The Levi-Civita Tensor Noncovariance and Curvature in the Pseudotensors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:0911.0334V2 [Gr-Qc] 4 Jul 2020
Classical Physics: Spacetime and Fields Nikodem Poplawski Department of Mathematics and Physics, University of New Haven, CT, USA Preface We present a self-contained introduction to the classical theory of spacetime and fields. This expo- sition is based on the most general principles: the principle of general covariance (relativity) and the principle of least action. The order of the exposition is: 1. Spacetime (principle of general covariance and tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors); 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field, action for particles). In this order, a particle is a special case of a field existing in spacetime, and classical mechanics can be derived from field theory. I dedicate this book to my Parents: Bo_zennaPop lawska and Janusz Pop lawski. I am also grateful to Chris Cox for inspiring this book. The Laws of Physics are simple, beautiful, and universal. arXiv:0911.0334v2 [gr-qc] 4 Jul 2020 1 Contents 1 Spacetime 5 1.1 Principle of general covariance and tensors . 5 1.1.1 Vectors . 5 1.1.2 Tensors . 6 1.1.3 Densities . 7 1.1.4 Contraction . 7 1.1.5 Kronecker and Levi-Civita symbols . 8 1.1.6 Dual densities . 8 1.1.7 Covariant integrals . 9 1.1.8 Antisymmetric derivatives . 9 1.2 Affine connection . 10 1.2.1 Covariant differentiation of tensors . 10 1.2.2 Parallel transport . 11 1.2.3 Torsion tensor . 11 1.2.4 Covariant differentiation of densities . -
Testing General Relativity Through the Computation of Radiative Terms And
TESTING GENERAL RELATIVITY THROUGH THE COMPUTATION OF RADIATIVE TERMS AND WITHIN THE NEUTRON STAR STRONG-FIELD REGIME by Alexander Saffer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics MONTANA STATE UNIVERSITY Bozeman, Montana April 2019 ©COPYRIGHT by Alexander Saffer 2019 All Rights Reserved ii DEDICATION Dedicated to my family, who provided me with their unconditional love and support. iii ACKNOWLEDGEMENTS I would like to acknowledge the hard work of my advisor Dr. Nicolás Yunes, whose dedication and compassion for physics and those in this field has taught me more than classes ever could. I would also like to thank the Dr. Kent Yagi and Dr. Hector Okada da Silva for their willingness to always help me no matter what I asked and for having the patience to put up with me whenever I struggled. In addition, I would like to thank Dr. Neil Cornish and the rest of the eXtreme Gravity Institute for providing an environment conducive to success. Lastly, I would like to thank my family and friends both within and outside of the MSU physics department who provided their support and guidance over these past 6 years, especially Meg. iv TABLE OF CONTENTS 1. INTRODUCTION ................................................................................................ 1 2. THE GRAVITATIONAL WAVESTRESS-ENERGY (PSEUDO)-TENSOR IN MODIFIED GRAVITY ...................................................................................12 Contribution of Authors and Co-Authors...............................................................12 -
Tensor Calculus and Differential Geometry
Course Notes Tensor Calculus and Differential Geometry 2WAH0 Luc Florack March 10, 2021 Cover illustration: papyrus fragment from Euclid’s Elements of Geometry, Book II [8]. Contents Preface iii Notation 1 1 Prerequisites from Linear Algebra 3 2 Tensor Calculus 7 2.1 Vector Spaces and Bases . .7 2.2 Dual Vector Spaces and Dual Bases . .8 2.3 The Kronecker Tensor . 10 2.4 Inner Products . 11 2.5 Reciprocal Bases . 14 2.6 Bases, Dual Bases, Reciprocal Bases: Mutual Relations . 16 2.7 Examples of Vectors and Covectors . 17 2.8 Tensors . 18 2.8.1 Tensors in all Generality . 18 2.8.2 Tensors Subject to Symmetries . 22 2.8.3 Symmetry and Antisymmetry Preserving Product Operators . 24 2.8.4 Vector Spaces with an Oriented Volume . 31 2.8.5 Tensors on an Inner Product Space . 34 2.8.6 Tensor Transformations . 