Noether’s Theorems and Energy in General Relativity Sebastian De Haro Institute for Logic, Language and Computation, University of Amsterdam Institute of Physics, University of Amsterdam
[email protected] April 1, 2021 Abstract This paper has three main aims: first, to give a pedagogical introduction to Noether’s two theorems and their implications for energy conservation in general relativity, which was a central point of discussion between Hilbert, Klein, Noether and Einstein. Second, it introduces and compares two proposals for gravitational energy and momentum, one of which is very influential in physics: and, so far as I know, neither of the two has been discussed in the philosophical literature. Third, it assesses these proposals in connection with recent philosophical discussions of energy and momentum in general relativity. After briefly reviewing the debates about energy conservation between Hilbert, Klein, Noether and Einstein, I give Noether’s two theorems. I show that Einstein’s gravita- tional energy-momentum pseudo-tensor, including its superpotential, is fixed, through Noether’s theorem, by the boundary terms in the action. That is, the freedom to add an arbitrary superpotential to the gravitational pseudo-tensor corresponds to the freedom to add boundary terms to the action without changing the equations of motion. This free- dom is fixed in the same way for both problems. I also review two proposals for energy and momentum in GR, of which one is a quasi-local alternative to the local expressions, arXiv:2103.17160v1 [physics.hist-ph] 31 Mar 2021 and the other builds on Einstein’s local pseudo-tensor approach.