minimally-disruptive protocol to evaluate the function, use and maintenance of composting toilets. This protocol was trialed at Kibbutz Lotan in Israel. We concluded that Lotan’s system was effective, though inefficient. The trial allowed us to identify potential improvements to the protocol that can be applied in the future. Our protocol is successful for evaluating the success of a system and how adequately it can address the unnecessary loss of life caused by inadequate sanitation. ii Acknowledgements We would like to thank the people who helped make our project possible. Firstly, we would like to thank our sponsor Alex Cicelsky of the Kibbutz Lotan Center for Creative Ecology.
    [Show full text]
  • “Sustainable” Sanitation: Challenges and Opportunities in Urban Areas
    sustainability Review Towards “Sustainable” Sanitation: Challenges and Opportunities in Urban Areas Kim Andersson *, Sarah Dickin and Arno Rosemarin Stockholm Environment Institute, Linnégatan 87D, 115 23 Stockholm, Sweden; [email protected] (S.D.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +46-73-707-8609 Academic Editors: Philipp Aerni and Amy Glasmeier Received: 8 June 2016; Accepted: 2 December 2016; Published: 8 December 2016 Abstract: While sanitation is fundamental for health and wellbeing, cities of all sizes face growing challenges in providing safe, affordable and functional sanitation systems that are also sustainable. Factors such as limited political will, inadequate technical, financial and institutional capacities and failure to integrate safe sanitation systems into broader urban development have led to a persistence of unsustainable systems and missed opportunities to tackle overlapping and interacting urban challenges. This paper reviews challenges associated with providing sanitation systems in urban areas and explores ways to promote sustainable sanitation in cities. It focuses on opportunities to stimulate sustainable sanitation approaches from a resource recovery perspective, generating added value to society while protecting human and ecosystem health. We show how, if integrated within urban development, sustainable sanitation has great potential to catalyse action and contribute to multiple sustainable development goals. Keywords: urbanization; sustainable sanitation; resource recovery; urban planning and development; public health 1. Introduction Sanitation is fundamental to healthy and productive urban life, and the provision of sanitation services for fast-growing urban populations is one of the world’s most urgent challenges. Currently, more than 700 million urban residents lack improved sanitation access globally, including 80 million who practise open defecation [1].
    [Show full text]
  • A Sewer Catastrophe Companion
    A SEWER CATASTROPHE COMPANION Dry Toilets for Wet Disasters EMERGENCY The year is 20__. The Juan de Fuca tectonic plate has shifted, causing an earthquake with a magnitude of 9.0, devastating the Pacific Northwest. Underground infrastructure has shaken. Sewers are broken and leaking into waterways. You have food and water, your house is still habitable, and your friends and fam- ily are all accounted for. Finally, you can slow down and take stock. You need to poop. Where will you go? RESPONSE This guide presents a toilet system that you can do yourself without relying on a co- ordinated and timely response by someone else. This system served after earthquakes destroyed sanitation systems in Haiti and New Zealand. This guide is for planning ahead and preparing kits, whether for yourself, your household, your apartment building, or your block. This flexible system is built around ubiquitous and freely available 5-gallon buckets. A solution for today that’s Urine itself is sterile, it can be applied to not a problem for tomor- land, dramatically reducing the amount of row. 1. Pee in Bucket material handling. After the earthquake in New Zealand, 2. Poop in Bucket people used separate toilets for poop and pee to reduces material handling, disease risks, and work. Washing hands is fundamental. We de- 3. Wash Hands signed a simple, efficient, and ergonomic portable sink using buckets. A solution for managing Store materials until they can be properly excreta that’s not excreting 1. Cap and processed and treated. This allows time for problems later. an official response and pickup, or to build Store your own compost processing area.
