Riemann Curvature Tensor

Total Page:16

File Type:pdf, Size:1020Kb

Riemann Curvature Tensor Appendix A Riemann Curvature Tensor We will often use the notation (...), μ and (...); μ for a partial and covariant derivative respectively, and the [anti]-symmetrization brackets defined here by 1 1 T[ab] := (Tab − Tba) and T( ) := (Tab + Tba) , (A.1) 2 ab 2 for a tensor of second rank Tab, but easily generalized for tensors of arbitrary rank. We can define the Riemannian curvature tensor in coordinate representation by the action of the commutator of two covariant derivatives on a vector field vα [∇ , ∇ ] vρ = ρ vσ, μ ν R σμν (A.2) ρ with the explicit formula in terms of the symmetric Christoffel symbols μν ρ = ρ − ρ + ρ α − ρ α . R σμν ∂μ σν ∂ν σμ αμ σν αν σμ (A.3) ρ From this definition it is obvious that R σμν possesses the following symmetries Rαβγδ =−Rβαγδ =−Rαβδγ = Rγδαβ. (A.4) In addition, there is an identity for the cyclic permutation of the last three indices 1 R [ ] = (R + R + R ) = 0. (A.5) α βγδ 3 αβγδ αδβγ αγδβ An arbitrary tensor of fourth rank in d dimension has d4 independent components. Since a tensor is built from tensor products, we can think of Rαβγδ as being composed ( × ) 1 2 1 2 of two d d matrices Aαβ and Aγδ.From(A.4), it follows that A and A are antisymmetric, each having n(n − 1)/2 independent components. Writing Rαβγδ ≡ ( ) → 1 ( ) → 2 RA1 A2 , where we have collected the index pairs αβ A and γδ A , this corresponds to a matrix, in which each index A1 and A2 labels d(d − 1)/2 C. F. Steinwachs, Non-minimal Higgs Inflation and Frame Dependence 243 in Cosmology, Springer Theses, DOI: 10.1007/978-3-319-01842-3, © Springer International Publishing Switzerland 2014 244 Appendix A: Riemann Curvature Tensor components. Taking into account the symmetry under pairwise exchange of (αβ) ( ) 1 2 and γδ , we can consider RA1 A2 as a symmetric matrix in A and A ,having A1(A1 + 1)/2 independent components. Altogether, we find 1 1 1 1 1 3 1 d (d − 1) d (d − 1) + 1 = d4 − d3 + d2 − d (A.6) 2 2 2 8 4 8 4 independent components. We still need to figure out how many components are related by the cyclic identity (A.5)ind dimensions. We can artificially write 1 R = R − R + R − R + (αβ) ↔ (γδ) (A.7) αβγδ 8 αβγδ αβδγ βαδγ βαγδ and similar expressions for Rαγδβ and Rαδβγ. Inserting these expressions into (A.5) leads to the condition R[αβγδ] = 0. This totally antisymmetric object is identical zero for two identical indices but gives one additional constraint for each choice of four distinct, orderless indices, reducing the number of independent components by one respectively. In d dimensions, the number of additional constraints corresponds to “choose 4 out of d”. For integers d, n there exists a product formula to calculate the binomial n d d − n + k = . (A.8) n k k=1 Inserting n = 4, we obtain d 1 1 1 11 1 = [d (d − 1)(d − 2)(d − 3)] = d4 − d3 + d2 − d. (A.9) 4 24 24 4 24 4 Thus, the number of independent components IRiem(d) of Rαβγδ is given by 1 1 d 1 I (d) := d (d − 1) d (d − 1) + 1 − = d2 (d2 − 1). (A.10) Riem 4 2 4 12 We consider IRiem(d) for different dimensions d: IRiem(1) = 0, IRiem(2) = 1, IRiem(3) = 6, IRiem(4) = 20. (A.11) This shows that gravity in one dimension