36 2.8.6.1 “Absolute Tensors” . 37 CONTENTS i 2.8.6.2 “Relative Tensors” . 38 2.8.6.3 “Pseudo Tensors” . 41 2.8.7 Contractions . 43 2.9 The Hodge Star Operator . 43 3 Differential Geometry 47 3.1 Euclidean Space: Cartesian and Curvilinear Coordinates . 47 3.2 Differentiable Manifolds . 48 3.3 Tangent Vectors . 49 3.4 Tangent and Cotangent Bundle . 50 3.5 Exterior Derivative . 51 3.6 Affine Connection . 52 3.7 Lie Derivative . 55 3.8 Torsion . 55 3.9 Levi-Civita Connection . 56 3.10 Geodesics . 57 3.11 Curvature . 58 3.12 Push-Forward and Pull-Back . 59 3.13 Examples . 60 3.13.1 Polar Coordinates in the Euclidean Plane . -
On Certain Identities Involving Basic Spinors and Curvature Spinors
ON CERTAIN IDENTITIES INVOLVING BASIC SPINORS AND CURVATURE SPINORS H. A. BUCHDAHL (received 22 May 1961) 1. Introduction The spinor analysis of Infeld and van der Waerden [1] is particularly well suited to the transcription of given flat space wave equations into forms which'constitute possible generalizations appropriate to Riemann spaces [2]. The basic elements of this calculus are (i) the skew-symmetric spinor y^, (ii) the hermitian tensor-spinor a*** (generalized Pauli matrices), and (iii) M the curvature spinor P ykl. When one deals with wave equations in Riemann spaces F4 one is apt to be confronted with expressions of somewhat be- wildering appearance in so far as they may involve products of a large number of <r-symbols many of the indices of which may be paired in all sorts of ways either with each other or with the indices of the components of the curvature spinors. Such expressions are generally capable of great simplifi- cation, but how the latter may be achieved is often far from obvious. It is the purpose of this paper to present a number of useful relations between basic tensors and spinors, commonly known relations being taken for gran- ted [3], [4], [5]. That some of these new relations appear as more or less trivial consequences of elementary identities is largely the result of a diligent search for their simplest derivation, once they had been obtained in more roundabout ways. Certain relations take a particularly simple form when the Vt is an Einstein space, and some necessary and sufficient conditions relating to Ein- stein spaces and to spaces of constant Riemannian curvature are considered in the last section. -
Pseudotensors
Pseudotensors Math 1550 lecture notes, Prof. Anna Vainchtein 1 Proper and improper orthogonal transfor- mations of bases Let {e1, e2, e3} be an orthonormal basis in a Cartesian coordinate system and suppose we switch to another rectangular coordinate system with the orthonormal basis vectors {¯e1, ¯e2, ¯e3}. Recall that the two bases are related via an orthogonal matrix Q with components Qij = ¯ei · ej: ¯ei = Qijej, ei = Qji¯ei. (1) Let ∆ = detQ (2) and recall that ∆ = ±1 because Q is orthogonal. If ∆ = 1, we say that the transformation is proper orthogonal; if ∆ = −1, it is an improper orthogonal transformation. Note that the handedness of the basis remains the same under a proper orthogonal transformation and changes under an improper one. Indeed, ¯ V = (¯e1 ׯe2)·¯e3 = (Q1mem ×Q2nen)·Q3lel = Q1mQ2nQ3l(em ×en)·el, (3) where the cross product is taken with respect to some underlying right- handed system, e.g. standard basis. Note that this is a triple sum over m, n and l. Now, observe that the terms in the above some where (m, n, l) is a cyclic (even) permutation of (1, 2, 3) all multiply V = (e1 × e2) · e3 because the scalar triple product is invariant under such permutations: (e1 × e2) · e3 = (e2 × e3) · e1 = (e3 × e1) · e2. Meanwhile, terms where (m, n, l) is a non-cyclic (odd) permutations of (1, 2, 3) multiply −V , e.g. for (m, n, l) = (2, 1, 3) we have (e2 × e1) · e3 = −(e1 × e2) · e3 = −V . All other terms in the sum in (3) (where two or more of the three indices (m, n, l) are the same) are zero (why?). -
3. Introducing Riemannian Geometry
