Modified Theories of Relativistic Gravity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Aspects in Cosmological Perturbation Theory and F (R) Gravity
Some Aspects in Cosmological Perturbation Theory and f (R) Gravity Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Leonardo Castañeda C aus Tabio,Cundinamarca,Kolumbien Bonn, 2016 Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. 1. Gutachter: Prof. Dr. Peter Schneider 2. Gutachter: Prof. Dr. Cristiano Porciani Tag der Promotion: 31.08.2016 Erscheinungsjahr: 2016 In memoriam: My father Ruperto and my sister Cecilia Abstract General Relativity, the currently accepted theory of gravity, has not been thoroughly tested on very large scales. Therefore, alternative or extended models provide a viable alternative to Einstein’s theory. In this thesis I present the results of my research projects together with the Grupo de Gravitación y Cosmología at Universidad Nacional de Colombia; such projects were motivated by my time at Bonn University. In the first part, we address the topics related with the metric f (R) gravity, including the study of the boundary term for the action in this theory. The Geodesic Deviation Equation (GDE) in metric f (R) gravity is also studied. Finally, the results are applied to the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime metric and some perspectives on use the of GDE as a cosmological tool are com- mented. The second part discusses a proposal of using second order cosmological perturbation theory to explore the evolution of cosmic magnetic fields. The main result is a dynamo-like cosmological equation for the evolution of the magnetic fields. -
Extended General Relativity for a Curved Universe
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2021 doi:10.20944/preprints202010.0320.v4 Extended General Relativity for a Curved Universe Mohammed. B. Al-Fadhli1* 1College of Science, University of Lincoln, Lincoln, LN6 7TS, UK. Abstract: The recent Planck Legacy release revealed the presence of an enhanced lensing amplitude in the cosmic microwave background (CMB). Notably, this amplitude is higher than that estimated by the lambda cold dark matter model (ΛCDM), which endorses the positive curvature of the early Universe with a confidence level greater than 99%. Although General Relativity (GR) performs accurately in the local/present Universe where spacetime is almost flat, its lost boundary term, incompatibility with quantum mechanics and the necessity of dark matter and dark energy might indicate its incompleteness. By utilising the Einstein–Hilbert action, this study presents extended field equations considering the pre-existing/background curvature and the boundary contribution. The extended field equations consist of Einstein field equations with a conformal transformation feature in addition to the boundary term, which could remove singularities from the theory and facilitate its quantisation. The extended equations have been utilised to derive the evolution of the Universe with reference to the scale factor of the early Universe and its radius of curvature. Keywords: Astrometry, General Relativity, Boundary Term. 1. INTRODUCTION Considerable efforts have been devoted to Recent evidence by Planck Legacy recent release modifying gravity in form of Conformal Gravity, (PL18) indicated the presence of an enhanced lensing Loop Quantum Gravity, MOND, ADS-CFT, String amplitude in the cosmic microwave background theory, 퐹(푅) Gravity, etc. -
Bianchi Identities for the Riemann and Weyl Tensors
BIANCHI IDENTITIES FOR THE RIEMANN AND WEYL TENSORS J.-F. Pommaret CERMICS, Ecole des Ponts ParisTech, 6/8 Av. Blaise Pascal, 77455 Marne-la-Vall´ee Cedex 02, France E-mail: [email protected], [email protected] URL: http://cermics.enpc.fr/∼pommaret/home.html ABSTRACT The purpose of this paper is to revisit the Bianchi identities existing for the Riemann and Weyl tensors in the combined framework of the formal theory of systems of partial differential equations (Spencer cohomology, differential systems, formal integrability) and Algebraic Analysis (homolog- ical algebra, differential modules, duality). In particular, we prove that the n2(n2 − 1)(n − 2)/24 generating Bianchi identities for the Riemann tensor are first order and can be easily described by means of the Spencer cohomology of the first order Killing symbol in arbitrary dimension n ≥ 2. Similarly, the n(n2 − 1)(n + 2)(n − 4)/24 generating Bianchi identities for the Weyl tensor are first order and can be easily described by means of the Spencer cohomology of the first order conformal Killing symbol in arbitrary dimension n ≥ 5. As a most surprising result, the 9 generating Bianchi identities for the Weyl tensor are of second order in dimension n = 4 while the analogue of the Weyl tensor has 5 components of third order in the metric with 3 first order generating Bianchi identi- ties in dimension n = 3. The above results, which could not be obtained otherwise, are valid for any non-degenerate metric of constant riemannian curvature and do not depend on any conformal factor. -
