Vectors and Vector Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Vectors and Vector Analysis Appendix A Vectors and Vector Analysis A.1 Vector Algebra A.1.1. Let ai , i = 1, 2, 3 be the components of a vector a in the orthonormal basis ui of an Euclidean three-dimensional space. Using Einstein’s summation convention, the analytical expression of a is a = ai ui . (A.1) The analytical expression of the radius-vector is then r = xi ui . (A.2) A.1.2. Let a and b be two arbitrary vectors. Skipping addition and subtraction, one can define 1. The scalar product or dot product of the two vectors: a · b = (ai ui ) · (bk uk ) = ai bi = ab cos(a, b), (A.3) since ui · uk = δik. (A.4) 2. The vector product,orcross product of the two vectors: a × b =−b × a = ijka j bk ui , |a × b|=ab sin(a, b), (A.5) as well as 1 u × u = u , u = u × u , (A.6) i j ijk k s 2 sij i j © Springer-Verlag Berlin Heidelberg 2016 591 M. Chaichian et al., Electrodynamics, DOI 10.1007/978-3-642-17381-3 592 Appendix A: Vectors and Vector Analysis where ⎧ ⎨ +1, if i, j, k are an even permutation of 1, 2, 3, = − , , , , , , ijk ⎩ 1 if i j k are an odd permutation of 1 2 3 (A.7) 0, if any two indices are equal, is the Levi-Civita permutation symbol (see Sect. A.5). One can easily verify the property δil δim δin ijklmn = δ jl δ jm δ jn . (A.8) δkl δkm δkn For i = l,(A.8) becomes ijkimn = δ jmδkn − δ jnδkm, (A.9) while for i = l, j = m it becomes ijkijn = 2δkn. (A.10) Obviously, ijkijk = 3!=6. A.1.3. Let a, b, c be three arbitrary vectors. With these vectors one can define the following two types of product: 1. The mixed product a · (b × c) = ijkai b j ck , (A.11) in particular, ui · (u j × uk ) = ijk. (A.12) 2. The double cross product a × (b × c) = (a · c)b − (a · b)c. (A.13) A.2 Orthogonal Coordinate Transformations The transformation from a three-dimensional orthogonal Euclidean coordinate sys- tem S(Oxyz) to another system S(Ox yz) can be accomplished by three main procedures: i) translation of axes; ii) rotation of axes; iii) mirror reflection. Appendix A: Vectors and Vector Analysis 593 The first two types of transformations do not change the orientation of the axes of S with respect to S (proper transformations), while under mirror reflection (i.e. x =−x, y = y, z = z) a right-handed coordinate system transforms into a left-handed coordinate system (improper transformation). There are also possible combinations of these transformations, with the observation that a succession of two proper/improper transformations gives a proper transformation, while a proper transformation followed by an improper transformation leads to an improper trans- formation. , , = , , Suppose that S and S have the same origin, and let ui ui i 1 2 3bethe orthonormal associated bases. Since = = , r xi ui xi u i (A.14) we have = , = · , xi aikxk aik u i uk = , = · , , = , , , xi aki xk aki u k ui i k 1 2 3 (A.15) as well as u i = aikuk , ui = akiu k . (A.16) The coefficients aik form the matrix of the orthogonal transformation (A.15)1, and aki –thematrix of the inverse transformation (A.15)2. The invariance of the distance between two points, 2 = = , r xi xi xk xk yields the orthogonality condition aikaim = δkm, i, k, m = 1, 2, 3. (A.17) Using the rule of the product of determinants, we find det(aik) =±1. (A.18) On the other hand, det(aik) = ijka1i a2 j a3k , i, j, k = 1, 2, 3, (A.19) that is ijka1i a2 j a3k =±1, (A.20) 594 Appendix A: Vectors and Vector Analysis or ijkaliamjank =±lmn = lmn det(aik), l, m, n = 1, 2, 3. (A.21) Here the sign “+” corresponds to the case when the frames have the same orientation, and “−” to the case when the orientations are different. Under a change of orthonormal basis, we have p + q = pi ui + qi ui = + = + = + , pi amiu m qi amiu m pm u m qm u m p q · = = ( )( ) = = = · , p q pi qi ami pm asiqs δms pmqs psqs p q × = = = ( × ) ( ), p q ijk p j qk ui ijkamjaskali pmqs u l p q det aik · ( × ) = = p q r ijk pi q j rk ijkaliamjank pl qmrn = p · (q × r ) det(aik). (A.22) Consequently, the addition (subtraction) and dot product of two vectors do not change when changing the basis, while the cross product and the mixed product (of polar vectors) change sign when the bases have different orientations. We call scalars of the first kind