3. Introducing Riemannian Geometry We have yet to meet the star of the show. There is one object that we can place on a manifold whose importance dwarfs all others, at least when it comes to understanding gravity. This is the metric. The existence of a metric brings a whole host of new concepts to the table which, collectively, are called Riemannian geometry.Infact,strictlyspeakingwewillneeda slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski metric, has some strange minus signs. This is referred to as Lorentzian Geometry and a slightly better name for this section would be “Introducing Riemannian and Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor. The novelties of Lorentzian geometry will become more pronounced later in the course when we explore some of the physical consequences such as horizons. 3.1 The Metric In Section 1, we informally introduced the metric as a way to measure distances between points. It does, indeed, provide this service but it is not its initial purpose. Instead, the metric is an inner product on each vector space Tp(M). Definition:Ametric g is a (0, 2) tensor field that is: Symmetric: g(X, Y )=g(Y,X). • Non-Degenerate: If, for any p M, g(X, Y ) =0forallY T (M)thenX =0. • 2 p 2 p p With a choice of coordinates, we can write the metric as g = g (x) dxµ dx⌫ µ⌫ ⌦ The object g is often written as a line element ds2 and this expression is abbreviated as 2 µ ⌫ ds = gµ⌫(x) dx dx This is the form that we saw previously in (1.4). -
Energy-Momentum Pseudotensor and Superpotential for Generally
Energy-momentum pseudotensor and superpotential for generally covariant theories of gravity of general form R. V. Ilin,∗ S. A. Paston† Saint Petersburg State University, Saint Petersburg, Russia Abstract The current paper is devoted to the investigation of the general form of the energy- momentum pseudotensor (pEMT) and the corresponding superpotential for the wide class of theories. The only requirement for such a theory is the general covariance of the action without any restrictions on the order of derivatives of the independent variables in it or their transformation laws. As a result of the generalized Noether procedure, we obtain a recurrent chain of the equations, which allows one to express canonical pEMT as a divergence of the superpotential. The explicit expression for this superpotential is also given. We discuss the structure of the obtained expressions and the conditions for the derived pEMT conservation laws to be satisfied independently (fully or partially) of the equations of motion. Deformations of the superpotential form for theories with a change of the independent variables in the action are also considered. We apply these results to some interesting particular cases: General Relativity and its modifications, particularly mimetic gravity and Regge-Teitelboim embedding gravity. arXiv:2010.07073v1 [gr-qc] 14 Oct 2020 ∗E-mail: [email protected] †E-mail: [email protected] 1 1 Introduction One of the traditional issues of General Relativity (GR) is the correct definition of the conserved quantities related to the space-time symmetries, especially the energy. This problem is not special for GR and in general remains for all generally covariant theories. -
Measuring the Black Hole Spin Direction in 3D Cartesian Numerical Relativity Simulations
Measuring the black hole spin direction in 3D Cartesian numerical relativity simulations Vassilios Mewes,1 Jos´eA. Font,1, 2 and Pedro J. Montero3 1Departamento de Astronom´ıa y Astrof´ısica, Universitat de Val`encia, Dr. Moliner 50, 46100, Burjassot (Val`encia), Spain 2Observatori Astron`omic, Universitat de Val`encia, C/ Catedr´atico Jos´eBeltr´an 2, 46980, Paterna (Val`encia), Spain 3Max-Planck-Institute f¨ur Astrophysik, Karl-Schwarzschild-Str. 1, 85748, Garching bei M¨unchen, Germany We show that the so-called flat-space rotational Killing vector method for measuring the Cartesian components of a black hole spin can be derived from the surface integral of Weinberg’s pseudoten- sor over the apparent horizon surface when using Gaussian normal coordinates in the integration. Moreover, the integration of the pseudotensor in this gauge yields the Komar angular momentum integral in