M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds
Commun. Math. Res. Vol. 36, No. 3, pp. 336-353 doi: 10.4208/cmr.2020-0052 August 2020 M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds Yun Miao1, Liqun Qi2 and Yimin Wei3,∗ 1 School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. of China. 2 Department of Applied Mathematics, the Hong Kong Polytechnic University, Hong Kong. 3 School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, P. R. of China. Received 6 May 2020; Accepted 28 May 2020 Abstract. We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold. The expressions of M- eigenvalues and M-eigenvectors are presented in this paper. As a special case, M-eigenvalues of conformal flat Einstein manifold have also been discussed, and the conformal the invariance of M-eigentriple has been found. We also reveal the relationship between M-eigenvalue and sectional curvature of a Rie- mannian manifold. We prove that the M-eigenvalue can determine the Rie- mann curvature tensor uniquely. We also give an example to compute the M- eigentriple of de Sitter spacetime which is well-known in general relativity. AMS subject classifications: 15A48, 15A69, 65F10, 65H10, 65N22 Key words: M-eigenvalue, Riemann curvature tensor, Ricci tensor, conformal invariant, canonical form. ∗Corresponding author. Email addresses: [email protected], [email protected] (Y. Wei), [email protected] (Y. Miao), [email protected] (L. Qi) Y. Miao, L. Qi and Y. Wei / Commun. Math. Res., 36 (2020),pp.336-353 337 1 Introduction The eigenvalue problem is a very important topic in tensor computation [4]. -
Existence of Lanczos Potentials and Superpotentials for the Weyl Spinor/Tensor
INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 18 (2001) 2297–2304 www.iop.org/Journals/cq PII: S0264-9381(01)22408-3 Existence of Lanczos potentials and superpotentials for the Weyl spinor/tensor Fredrik Andersson and S Brian Edgar Department of Mathematics, Linkoping¨ University, S581 83 Linkoping,¨ Sweden E-mail: [email protected] and [email protected] Received 2 March 2001 Abstract A new and concise proof of existence—emphasizing the very natural and simple structure—is given for the Lanczos spinor potential LABCA of an A arbitrary symmetric spinor WABCD defined by WABCD = 2∇(A LBCD)A ; this proof is easily translated into tensors in such a way that it is valid in four- dimensional spaces of any signature. In particular, this means that the Weyl spinor ABCD has Lanczos potentials in all spacetimes, and furthermore that the Weyl tensor has Lanczos potentials on all four-dimensional spaces, irrespective of signature. In addition, two superpotentials for WABCD are identified: the D first TABCD (= T(ABC)D) is given by LABCA =∇A TABCD, while the second HABAB (= H(AB)(AB)) (which is restricted to Einstein spacetimes) is given by B LABCA =∇(A HBC)AB . The superpotential TABCD is used to describe the gauge freedom in the Lanczos potential. PACS numbers: 0420, 0240 1. Introduction The fact that there exists a potential (called the Lanczos potential [1]) for the Weyl tensor/spinor in analogy to the well known electromagnetic potential for the electromagnetic field does not seem to be well known. Even among those aware of its existence it does not seem to be fully appreciated just how close is the analogy with the electromagnetic case, nor how simple and natural is the structure of the potential for the gravitational case. -
New Class of Exact Solutions to Einstein-Maxwell-Dilaton Theory on Four-Dimensional Bianchi Type IX Geometry
New Class of Exact Solutions to Einstein-Maxwell-dilaton Theory on Four-dimensional Bianchi Type IX Geometry A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the degree of Master of Science in the Department of Physics & Engineering Physics University of Saskatchewan Saskatoon By Bardia Hosseinzadeh Fahim c Bardia Hosseinzadeh Fahim, August 2020. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics & Engineering Physics 163 Physics Building 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 Or Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan S7N 5C9 Canada i Abstract We construct new classes of cosmological solution to the five dimensional Einstein-Maxwell-dilaton theory, that are non-stationary and almost conformally regular everywhere. -
Implications of Gravitational Particle Creation