or scalar invariants those quantities whose sign does not depend on the basis orientation (e.g., temperature, mass, mechanical work, electric charge, etc.), and scalars of the second kind or pseudoscalars those quantities which change sign when the basis changes its orientation (e.g., magnetic flux, dΦ = B · dS, the moment of a force F with respect to an axis Δ, MΔ = uΔ · (r × F), etc.). We call polar vector or proper vector a vector which transforms to its negative under the inversion of its coordinate axes (electric field intensity, velocity of a particle, gradient of a scalar, etc.), and axial vector or pseudovector a vector which is invariant under inversion of coordinate axes (magnetic induction, angular velocity, etc). A.3 Elements of Vector Analysis A.3.1 Scalar and Vector Fields If to each point P of a domain D of the Euclidean space E3 one can associate a value of a scalar ϕ(P),inD is defined a scalar field. If to each point P one can associate a vector quantity A(P),inD is defined a vector field. A scalar (or vector) field is called stationary if ϕ (or A) do not explicitly depend on time. In the opposite case, the field is non-stationary. Appendix A: Vectors and Vector Analysis 595 A.3.2 Frequently Occurring Integrals In classical/phenomenological electrodynamics one encounters three types of inte- grals: 1. Line integral P2 a · ds P1 along a curve C, taken between the points P1 and P2, where a is a vector with its origin on the curve, and ds is a vector element of C. This integral is called circulation of the vector a along the curve C, between the points P1 and P2.If the curve C is closed, the circulation is denoted by a · ds. C 2. Double integral a · dS = a · dS = a · n dS, S S where a is a vector with its origin on the surface S, dS is a vector surface element, and n is the unit vector of the external normal to dS. This integral is called the flux of the vector a through the surface S.IfS is a closed surface, the integral is denoted by a · dS. S 3. Triple integral a dτ = a dτ = a dr = a dV, V V V where V is the volume of the three-dimensional domain D ⊂ E3, and a has its origin at some point of D. A.3.3 First-Order Vector Differential Operators The nabla or del operator is defined as ∂ ∂ ∂ ∇= u1 + u2 + u3. (A.23) ∂x1 ∂x2 ∂x3 596 Appendix A: Vectors and Vector Analysis By applying it in different ways to scalars and vectors, we obtain the gradient, diver- gence, and curl. 1. Gradient.1 Let ϕ(r) be a scalar field, with ϕ(r) a continuous function with continuous derivative in D ⊂ E3. The vector field ∂ϕ A = grad ϕ =∇ϕ = ui , i = 1, 2, 3(A.24) ∂xi is the gradient of the scalar field ϕ(r). The vector field A defined by (A.24)is called conservative. Equipotential surfaces. Consider the fixed surface ϕ(x, y, z) = C(= const.). (A.25) Then dϕ =∇ϕ · dr = 0 shows that at every point of the surface (A.25) the vector ∇ϕ is oriented along the normal to the surface. Giving values to C, one obtains a family of surfaces called equipotential surfaces,orlevel surfaces. Field lines.LetA(r) be a stationary vector field, and C – a curve given by its parametric equations xi = xi (s), i = 1, 2, 3. If at every point the field A is tan- gent to the curve C, then the curve is a line of the vector field A. The differential equations of the field lines are obtained by projecting on axes the vector relation A × dr = 0, where dr is a vector element of the field line. Directional derivative. Let us project the vector ∇ϕ unto the direction defined by the unit vector u. Since dr = u|dr|=u ds, where ds is a curve element in the direction u,wehave dϕ (∇ϕ) · u = (∇ϕ) = . (A.26) u ds If, in particular, u is the unit vector n of the external normal to the surface (A.25), then dϕ ∇ϕ = ≥ 0, (A.27) n dn meaning that the gradient is oriented along the normal to the equipotential sur- faces, and points in the direction of the greatest rate of increase of the scalar field. 1As a matter of fact, gradient, divergence,andcurl are not bona fide first-order vector differential operators, but the results of the nabla operator (Hamilton’s operator) action, in different ways, upon scalar and/or vector fields. Note that the Laplacian =∇·∇=∇2 and the d’Alembertian = 1 ∂2 − v2 ∂t2 are true differential operators, but of the second order.