is trivial, since there is no dynamical degree of freedom. It further shows that gravity in two dimensions can be described by the (3) (3) Ricci scalar R and in three dimensions by Rμν = Rνμ . In general, the d-dimensional := γδ ( ) := 1 ( + ) Ricci tensor Rμν g Rγμδν has IRic d 2 d d 1 independent components. In particular IRic(4) = 10. Thus, ten components of Rαβγδ not contained in Rμν still remain. They are contained in the Weyl tensor Appendix A: Riemann Curvature Tensor 245 2 2 C := R − g [ R ] − g [ R ] + g [ g ] R. αβγδ αβγδ d − 2 α γ δ β β γ δ α (d − 1)(d − 2) α γ δ β (A.12) It follows that the Weyl tensor has (for d > 3) 1 I (d) = I (d) − I (d) = d (d + 1)(d + 2)(d − 3) (A.13) Weyl Riem Ric 12 independent components, and in particular IWeyl (4) = 10. Appendix B Variations and Derivatives B.1 Covariant Differentiation in General Relativity The action of the metric compatible covariant derivative ∇μ gαβ = 0 with respect to ρ the Christoffel symbol μν on a general tensor is defined as ∇ α...γ = α...γ + α ρ...γ + ... + γ α...ρ μ T β...δ ∂μ T β...δ μρ T β...δ μρ T β...δ − ρ α...γ − ... − ρ α...γ , μβ T ρ...δ μδ T β...ρ (B.1) with the symmetric Christoffel symbol 1 α (g) := gαρ ∂ g + ∂ g − ∂ g = α (g). (B.2) μν 2 ν μρ μ νρ ρ μν νμ μ For scalar functions ∇μϕ = ∂μϕ. For vector fields v , a useful formula is 1 √ √ √ ∇ vμ = √ ∂ g vμ or g ∇ vμ = ∂ g vμ . (B.3) μ g μ μ μ B.2 Functional Derivative We use again the condensed DeWitt notation for a generalized field φi = φA(x), introduced in Sect. 4.4. We want to emphasize that an object with two DeWitt indices like ij corresponds to a two-point function or a generalized bi-tensor AB(x, x ) in conventional notation. The primed indices like j refer to the space-time point x. This means we can construct objects which behave as tensors of different rank at different space-time points. A particular case of a generalized bi-tensor is a bi-scalar which has no indices A, B,..at all. A special bi-scalar, in turn, is the Dirac Delta- Distribution δ(x, x) which is defined in a 2ω-dimensional curved space-time with A metric gμν(x) for a general test field (x) by the equation C. F. Steinwachs, Non-minimal Higgs Inflation and Frame Dependence 247 in Cosmology, Springer Theses, DOI: 10.1007/978-3-319-01842-3, © Springer International Publishing Switzerland 2014 248 Appendix B: Variations and Derivatives / A(x) = d2ω x |g(x )|1 2 δ(x, x )A(x ), (B.4) For simplicity, we specify 2ω = 4. In the condensed notation (B.4) takes the form i = i j δ j with i =| ( )|1/2 A ( , ) = A ˜( , ). δ j g x δ B δ x x δ B δ x x (B.5) The quantity δ˜(x, x) := |g(x)|1/2δ(x, x) is no longer a bi-scalar, since it transforms as a scalar at the point x, but as a scalar density at the point x. The expansion of Z[] up to linear order in condensed notation is defined by i Z[ + ζ]=:Z[]+Z, i [] ζ , (B.6) with ζi := δψi and [( )] i 4 δZ x A Z, [] ζ = d x ζ (x ) (B.7) i δ A(x) in conventional notation. Therefore, it seems obvious to define the functional deriv- A ative Z, i = δZ[(x)]/δ (x ) by the variation [3] Z[(x)] 1 ( [ + ]− []) =: 4 δ A( ). lim Z ζ Z d x ζ x (B.8) →0 δ A(x ) For the special case Z = Id, we obtain from (B.8) A A δ (x) δ (x) ζ A = d4x ζ B(x ) or = δ A δ˜(x, x ). (B.9) δ B(x) δ B(x) B B.3 Lie Derivative L γ...