    [Show full text]
  • HEALTH ASPECTS of DRY SANITATION with WASTE REUSE Anne Peasey
    HEALTH ASPECTS OF DRY SANITATION WITH WASTE REUSE Anne Peasey Task No. 324 WELL STUDIES IN WATER AND ENVIRONMENTAL HEALTH Health Aspects of Dry Sanitation with Waste Reuse Anne Peasey WELL Water and Environmental Health at London and Loughborough Health Aspects of Dry Sanitation with Waste Reuse ii London School of Hygiene and Tropical Medicine Keppel Street London WC1E 7HT © LSHTM/WEDC Peasey, A. (2000) Health Aspects of Dry Sanitation with Waste Reuse WELL Designed and Produced at LSHTM Health Aspects of Dry Sanitation with Waste Reuse EXECUTIVE SUMMARY BACKGROUND Dry sanitation is defined in this report as the on-site disposal of human urine and faeces without the use of water as a carrier. This definition includes many of the most popular options for low- cost sanitation including pit latrines, Ventilated Improved Pits, SanPlats, etc. There has always been an interest in the reuse of human waste as a fertiliser, and there has been much recent work on the development of composting and other processes to permit human waste reuse. This report examines the practice of dry sanitation with reuse in Mexico, with a particular focus on health issues and the lessons to be learned from case studies and experience. DRY SANITATION WITH REUSE There are two distinct technical approaches to dry sanitation with reuse; · Dehydration. Urine and faeces are managed separately. The deposited faecal matter may be dried by the addition of lime, ash, or earth, and the contents are simply isolated from human contact for a specified period of time to reduce the presence of pathogens. · Decomposition (composting) In this process, bacteria, worms, or other organisms are used to break organic matter down to produce compost.
    [Show full text]
  • Waste Treatment Solutions
    Waste Treatment Solutions Waste Treatment Solutions As industry leaders, we offer customers across North America reliable, safe and compliant solutions for over 600 hazardous waste streams, PCBs, TSCA and non-hazardous waste. Unequaled service. Solutions you can trust. USecology.com To support the needs of customers from coast to coast, US Ecology has 19 treatment and recycling facilities throughout North America, including some of the largest treatment and stabilization operations. This enables us to accept waste in a wide range of consistencies and shipping containers, from bulk liquids and solids to drums, totes and bags. Plus, our facilities are backed by six state-of-the-art hazardous and radioactive waste landfills, along with a nationwide transportation network. Treatment Processes US Ecology’s RCRA-permitted and TSCA-approved facilities US Ecology is the only commercial offer a wide variety of waste treatment technologies. treatment company in the USA • Chemical oxidation processes to treat waste that is USEPA-authorized to delist containing organic contaminants 15 inorganic hazardous wastes. • Microencapsulation to reduce the leachability Delisting offers an attractive, safe of hazardous debris streams, allowing material to be safely disposed in RCRA Subtitle C landfills and more compliant disposal • Chemical stabilization de-characterizes waste, option, particularly for those with enabling safe landfill disposal F-listed hazardous waste codes. • Thermal desorption to process and/or recycle high organic contaminated materials For more information: • Regenerative Thermal Oxidation (RTO) air Call (800) 592-5489 or management system enables management go to www.usecology.com of high-VOC, RCRA-regulated wastes • Wastewater treatment for hazardous and non-hazardous wastewater, including oily and corrosive streams • Cyanide destruction and oxidizer deactivation treatment technologies.
    [Show full text]
  • Together for Waterless Toilets
    Together for waterless toilets This years biggest news, though the smallest toilet. You can read all about our tiny master on page 12 and 13. Separett 2021 Intro ”Our vision is to contribute to a higher quality of life for the many” This broschure has been created with accuracy. Products may differ slightly from image and reality. We reserve the right to make any product changes regarding appearance and content as well as errors in text and images 2 3 Intro Separett 2021 The journey towards hygenic toilet solutions Over 2,4 million people are at the moment not having www.separett.com access to a toilet. The result of this is the every year death of Look in to our blogg for thousands of adults and children. The contribution of interesting articles and Separett being able to provide toilet solutions that can give other fun reading people a higher quality of life all over the world is very important. We want to accelerate the development of hygenic toilet solutions for the population of the world. That is the mission of Separett. And we do it by developing sewage- and waterless toilets. It is a long journey I want to improve that is being guided by our Separett AB hearts more than our economical goals. It is only together that we can at Youtube. reach the goals being set by United nations regarding the security for Follow our Youtube channel for inspiration and advices safe water and sanitation around the world. As a part of the humanity and its progress towards sanitary toilet solutions are we at Separett together with a non-profit organisation sending toilets to areas in Peru where the need of toilet solutions are great.