Recommended publications
  • Quaternions and Cli Ord Geometric Algebras
    Quaternions and Cliord Geometric Algebras Robert Benjamin Easter First Draft Edition (v1) (c) copyright 2015, Robert Benjamin Easter, all rights reserved. Preface As a rst rough draft that has been put together very quickly, this book is likely to contain errata and disorganization. The references list and inline citations are very incompete, so the reader should search around for more references. I do not claim to be the inventor of any of the mathematics found here. However, some parts of this book may be considered new in some sense and were in small parts my own original research. Much of the contents was originally written by me as contributions to a web encyclopedia project just for fun, but for various reasons was inappropriate in an encyclopedic volume. I did not originally intend to write this book. This is not a dissertation, nor did its development receive any funding or proper peer review. I oer this free book to the public, such as it is, in the hope it could be helpful to an interested reader. June 19, 2015 - Robert B. Easter. (v1) [email protected] 3 Table of contents Preface . 3 List of gures . 9 1 Quaternion Algebra . 11 1.1 The Quaternion Formula . 11 1.2 The Scalar and Vector Parts . 15 1.3 The Quaternion Product . 16 1.4 The Dot Product . 16 1.5 The Cross Product . 17 1.6 Conjugates . 18 1.7 Tensor or Magnitude . 20 1.8 Versors . 20 1.9 Biradials . 22 1.10 Quaternion Identities . 23 1.11 The Biradial b/a .
    [Show full text]
  • 1 Parity 2 Time Reversal
    Even Odd Symmetry Lecture 9 1 Parity The normal modes of a string have either even or odd symmetry. This also occurs for stationary states in Quantum Mechanics. The transformation is called partiy. We previously found for the harmonic oscillator that there were 2 distinct types of wave function solutions characterized by the selection of the starting integer in their series representation. This selection produced a series in odd or even powers of the coordiante so that the wave function was either odd or even upon reflections about the origin, x = 0. Since the potential energy function depends on the square of the position, x2, the energy eignevalue was always positive and independent of whether the eigenfunctions were odd or even under reflection. In 1-D parity is the symmetry operation, x → −x. In 3-D the strong interaction is invarient under the symmetry of parity. ~r → −~r Parity is a mirror reflection plus a rotation of 180◦, and transforms a right-handed coordinate system into a left-handed one. Our Macroscopic world is clearly “handed”, but “handedness” in fundamental interactions is more involved. Vectors (tensors of rank 1), as illustrated in the definition above, change sign under Parity. Scalars (tensors of rank 0) do not. One can then construct, using tensor algebra, new tensors which reduce the tensor rank and/or change the symmetry of the tensor. Thus a dual of a symmetric tensor of rank 2 is a pseudovector (cross product of two vectors), and a scalar product of a pseudovector and a vector creates a pseudoscalar. We will construct bilinear forms below which have these rotational and reflection char- acteristics.