δ μ The Lie derivative ξ of an arbitrary tensor Tα...β in the direction of the vector ξ is γ ...δ ( ) a measure of the difference between Tα...β x “dragged” along the integral curve μ γ...δ( ) γξ of ξ compared to the tensor Tα...β x at this point. Calculating the infinitesimal γ ...δ ( ) flow of Tα...β x along γξ back from x to x with the infinitesimal coordinate μ ν μ μ transformation matrix ∂x /∂x = δ ν + ξ, ν yields γ ...δ ( ) = γ...δ + γ ρ...δ + ... + δ γ...ρ − ρ γ...δ − ... − ρ γ...δ . Tα...β x Tα...β ξ,ρTα...β ξ,ρTα...β ξα, Tρ...β ξβ, Tα...ρ (B.10) γ...δ( ) Taylor expansion of Tα...β x around x yields Appendix B: Variations and Derivatives 249 γ...δ( + ) = γ...δ( ) + γ...δ ρ. Tα...β x ξ Tα...β x Tα...β, ρ ξ (B.11) Since the right-hand sides of (B.10) and (B.11) involve only quantities at x, we can compare these two objects at x and define the Lie derivative as the difference γ...δ γ...δ T (x ) − T (x ) L γ...δ ( ) := α...β α ...β ξ T ... x lim α β →0 = γ...δ ρ − ρ...δ γ − ... − γ...ρ δ Tα...β, ρ ξ Tα...β ξ,ρ Tα...β ξ,ρ + γ...δ ρ + ... + γ...δ ρ. Tρ...β ξα, Tα...ρ ξβ, (B.12) A special case is the Lie derivative of the metric tensor. The vanishing of the Lie L = μ derivative ξ g μν 0 in direction ξ signalizes a symmetry of the space-time manifold and means that the vector ξμ is a generator of an isometry ρ ρ ρ L = , + + = ; + ; = . ξ g μν gμν ρ ξ gρν ξ, μ gνρ ξ, ν ξμ ν ξν μ 0 (B.13) The vector fields ξμ obeying (B.13) are called Killing vector fields.
Recommended publications
  • Topology and Physics 2019 - Lecture 2
    Topology and Physics 2019 - lecture 2 Marcel Vonk February 12, 2019 2.1 Maxwell theory in differential form notation Maxwell's theory of electrodynamics is a great example of the usefulness of differential forms. A nice reference on this topic, though somewhat outdated when it comes to notation, is [1]. For notational simplicity, we will work in units where the speed of light, the vacuum permittivity and the vacuum permeability are all equal to 1: c = 0 = µ0 = 1. 2.1.1 The dual field strength In three dimensional space, Maxwell's electrodynamics describes the physics of the electric and magnetic fields E~ and B~ . These are three-dimensional vector fields, but the beauty of the theory becomes much more obvious if we (a) use a four-dimensional relativistic formulation, and (b) write it in terms of differential forms. For example, let us look at Maxwells two source-free, homogeneous equations: r · B = 0;@tB + r × E = 0: (2.1) That these equations have a relativistic flavor becomes clear if we write them out in com- ponents and organize the terms somewhat suggestively: x y z 0 + @xB + @yB + @zB = 0 x z y −@tB + 0 − @yE + @zE = 0 (2.2) y z x −@tB + @xE + 0 − @zE = 0 z y x −@tB − @xE + @yE + 0 = 0 Note that we also multiplied the last three equations by −1 to clarify the structure. All in all, we see that we have four equations (one for each space-time coordinate) which each contain terms in which the four coordinate derivatives act. Therefore, we may be tempted to write our set of equations in more \relativistic" notation as ^µν @µF = 0 (2.3) 1 with F^µν the coordinates of an antisymmetric two-tensor (i.