a foliation adapted to the axisymmetry of the spacetime. As a result, the method does not explicitly depend on the evolved lapse α and shift βi on the respective timeslice, as they are fixed to Gaussian normal coordinates, while leaving the coordinate labels of the spatial metric γij and the extrinsic curvature Kij unchanged. Such gauge fixing endows the method with coordi- nate invariance, which is not present in integral expressions using Weinberg’s pseudotensor, as they normally rely on the explicit use of Cartesian coordinates. PACS numbers: 04.25.Dm, 95.30.Sf, 97.60.Lf I. INTRODUCTION surface integral on the apparent horizon (AH) of the BH 1 a b JAH = ψ R Kab dS, (1) Since the binary black hole (BBH) merger break- 8π ZS through simulations of about a decade ago [1–3], ever- a growing computational resources and advances in the where ψ is an approximate rotational Killing vector on numerical methods used to simulate these systems have the horizon that has to be determined numerically (see a b made the exploration of the vast initial parameter space [8] for a method of finding ψ ), R is the outward point- possible (see e.g. -
Symbols 1-Form, 10 4-Acceleration, 184 4-Force, 115 4-Momentum, 116
Index Symbols B 1-form, 10 Betti number, 589 4-acceleration, 184 Bianchi type-I models, 448 4-force, 115 Bianchi’s differential identities, 60 4-momentum, 116 complex valued, 532–533 total, 122 consequences of in Newman-Penrose 4-velocity, 114 formalism, 549–551 first contracted, 63 second contracted, 63 A bicharacteristic curves, 620 acceleration big crunch, 441 4-acceleration, 184 big-bang cosmological model, 438, 449 Newtonian, 74 Birkhoff’s theorem, 271 action function or functional bivector space, 486 (see also Lagrangian), 594, 598 black hole, 364–433 ADM action, 606 Bondi-Metzner-Sachs group, 240 affine parameter, 77, 79 boost, 110 alternating operation, antisymmetriza- Born-Infeld (or tachyonic) scalar field, tion, 27 467–471 angle field, 44 Boyer-Lindquist coordinate chart, 334, anisotropic fluid, 218–220, 276 399 collapse, 424–431 Brinkman-Robinson-Trautman met- ric, 514 anti-de Sitter space-time, 195, 644, Buchdahl inequality, 262 663–664 bugle, 69 anti-self-dual, 671 antisymmetric oriented tensor, 49 C antisymmetric tensor, 28 canonical energy-momentum-stress ten- antisymmetrization, 27 sor, 119 arc length parameter, 81 canonical or normal forms, 510 arc separation function, 85 Cartesian chart, 44, 68 arc separation parameter, 77 Casimir effect, 638 Arnowitt-Deser-Misner action integral, Cauchy horizon, 403, 416 606 Cauchy problem, 207 atlas, 3 Cauchy-Kowalewski theorem, 207 complete, 3 causal cone, 108 maximal, 3 causal space-time, 663 698 Index 699 causality violation, 663 contravariant index, 51 characteristic hypersurface, 623 contravariant -
A Gentle Introduction to Tensors (2014)
A Gentle Introduction to Tensors Boaz Porat Department of Electrical Engineering Technion – Israel Institute of Technology [email protected] May 27, 2014 Opening Remarks This document was written for the benefits of Engineering students, Elec- trical Engineering students in particular, who are curious about physics and would like to know more about it, whether from sheer intellectual desire or because one’s awareness that physics is the key to our understanding of the world around us. Of course, anybody who is interested and has some college background may find this material useful. In the future, I hope to write more documents of the same kind. I chose tensors as a first topic for two reasons. First, tensors appear everywhere in physics, including classi- cal mechanics, relativistic mechanics, electrodynamics, particle physics, and more. Second, tensor theory, at the most elementary level, requires only linear algebra and some calculus as prerequisites. Proceeding a small step further, tensor theory requires background in multivariate calculus. For a deeper understanding, knowledge of manifolds and some point-set topology is required. Accordingly, we divide the material into three chapters. The first chapter discusses constant tensors and constant linear transformations. Tensors and transformations are inseparable. To put it succinctly, tensors are geometrical objects over vector spaces, whose coordinates obey certain laws of transformation under change of basis. Vectors are simple and well-known examples of tensors, but there is much more to tensor theory than vectors. The second chapter discusses tensor fields and curvilinear coordinates. It is this chapter that provides the foundations for tensor applications in physics. -