    [Show full text]
  • Some Aspects in Cosmological Perturbation Theory and F (R) Gravity
    Some Aspects in Cosmological Perturbation Theory and f (R) Gravity Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Leonardo Castañeda C aus Tabio,Cundinamarca,Kolumbien Bonn, 2016 Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. 1. Gutachter: Prof. Dr. Peter Schneider 2. Gutachter: Prof. Dr. Cristiano Porciani Tag der Promotion: 31.08.2016 Erscheinungsjahr: 2016 In memoriam: My father Ruperto and my sister Cecilia Abstract General Relativity, the currently accepted theory of gravity, has not been thoroughly tested on very large scales. Therefore, alternative or extended models provide a viable alternative to Einstein’s theory. In this thesis I present the results of my research projects together with the Grupo de Gravitación y Cosmología at Universidad Nacional de Colombia; such projects were motivated by my time at Bonn University. In the first part, we address the topics related with the metric f (R) gravity, including the study of the boundary term for the action in this theory. The Geodesic Deviation Equation (GDE) in metric f (R) gravity is also studied. Finally, the results are applied to the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime metric and some perspectives on use the of GDE as a cosmological tool are com- mented. The second part discusses a proposal of using second order cosmological perturbation theory to explore the evolution of cosmic magnetic fields. The main result is a dynamo-like cosmological equation for the evolution of the magnetic fields.
    [Show full text]
  • The Levi-Civita Tensor Noncovariance and Curvature in the Pseudotensors
    The Levi-Civita tensor noncovariance and curvature in the pseudotensors space A. L. Koshkarov∗ University of Petrozavodsk, Physics department, Russia Abstract It is shown that conventional ”covariant” derivative of the Levi-Civita tensor Eαβµν;ξ is not really covariant. Adding compensative terms, it is possible to make it covariant and to be equal to zero. Then one can be introduced a curvature in the pseudotensors space. There appears a curvature tensor which is dissimilar to ordinary one by covariant term including the Levi-Civita density derivatives hence to be equal to zero. This term is a little bit similar to Weylean one in the Weyl curvature tensor. There has been attempted to find a curvature measure in the combined (tensor plus pseudotensor) tensors space. Besides, there has been constructed some vector from the metric and the Levi-Civita density which gives new opportunities in geometry. 1 Introduction Tensor analysis which General Relativity is based on operates basically with true tensors and it is very little spoken of pseudotensors role. Although there are many objects in the world to be bound up with pseudotensors. For example most of particles and bodies in the Universe have angular momentum or spin. Here is a question: could a curvature tensor be a pseudotensor or include that in some way? It’s not clear. Anyway, symmetries of the Riemann-Christopher tensor are not compatible with those of the Levi-Civita pseudotensor. There are examples of using values in Physics to be a sum of a tensor and arXiv:0906.0647v1 [physics.gen-ph] 3 Jun 2009 a pseudotensor.
    [Show full text]
  • Arxiv:0911.0334V2 [Gr-Qc] 4 Jul 2020
    Classical Physics: Spacetime and Fields Nikodem Poplawski Department of Mathematics and Physics, University of New Haven, CT, USA Preface We present a self-contained introduction to the classical theory of spacetime and fields. This expo- sition is based on the most general principles: the principle of general covariance (relativity) and the principle of least action. The order of the exposition is: 1. Spacetime (principle of general covariance and tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors); 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field, action for particles). In this order, a particle is a special case of a field existing in spacetime, and classical mechanics can be derived from field theory. I dedicate this book to my Parents: Bo_zennaPop lawska and Janusz Pop lawski. I am also grateful to Chris Cox for inspiring this book. The Laws of Physics are simple, beautiful, and universal. arXiv:0911.0334v2 [gr-qc] 4 Jul 2020 1 Contents 1 Spacetime 5 1.1 Principle of general covariance and tensors . 5 1.1.1 Vectors . 5 1.1.2 Tensors . 6 1.1.3 Densities . 7 1.1.4 Contraction . 7 1.1.5 Kronecker and Levi-Civita symbols . 8 1.1.6 Dual densities . 8 1.1.7 Covariant integrals . 9 1.1.8 Antisymmetric derivatives . 9 1.2 Affine connection . 10 1.2.1 Covariant differentiation of tensors . 10 1.2.2 Parallel transport . 11 1.2.3 Torsion tensor . 11 1.2.4 Covariant differentiation of densities .