    [Show full text]
  • The Levi-Civita Tensor Noncovariance and Curvature in the Pseudotensors
    The Levi-Civita tensor noncovariance and curvature in the pseudotensors space A. L. Koshkarov∗ University of Petrozavodsk, Physics department, Russia Abstract It is shown that conventional ”covariant” derivative of the Levi-Civita tensor Eαβµν;ξ is not really covariant. Adding compensative terms, it is possible to make it covariant and to be equal to zero. Then one can be introduced a curvature in the pseudotensors space. There appears a curvature tensor which is dissimilar to ordinary one by covariant term including the Levi-Civita density derivatives hence to be equal to zero. This term is a little bit similar to Weylean one in the Weyl curvature tensor. There has been attempted to find a curvature measure in the combined (tensor plus pseudotensor) tensors space. Besides, there has been constructed some vector from the metric and the Levi-Civita density which gives new opportunities in geometry. 1 Introduction Tensor analysis which General Relativity is based on operates basically with true tensors and it is very little spoken of pseudotensors role. Although there are many objects in the world to be bound up with pseudotensors. For example most of particles and bodies in the Universe have angular momentum or spin. Here is a question: could a curvature tensor be a pseudotensor or include that in some way? It’s not clear. Anyway, symmetries of the Riemann-Christopher tensor are not compatible with those of the Levi-Civita pseudotensor. There are examples of using values in Physics to be a sum of a tensor and arXiv:0906.0647v1 [physics.gen-ph] 3 Jun 2009 a pseudotensor.
    [Show full text]
  • Laplacians in Geometric Analysis
    LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1.
    [Show full text]
  • Selected Papers on Teleparallelism Ii
    SELECTED PAPERS ON TELEPARALLELISM Edited and translated by D. H. Delphenich Table of contents Page Introduction ……………………………………………………………………… 1 1. The unification of gravitation and electromagnetism 1 2. The geometry of parallelizable manifold 7 3. The field equations 20 4. The topology of parallelizability 24 5. Teleparallelism and the Dirac equation 28 6. Singular teleparallelism 29 References ……………………………………………………………………….. 33 Translations and time line 1928: A. Einstein, “Riemannian geometry, while maintaining the notion of teleparallelism ,” Sitzber. Preuss. Akad. Wiss. 17 (1928), 217- 221………………………………………………………………………………. 35 (Received on June 7) A. Einstein, “A new possibility for a unified field theory of gravitation and electromagnetism” Sitzber. Preuss. Akad. Wiss. 17 (1928), 224-227………… 42 (Received on June 14) R. Weitzenböck, “Differential invariants in EINSTEIN’s theory of teleparallelism,” Sitzber. Preuss. Akad. Wiss. 17 (1928), 466-474……………… 46 (Received on Oct 18) 1929: E. Bortolotti , “ Stars of congruences and absolute parallelism: Geometric basis for a recent theory of Einstein ,” Rend. Reale Acc. dei Lincei 9 (1929), 530- 538...…………………………………………………………………………….. 56 R. Zaycoff, “On the foundations of a new field theory of A. Einstein,” Zeit. Phys. 53 (1929), 719-728…………………………………………………............ 64 (Received on January 13) Hans Reichenbach, “On the classification of the new Einstein Ansatz on gravitation and electricity,” Zeit. Phys. 53 (1929), 683-689…………………….. 76 (Received on January 22) Selected papers on teleparallelism ii A. Einstein, “On unified field theory,” Sitzber. Preuss. Akad. Wiss. 18 (1929), 2-7……………………………………………………………………………….. 82 (Received on Jan 30) R. Zaycoff, “On the foundations of a new field theory of A. Einstein; (Second part),” Zeit. Phys. 54 (1929), 590-593…………………………………………… 89 (Received on March 4) R.
    [Show full text]
  • Arxiv:0911.0334V2 [Gr-Qc] 4 Jul 2020
    Classical Physics: Spacetime and Fields Nikodem Poplawski Department of Mathematics and Physics, University of New Haven, CT, USA Preface We present a self-contained introduction to the classical theory of spacetime and fields. This expo- sition is based on the most general principles: the principle of general covariance (relativity) and the principle of least action. The order of the exposition is: 1. Spacetime (principle of general covariance and tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors); 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field, action for particles). In this order, a particle is a special case of a field existing in spacetime, and classical mechanics can be derived from field theory. I dedicate this book to my Parents: Bo_zennaPop lawska and Janusz Pop lawski. I am also grateful to Chris Cox for inspiring this book. The Laws of Physics are simple, beautiful, and universal. arXiv:0911.0334v2 [gr-qc] 4 Jul 2020 1 Contents 1 Spacetime 5 1.1 Principle of general covariance and tensors . 5 1.1.1 Vectors . 5 1.1.2 Tensors . 6 1.1.3 Densities . 7 1.1.4 Contraction . 7 1.1.5 Kronecker and Levi-Civita symbols . 8 1.1.6 Dual densities . 8 1.1.7 Covariant integrals . 9 1.1.8 Antisymmetric derivatives . 9 1.2 Affine connection . 10 1.2.1 Covariant differentiation of tensors . 10 1.2.2 Parallel transport . 11 1.2.3 Torsion tensor . 11 1.2.4 Covariant differentiation of densities .