Title Energy Density Concept: a Stress Tensor Approach Author(S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Title Energy density concept: A stress tensor approach Author(s) Tachibana, Akitomo Journal of Molecular Structure: THEOCHEM (2010), 943(1- Citation 3): 138-151 Issue Date 2010-03-15 URL http://hdl.handle.net/2433/124569 Right Copyright © 2009 Elsevier B.V. Type Journal Article Textversion author Kyoto University Energy density concept: a stress tensor approach Akitomo Tachibana Department of Micro Engineering, Kyoto University, Kyoto 606-8501, JAPAN E-mail : [email protected] (received: 21 August 2009) Abstract Conceptual insights from the density functional theory have been enormously powerful in the fields of physics, chemistry and biology. A natural outcome is the concept of “energy density” as has been developed recently: drop region, spindle structure, interaction energy density. Under external source of electromagnetic fields, charged particles can be accelerated by Lorentz force. Dissipative force can make the state of the charged particles stationary. In quantum mechanics, the energy eigenstate is another rule of the stationary state. Tension density of quantum field theory has been formulated in such a way that it can compensate the Lorentz force density at any point of space-time. This formulation can give mechanical description of local equilibrium leading to the quantum mechanical stationary state. The tension density is given by the divergence of stress tensor density. Electronic spin can be accelerated by torque density derived from the stress tensor density. The spin torque density can be compensated by a force density, called zeta force density, which is the intrinsic mechanism describing the stationary state of the spinning motion of electron. -
Untying the Knot: How Einstein Found His Way Back to Field Equations Discarded in the Zurich Notebook
MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2004 PREPRINT 264 Michel Janssen and Jürgen Renn Untying the Knot: How Einstein Found His Way Back to Field Equations Discarded in the Zurich Notebook MICHEL JANSSEN AND JÜRGEN RENN UNTYING THE KNOT: HOW EINSTEIN FOUND HIS WAY BACK TO FIELD EQUATIONS DISCARDED IN THE ZURICH NOTEBOOK “She bent down to tie the laces of my shoes. Tangled up in blue.” —Bob Dylan 1. INTRODUCTION: NEW ANSWERS TO OLD QUESTIONS Sometimes the most obvious questions are the most fruitful ones. The Zurich Note- book is a case in point. The notebook shows that Einstein already considered the field equations of general relativity about three years before he published them in Novem- ber 1915. In the spring of 1913 he settled on different equations, known as the “Entwurf” field equations after the title of the paper in which they were first pub- lished (Einstein and Grossmann 1913). By Einstein’s own lights, this move compro- mised one of the fundamental principles of his theory, the extension of the principle of relativity from uniform to arbitrary motion. Einstein had sought to implement this principle by constructing field equations out of generally-covariant expressions.1 The “Entwurf” field equations are not generally covariant. When Einstein published the equations, only their covariance under general linear transformations was assured. This raises two obvious questions. Why did Einstein reject equations of much broader covariance in 1912-1913? And why did he return to them in November 1915? A new answer to the first question has emerged from the analysis of the Zurich Notebook presented in this volume.