    [Show full text]
  • M. Jaya Preetha I
    M. Jaya Preetha I. B.Com (General) 'B' Section Women's Christian College, College Road 1 Introduction: Science And Technology In Brazil, It is essential to include basic science Education from the beginning of the Russia, India, China And South Africa Educational process, making investment in Scientific Education a Priority. This approach decisively contributes to encouraging yound people to take up careers in Science and Technology. Nevertheless, the Most important consequence is the contribution it makes to improving education, which is a subject that has mobilized several segments of society because of its importance. UNESCO acts as a catalyst for these themes and offers the country support to stabilize policies, as well as promoting technical cooperation at National and International levels in the field of natural Sciences. Scientific education and development SYNOPSIS of sustainable practices are themes of great interest to UNESCO, taking into consideration the continuous support offered to Science and Technology Policy. * Introduction * Brazilian Science and Technology BRAZIL Brazilian Science and Technology * Science and Technology in Russia Brazilian Science and Technology have achieved a significant position in the * List of Russian Physicists international arena in the last Decades. The Central agency for Science and Technology in Brazil is the Ministry of Science and Technology which includes * List of Russian Mathematicians, the CNPq and Finep. This ministry also has direct supervision over the National Institute for Space Research (Institute National de Pesquisas Espaciasis - INPE), * List of Russian Inventors and Timeline of Russian Inventions the National Institute of Amazoniam Research (Institute National de Pesquisas da Amazonia - INPA), and the National Institute of Technology Institute National * Science and Technology in India de Technologia- INT) The Ministry is also responsible for the Secretariat for Computer and Automation Policy ( Secretaria de Politica de Informatica e * Market Size, Automacao - SPIA), which is the successor of the SEI.
    [Show full text]
  • Line Element in Noncommutative Geometry
    Line element in noncommutative geometry P. Martinetti G¨ottingenUniversit¨at Wroclaw, July 2009 . ? ? - & ? !? The line element p µ ν ds = gµν dx dx is mainly useful to measure distance Z y d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry). ? - . ? !? The line element p µ ν ds = gµν dx dx & ? is mainly useful to measure distance Z y d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry). ? - !? The line element p µ ν ds = gµν dx dx . & ? ? is mainly useful to measure distance Z y d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry). ? - The line element p µ ν ds = gµν dx dx . & ? ? is mainly useful to measure distance Z y !? d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry). The line element p µ ν ds = gµν dx dx . & ? ? is mainly useful to measure distance ? -Z y !? d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry).
    [Show full text]
  • On the Representation of Symmetric and Antisymmetric Tensors
    Max-Planck-Institut fur¨ Mathematik in den Naturwissenschaften Leipzig On the Representation of Symmetric and Antisymmetric Tensors (revised version: April 2017) by Wolfgang Hackbusch Preprint no.: 72 2016 On the Representation of Symmetric and Antisymmetric Tensors Wolfgang Hackbusch Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22–26, D-04103 Leipzig, Germany [email protected] Abstract Various tensor formats are used for the data-sparse representation of large-scale tensors. Here we investigate how symmetric or antiymmetric tensors can be represented. The analysis leads to several open questions. Mathematics Subject Classi…cation: 15A69, 65F99 Keywords: tensor representation, symmetric tensors, antisymmetric tensors, hierarchical tensor format 1 Introduction We consider tensor spaces of huge dimension exceeding the capacity of computers. Therefore the numerical treatment of such tensors requires a special representation technique which characterises the tensor by data of moderate size. These representations (or formats) should also support operations with tensors. Examples of operations are the addition, the scalar product, the componentwise product (Hadamard product), and the matrix-vector multiplication. In the latter case, the ‘matrix’belongs to the tensor space of Kronecker matrices, while the ‘vector’is a usual tensor. In certain applications the subspaces of symmetric or antisymmetric tensors are of interest. For instance, fermionic states in quantum chemistry require antisymmetry, whereas bosonic systems are described by symmetric tensors. The appropriate representation of (anti)symmetric tensors is seldom discussed in the literature. Of course, all formats are able to represent these tensors since they are particular examples of general tensors. However, the special (anti)symmetric format should exclusively produce (anti)symmetric tensors.