    [Show full text]
  • Tensor Manipulation in GPL Maxima
    Tensor Manipulation in GPL Maxima Viktor Toth http://www.vttoth.com/ February 1, 2008 Abstract GPL Maxima is an open-source computer algebra system based on DOE-MACSYMA. GPL Maxima included two tensor manipulation packages from DOE-MACSYMA, but these were in various states of disrepair. One of the two packages, CTENSOR, implemented component-based tensor manipulation; the other, ITENSOR, treated tensor symbols as opaque, manipulating them based on their index properties. The present paper describes the state in which these packages were found, the steps that were needed to make the packages fully functional again, and the new functionality that was implemented to make them more versatile. A third package, ATENSOR, was also implemented; fully compatible with the identically named package in the commercial version of MACSYMA, ATENSOR implements abstract tensor algebras. 1 Introduction GPL Maxima (GPL stands for the GNU Public License, the most widely used open source license construct) is the descendant of one of the world’s first comprehensive computer algebra systems (CAS), DOE-MACSYMA, developed by the United States Department of Energy in the 1960s and the 1970s. It is currently maintained by 18 volunteer developers, and can be obtained in source or object code form from http://maxima.sourceforge.net/. Like other computer algebra systems, Maxima has tensor manipulation capability. This capability was developed in the late 1970s. Documentation is scarce regarding these packages’ origins, but a select collection of e-mail messages by various authors survives, dating back to 1979-1982, when these packages were actively maintained at M.I.T. When this author first came across GPL Maxima, the tensor packages were effectively non-functional.
    [Show full text]
  • Curvature Tensors in a 4D Riemann–Cartan Space: Irreducible Decompositions and Superenergy
    Curvature tensors in a 4D Riemann–Cartan space: Irreducible decompositions and superenergy Jens Boos and Friedrich W. Hehl [email protected] [email protected]"oeln.de University of Alberta University of Cologne & University of Missouri (uesday, %ugust 29, 17:0. Geometric Foundations of /ravity in (artu Institute of 0hysics, University of (artu) Estonia Geometric Foundations of /ravity Geometric Foundations of /auge Theory Geometric Foundations of /auge Theory ↔ Gravity The ingredients o$ gauge theory: the e2ample o$ electrodynamics ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: redundancy conserved e2ternal current 5 ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: Complex spinor 6eld: redundancy invariance conserved e2ternal current 5 conserved #7,8 current ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: Complex spinor 6eld: redundancy invariance conserved e2ternal current 5 conserved #7,8 current Complete, gauge-theoretical description: 9 local #7,) invariance ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: iers Complex spinor 6eld: rce carr ry of fo mic theo rrent rosco rnal cu m pic en exte att desc gredundancyiv er; N ript oet ion o conserved e2ternal current 5 invariance her f curr conserved #7,8 current e n t s Complete, gauge-theoretical description: gauge theory = complete description of matter and 9 local #7,) invariance how it interacts via gauge bosons ,3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincaré gauge theory *3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincaré gauge theory *3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincar; gauge theory *3,.
    [Show full text]
  • SPINORS and SPACE–TIME ANISOTROPY
    Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE{TIME ANISOTROPY University of Athens ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii - i ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. ii - iii ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics.