    [Show full text]
  • REFERENCE LIST Status Report: Focus on Staple Crops
    AGRA (Alliance for a Green Revolution in Africa). 2013. Africa Agriculture REFERENCE LIST Status Report: Focus on Staple Crops. Nairobi: AGRA. http://agra-alliance.org/ AAAS (American Association for the Advancement of Science). 2012. download/533977a50dbc7/. “Statement by the AAAS Board of Directors on Labeling of Genetically AgResearch. 2016. “Shortlist of Five Holds Key to Reduced Methane Modified Foods.” Emissions from Livestock.” AgResearch News Release. http://www. Abalos, D., S. Jeffery, A. Sanz-Cobena, G. Guardia, and A. Vallejo. 2014. agresearch.co.nz/news/shortlist-of-five-holds-key-to-reduced-methane- “Meta-analysis of the Effect of Urease and Nitrification Inhibitors on Crop emissions-from-livestock/. Productivity and Nitrogen Use Efficiency.” Agriculture, Ecosystems, and AHDB (Agriculture and Horticulture Development Board). 2017. “Average Milk Environment 189: 136–144. Yield.” Farming Data. https://dairy.ahdb.org.uk/resources-library/market- Abalos, D., S. Jeffery, C.F. Drury, and C. Wagner-Riddle. 2016. “Improving information/farming-data/average-milk-yield/#.WV0_N4jyu70. Fertilizer Management in the U.S. and Canada for N O Mitigation: 2 Ahmed, S.E., A.C. Lees, N.G. Moura, T.A. Gardner, J. Barlow, J. Ferreira, and R.M. Understanding Potential Positive and Negative Side-Effects on Corn Yields.” Ewers. 2014. “Road Networks Predict Human Influence on Amazonian Bird Agriculture, Ecosystems, and Environment 221: 214–221. Communities.” Proceedings of the Royal Society B 281 (1795): 20141742. Abbott, P. 2012. “Biofuels, Binding Constraints and Agricultural Commodity Ahrends, A., P.M. Hollingsworth, P. Beckschäfer, H. Chen, R.J. Zomer, L. Zhang, Price Volatility.” Paper presented at the National Bureau of Economic M.
    [Show full text]
  • Technology Review of Urine-Diverting Dry Toilets (Uddts) Overview of Design, Operation, Management and Costs
    Technology Review of Urine-diverting dry toilets (UDDTs) Overview of design, operation, management and costs As a federally owned enterprise, we support the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany T +49 228 44 60-0 (Bonn) T +49 61 96 79-0 (Eschborn) Friedrich-Ebert-Allee 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66 Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 E [email protected] I www.giz.de Name of sector project: SV Nachhaltige Sanitärversorgung / Sustainable Sanitation Program Authors: Christian Rieck (GIZ), Dr. Elisabeth von Münch (Ostella), Dr. Heike Hoffmann (AKUT Peru) Editor: Christian Rieck (GIZ) Acknowledgements: We thank all reviewers who have provided substantial inputs namely Chris Buckley, Paul Calvert, Chris Canaday, Linus Dagerskog, Madeleine Fogde, Robert Gensch, Florian Klingel, Elke Müllegger, Charles Niwagaba, Lukas Ulrich, Claudia Wendland and Martina Winker, Trevor Surridge and Anthony Guadagni. We also received useful feedback from David Crosweller, Antoine Delepière, Abdoulaye Fall, Teddy Gounden, Richard Holden, Kamara Innocent, Peter Morgan, Andrea Pain, James Raude, Elmer Sayre, Dorothee Spuhler, Kim Andersson and Moses Wakala. The SuSanA discussion forum was also a source of inspiration: http://forum.susana.org/forum/categories/34-urine-diversion-systems-
    [Show full text]