Advances in High Energy Physics Implications of Gravitational Particle Creation Lead Guest Editor: Subhajit Saha Guest Editors: Kazuharu Bamba and Martiros Khurshudyan Implications of Gravitational Particle Creation Advances in High Energy Physics Implications of Gravitational Particle Creation Lead Guest Editor: Subhajit Saha Guest Editors: Kazuharu Bamba and Martiros Khurshudyan Copyright © 2019 Hindawi. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Antonio J. Accioly, Brazil Chao-Qiang Geng, Taiwan Anastasios Petkou, Greece Giovanni Amelino-Camelia, Italy Philippe Gras, France Alexey A. Petrov, USA Luis A. Anchordoqui, USA Xiaochun He, USA Thomas Rössler, Sweden Michele Arzano, Italy Luis Herrera, Spain Diego Saez-Chillon Gomez, Spain T. Asselmeyer-Maluga, Germany Filipe R. Joaquim, Portugal Takao Sakaguchi, USA Alessandro Baldini, Italy Aurelio Juste, Spain Juan José Sanz-Cillero, Spain Marco Battaglia, Switzerland Theocharis Kosmas, Greece Edward Sarkisyan-Grinbaum, USA Lorenzo Bianchini, Switzerland Ming Liu, USA Sally Seidel, USA Roelof Bijker, Mexico Enrico Lunghi, USA George Siopsis, USA Burak Bilki, USA Salvatore Mignemi, Italy Luca Stanco, Italy Rong-Gen Cai, China Omar G. Miranda, Mexico Jouni Suhonen, Finland Anna Cimmino, France Grégory Moreau, France Mariam Tórtola, Spain Osvaldo Civitarese, Argentina Piero Nicolini, Germany Smarajit Triambak, South Africa Andrea Coccaro, Italy Carlos Pajares, Spain Jose M. Udías, Spain Shi-Hai Dong, Mexico Sergio Palomares-Ruiz, Spain Elias C. Vagenas, Kuwait Mariana Frank, Canada Giovanni Pauletta, Italy Sunny Vagnozzi, UK Ricardo G. -
Mathematics of General Relativity - Wikipedia, the Free Encyclopedia Page 1 of 11
Mathematics of general relativity - Wikipedia, the free encyclopedia Page 1 of 11 Mathematics of general relativity From Wikipedia, the free encyclopedia The mathematics of general relativity refers to various mathematical structures and General relativity techniques that are used in studying and formulating Albert Einstein's theory of general Introduction relativity. The main tools used in this geometrical theory of gravitation are tensor fields Mathematical formulation defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity. Resources Fundamental concepts Note: General relativity articles using tensors will use the abstract index Special relativity notation . Equivalence principle World line · Riemannian Contents geometry Phenomena 1 Why tensors? 2 Spacetime as a manifold Kepler problem · Lenses · 2.1 Local versus global structure Waves 3 Tensors in GR Frame-dragging · Geodetic 3.1 Symmetric and antisymmetric tensors effect 3.2 The metric tensor Event horizon · Singularity 3.3 Invariants Black hole 3.4 Tensor classifications Equations 4 Tensor fields in GR 5 Tensorial derivatives Linearized Gravity 5.1 Affine connections Post-Newtonian formalism 5.2 The covariant derivative Einstein field equations 5.3 The Lie derivative Friedmann equations 6 The Riemann curvature tensor ADM formalism 7 The energy-momentum tensor BSSN formalism 7.1 Energy conservation Advanced theories 8 The Einstein field equations 9 The geodesic equations Kaluza–Klein -
Highlights of Riemannian Geometry in Physics Brazilian Journal of Physics, Vol
Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Novello, Mario; Bittencourt, Eduardo Metric Relativity and the Dynamical Bridge: Highlights of Riemannian Geometry in Physics Brazilian Journal of Physics, vol. 45, núm. 6, 2015, pp. 756-805 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46442560018 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Braz J Phys (2015) 45:756–805 DOI 10.1007/s13538-015-0362-7 GENERAL AND APPLIED PHYSICS Metric Relativity and the Dynamical Bridge: Highlights of Riemannian Geometry in Physics Mario Novello1 · Eduardo Bittencourt2,3 Received: 4 July 2015 / Published online: 30 September 2015 © Sociedade Brasileira de F´ısica 2015 Abstract We present an overview of recent developments mechanics and consists in the principle of Metric Relativ- concerning modifications of the geometry of space-time to ity. The main difference between gravitational interaction describe various physical processes of interactions among and all other forces concerns the universality of gravity classical and quantum configurations. We concentrate in which added to the interpretation of the equivalence princi- two main lines of research: the Metric Relativity and the ple allows all associated geometries—one for each different Dynamical Bridge. We describe the notion of equivalent body in the case of non-gravitational forces—to be uni- (dragged) metric gμν which is responsible to map the fied into a unique Riemannian space-time structure. -
The Affine Geometry of the Lanczos H Tensor Formalism(1993, with Kevin