    [Show full text]
  • HARMONIC MAPS Contents 1. Introduction 2 1.1. Notational
    HARMONIC MAPS ANDREW SANDERS Contents 1. Introduction 2 1.1. Notational conventions 2 2. Calculus on vector bundles 2 3. Basic properties of harmonic maps 7 3.1. First variation formula 7 References 10 1 2 ANDREW SANDERS 1. Introduction 1.1. Notational conventions. By a smooth manifold M we mean a second- countable Hausdorff topological space with a smooth maximal atlas. We denote the tangent bundle of M by TM and the cotangent bundle of M by T ∗M: 2. Calculus on vector bundles Given a pair of manifolds M; N and a smooth map f : M ! N; it is advantageous to consider the differential df : TM ! TN as a section df 2 Ω0(M; T ∗M ⊗ f ∗TN) ' Ω1(M; f ∗TN): There is a general for- malism for studying the calculus of differential forms with values in vector bundles equipped with a connection. This formalism allows a fairly efficient, and more coordinate-free, treatment of many calculations in the theory of harmonic maps. While this approach is somewhat abstract and obfuscates the analytic content of many expressions, it takes full advantage of the algebraic symmetries available and therefore simplifies many expressions. We will develop some of this theory now and use it freely throughout the text. The following exposition will closely fol- low [Xin96]. Let M be a smooth manifold and π : E ! M a real vector bundle on M or rank r: Throughout, we denote the space of smooth sections of E by Ω0(M; E): More generally, the space of differential p-forms with values in E is given by Ωp(M; E) := Ω0(M; ΛpT ∗M ⊗ E): Definition 2.1.
    [Show full text]
  • The Language of Differential Forms
    Appendix A The Language of Differential Forms This appendix—with the only exception of Sect.A.4.2—does not contain any new physical notions with respect to the previous chapters, but has the purpose of deriving and rewriting some of the previous results using a different language: the language of the so-called differential (or exterior) forms. Thanks to this language we can rewrite all equations in a more compact form, where all tensor indices referred to the diffeomorphisms of the curved space–time are “hidden” inside the variables, with great formal simplifications and benefits (especially in the context of the variational computations). The matter of this appendix is not intended to provide a complete nor a rigorous introduction to this formalism: it should be regarded only as a first, intuitive and oper- ational approach to the calculus of differential forms (also called exterior calculus, or “Cartan calculus”). The main purpose is to quickly put the reader in the position of understanding, and also independently performing, various computations typical of a geometric model of gravity. The readers interested in a more rigorous discussion of differential forms are referred, for instance, to the book [22] of the bibliography. Let us finally notice that in this appendix we will follow the conventions introduced in Chap. 12, Sect. 12.1: latin letters a, b, c,...will denote Lorentz indices in the flat tangent space, Greek letters μ, ν, α,... tensor indices in the curved manifold. For the matter fields we will always use natural units = c = 1. Also, unless otherwise stated, in the first three Sects.
    [Show full text]
  • CURVATURE E. L. Lady the Curvature of a Curve Is, Roughly Speaking, the Rate at Which That Curve Is Turning. Since the Tangent L
    1 CURVATURE E. L. Lady The curvature of a curve is, roughly speaking, the rate at which that curve is turning. Since the tangent line or the velocity vector shows the direction of the curve, this means that the curvature is, roughly, the rate at which the tangent line or velocity vector is turning. There are two refinements needed for this definition. First, the rate at which the tangent line of a curve is turning will depend on how fast one is moving along the curve. But curvature should be a geometric property of the curve and not be changed by the way one moves along it. Thus we define curvature to be the absolute value of the rate at which the tangent line is turning when one moves along the curve at a speed of one unit per second. At first, remembering the determination in Calculus I of whether a curve is curving upwards or downwards (“concave up or concave down”) it may seem that curvature should be a signed quantity. However a little thought shows that this would be undesirable. If one looks at a circle, for instance, the top is concave down and the bottom is concave up, but clearly one wants the curvature of a circle to be positive all the way round. Negative curvature simply doesn’t make sense for curves. The second problem with defining curvature to be the rate at which the tangent line is turning is that one has to figure out what this means. The Curvature of a Graph in the Plane.
    [Show full text]
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]