    [Show full text]
  • The Pure State Space of Quantum Mechanics As Hermitian Symmetric
    The Pure State Space of Quantum Mechanics as Hermitian Symmetric Space. R. Cirelli, M. Gatti, A. Mani`a Dipartimento di Fisica, Universit`adegli Studi di Milano, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy Abstract The pure state space of Quantum Mechanics is investigated as Hermitian Symmetric K¨ahler manifold. The classical principles of Quantum Mechan- ics (Quantum Superposition Principle, Heisenberg Uncertainty Principle, Quantum Probability Principle) and Spectral Theory of observables are dis- cussed in this non linear geometrical context. Subj. Class.: Quantum mechanics 1991 MSC : 58BXX; 58B20; 58FXX; 58HXX; 53C22 Keywords: Superposition principle, quantum states; Riemannian mani- folds; Poisson algebras; Geodesics. 1. Introduction Several models of delinearization of Quantum Mechanics have been pro- arXiv:quant-ph/0202076v1 14 Feb 2002 posed (see f.i. [20] [26], [11], [2] and [5] for a complete list of references). Frequentely these proposals are supported by different motivations, but it appears that a common feature is that, more or less, the delinearization must be paid essentially by the superposition principle. This attitude can be understood if the delinearization program is worked out in the setting of a Hilbert space as a ground mathematical structure. However, as is well known, the groundH mathematical structure of QM is the manifold of (pure) states P( ), the projective space of the Hilbert space . Since, obviously, P( ) is notH a linear object, the popular way of thinking thatH the superposition principleH compels the linearity of the space of states is untenable. The delinearization program, by itself, is not related in our opinion to attempts to construct a non linear extension of QM with operators which 1 2 act non linearly on the Hilbert space .
    [Show full text]
  • Tensor Calculus and Differential Geometry
    Course Notes Tensor Calculus and Differential Geometry 2WAH0 Luc Florack March 10, 2021 Cover illustration: papyrus fragment from Euclid’s Elements of Geometry, Book II [8]. Contents Preface iii Notation 1 1 Prerequisites from Linear Algebra 3 2 Tensor Calculus 7 2.1 Vector Spaces and Bases . .7 2.2 Dual Vector Spaces and Dual Bases . .8 2.3 The Kronecker Tensor . 10 2.4 Inner Products . 11 2.5 Reciprocal Bases . 14 2.6 Bases, Dual Bases, Reciprocal Bases: Mutual Relations . 16 2.7 Examples of Vectors and Covectors . 17 2.8 Tensors . 18 2.8.1 Tensors in all Generality . 18 2.8.2 Tensors Subject to Symmetries . 22 2.8.3 Symmetry and Antisymmetry Preserving Product Operators . 24 2.8.4 Vector Spaces with an Oriented Volume . 31 2.8.5 Tensors on an Inner Product Space . 34 2.8.6 Tensor Transformations . 36 2.8.6.1 “Absolute Tensors” . 37 CONTENTS i 2.8.6.2 “Relative Tensors” . 38 2.8.6.3 “Pseudo Tensors” . 41 2.8.7 Contractions . 43 2.9 The Hodge Star Operator . 43 3 Differential Geometry 47 3.1 Euclidean Space: Cartesian and Curvilinear Coordinates . 47 3.2 Differentiable Manifolds . 48 3.3 Tangent Vectors . 49 3.4 Tangent and Cotangent Bundle . 50 3.5 Exterior Derivative . 51 3.6 Affine Connection . 52 3.7 Lie Derivative . 55 3.8 Torsion . 55 3.9 Levi-Civita Connection . 56 3.10 Geodesics . 57 3.11 Curvature . 58 3.12 Push-Forward and Pull-Back . 59 3.13 Examples . 60 3.13.1 Polar Coordinates in the Euclidean Plane .