The Affine Geometry of the Lanczos H-tensor Formalism ∗ K. S. Hammon† and L. K. Norris‡ College of Physical and Mathematical Sciences North Carolina State University ABSTRACT We identify the fiber-bundle-with-connection structure that underlies the Lanczos H-tensor formulation of Riemannian geometrical structure. Motivated by the Lanczos Lagrangian that includes the tensorial constraint that the linear connection be the Levi- Civita connection of the metric tensor, we consider linear connections to be type (1,2) affine tensor fields. We sketch the structure of the appropriate fiber bundle that is needed to describe the differential geometry of such affine tensors, namely the affine frame bundle 1 1 1 4 A2M with structure group A2(4) = GL(4) s T2 R over spacetime M. Generalized affine connections on this bundle are in 1-1 correspondence with pairs (Γ,K) on M, where the 1 4 gl(4)-component Γ denotes a linear connection and the T2 R -component K is a type (1,3) tensor field on M. Once an origin Γˆ0 is chosen in the affine space of linear connections one may define the gauge components of any other linear connection Γˆ relative to Γˆ0, and these gauge components correspond to type (1,2) tensor fields on M. Taking the origin to be the Levi-Civita connection Γˆg of the metric tensor g, and taking the pair µ λ ({νκ},Rµνκ ) as the generalized Riemannian affine connection, we show that the Lanczos H-tensor arises from a gauge fixing condition on this geometrical structure. The resulting translation gauge, the Lanczos gauge, is invariant under the transformations found earlier by Lanczos, and these transformations are identified as elements of a subgroup of the 1 4 translation group {I} s T2 R . -
M-Eigenvalues of Riemann Curvature Tensor of Conformally Flat Manifolds
M-eigenvalues of Riemann Curvature Tensor of Conformally Flat Manifolds Yun Miao∗ Liqun Qi† Yimin Wei‡ August 7, 2018 Abstract We generalized Xiang, Qi and Wei’s results on the M-eigenvalues of Riemann curvature tensor to higher dimensional conformal flat manifolds. The expression of M-eigenvalues and M-eigenvectors are found in our paper. As a special case, M-eigenvalues of conformal flat Einstein manifold have also been discussed, and the conformal the invariance of M- eigentriple has been found. We also discussed the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold. We proved that the M-eigenvalue can determine the Riemann curvature tensor uniquely and generalize the real M-eigenvalue to complex cases. In the last part of our paper, we give an example to compute the M-eigentriple of de Sitter spacetime which is well-known in general relativity. Keywords. M-eigenvalue, Riemann Curvature tensor, Ricci tensor, Conformal invariant, Canonical form. AMS subject classifications. 15A48, 15A69, 65F10, 65H10, 65N22. 1 Introduction The eigenvalue problem is a very important topic in tensor computation theories. Xiang, Qi and Wei [1, 2] considered the M-eigenvalue problem of elasticity tensor and discussed the relation between strong ellipticity condition of a tensor and it’s M-eigenvalues, and then extended the M-eigenvalue problem to Riemann curvature tensor. Qi, Dai and Han [12] introduced the M-eigenvalues for the elasticity tensor. The M-eigenvalues θ of the fourth-order tensor Eijkl are defined as follows. arXiv:1808.01882v1 [math.DG] 28 Jul 2018 j k l Eijkly x y = θxi, ∗E-mail: [email protected]. -
Sieving the Landscape of Gravity Theories
SISSA — Scuola Internazionale Superiore di Studi Avanzati Ph.D. Curriculum in Astrophysics Academic year 2013/2014 Sieving the Landscape of Gravity Theories From the Equivalence Principles to the Near-Planck Regime Thesis submitted for the degree of Doctor Philosophiæ Advisors: Candidate: Prof. Stefano Liberati Eolo Di Casola Prof. Sebastiano Sonego 22nd October 2014 Abstract This thesis focusses on three main aspects of the foundations of any theory of gravity where the gravitational field admits a geometric interpretation: (a) the principles of equivalence; (b) their role as selection rules in the landscape of extended theories of gravity; and (c) the possible modifications of the spacetime structure at a “mesoscopic” scale, due to underlying, microscopic-level, quantum- gravitational effects. The first result of the work is the introduction of a formal definition of the Gravitational Weak Equivalence Principle, which expresses the universality of free fall of test objects with non-negligible self-gravity, in a matter-free environ- ment. This principle extends the Galilean universality of free-fall world-lines for test bodies with negligible self-gravity (Weak Equivalence Principle). Second, we use the Gravitational Weak Equivalence Principle to build a sieve for some classes of extended theories of gravity, to rule out all models yielding non-universal free-fall motion for self-gravitating test bodies. When applied to metric theories of gravity in four spacetime dimensions, the method singles out General Relativity (both with and without the cosmological constant term), whereas in higher-dimensional scenarios the whole class of Lanczos–Lovelock gravity theories also passes the test. Finally, we focus on the traditional, manifold-based model of spacetime, and on how it could be modified, at a “mesoscopic” (experimentally attainable) level, by the presence of an underlying, sub-Planckian quantum regime.