    [Show full text]
  • Symmetric Spaces with Conformal Symmetry
    Symmetric Spaces with Conformal Symmetry A. Wehner∗ Department of Physics, Utah State University, Logan, Utah 84322 October 30, 2018 Abstract We consider an involutive automorphism of the conformal algebra and the resulting symmetric space. We display a new action of the conformal group which gives rise to this space. The space has an in- trinsic symplectic structure, a group-invariant metric and connection, and serves as the model space for a new conformal gauge theory. ∗Electronic-mail: [email protected] arXiv:hep-th/0107008v1 1 Jul 2001 1 1 Introduction Symmetric spaces are the most widely studied class of homogeneous spaces. They form a subclass of the reductive homogeneous spaces, which can es- sentially be characterized by the fact that they admit a unique torsion-free group-invariant connection. For symmetric spaces the curvature is covari- antly constant with respect to this connection. Many essential results and extensive bibliographies on symmetric spaces can be found, for example, in the standard texts by Kobayashi and Nomizu [1] and Helgason [2]. The physicists’ definition of a (maximally) symmetric space as a metric space which admits a maximum number of Killing vectors is considerably more restrictive. A thorough treatment of symmetric spaces in general rel- ativity, where a pseudo-Riemannian metric and the metric-compatible con- nection are assumed, can be found in Weinberg [3]. The most important symmetric space in gravitational theories is Minkowski space, which is based on the symmetric pair (Poincar´egroup, Lorentz group). Since the Poincar´e group is not semi-simple, it does not admit an intrinsic group-invariant met- ric, which would project in the canonical fashion to the Minkowski metric ηab = diag(−1, 1 ..
    [Show full text]
  • Modified Theories of Relativistic Gravity
    Modified Theories of Relativistic Gravity: Theoretical Foundations, Phenomenology, and Applications in Physical Cosmology by c David Wenjie Tian A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Theoretical Physics (Interdisciplinary Program) Faculty of Science Date of graduation: October 2016 Memorial University of Newfoundland March 2016 St. John’s Newfoundland and Labrador Abstract This thesis studies the theories and phenomenology of modified gravity, along with their applications in cosmology, astrophysics, and effective dark energy. This thesis is organized as follows. Chapter 1 reviews the fundamentals of relativistic gravity and cosmology, and Chapter 2 provides the required Co-authorship 2 2 Statement for Chapters 3 ∼ 6. Chapter 3 develops the L = f (R; Rc; Rm; Lm) class of modified gravity 2 µν 2 µανβ that allows for nonminimal matter-curvature couplings (Rc B RµνR , Rm B RµανβR ), derives the “co- herence condition” f 2 = f 2 = − f 2 =4 for the smooth limit to f (R; G; ) generalized Gauss-Bonnet R Rm Rc Lm gravity, and examines stress-energy-momentum conservation in more generic f (R; R1;:::; Rn; Lm) grav- ity. Chapter 4 proposes a unified formulation to derive the Friedmann equations from (non)equilibrium (eff) thermodynamics for modified gravities Rµν − Rgµν=2 = 8πGeffTµν , and applies this formulation to the Friedman-Robertson-Walker Universe governed by f (R), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R; G) generalized Gauss-Bonnet and dynamical Chern-Simons gravities. Chapter 5 systemati- cally restudies the thermodynamics of the Universe in ΛCDM and modified gravities by requiring its com- patibility with the holographic-style gravitational equations, where possible solutions to the long-standing confusions regarding the temperature of the cosmological apparent horizon and the failure of the second law of thermodynamics are proposed.
    [Show full text]