Invariant Construction of Cosmological Models Erik Jörgenfelt
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modified Theories of Relativistic Gravity
Modified Theories of Relativistic Gravity: Theoretical Foundations, Phenomenology, and Applications in Physical Cosmology by c David Wenjie Tian A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Theoretical Physics (Interdisciplinary Program) Faculty of Science Date of graduation: October 2016 Memorial University of Newfoundland March 2016 St. John’s Newfoundland and Labrador Abstract This thesis studies the theories and phenomenology of modified gravity, along with their applications in cosmology, astrophysics, and effective dark energy. This thesis is organized as follows. Chapter 1 reviews the fundamentals of relativistic gravity and cosmology, and Chapter 2 provides the required Co-authorship 2 2 Statement for Chapters 3 ∼ 6. Chapter 3 develops the L = f (R; Rc; Rm; Lm) class of modified gravity 2 µν 2 µανβ that allows for nonminimal matter-curvature couplings (Rc B RµνR , Rm B RµανβR ), derives the “co- herence condition” f 2 = f 2 = − f 2 =4 for the smooth limit to f (R; G; ) generalized Gauss-Bonnet R Rm Rc Lm gravity, and examines stress-energy-momentum conservation in more generic f (R; R1;:::; Rn; Lm) grav- ity. Chapter 4 proposes a unified formulation to derive the Friedmann equations from (non)equilibrium (eff) thermodynamics for modified gravities Rµν − Rgµν=2 = 8πGeffTµν , and applies this formulation to the Friedman-Robertson-Walker Universe governed by f (R), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R; G) generalized Gauss-Bonnet and dynamical Chern-Simons gravities. Chapter 5 systemati- cally restudies the thermodynamics of the Universe in ΛCDM and modified gravities by requiring its com- patibility with the holographic-style gravitational equations, where possible solutions to the long-standing confusions regarding the temperature of the cosmological apparent horizon and the failure of the second law of thermodynamics are proposed. -
Isometric Embeddings in Cosmology and Astrophysics
PRAMANA c Indian Academy of Sciences Vol. 77, No. 3 — journal of September 2011 physics pp. 415–428 Isometric embeddings in cosmology and astrophysics GARETH AMERY∗, JOTHI MOODLEY and JAMES PAUL LONDAL Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa ∗Corresponding author. E-mail: [email protected] Abstract. Recent interest in higher-dimensional cosmological models has prompted some signifi- cant work on the mathematical technicalities of how one goes about embedding spacetimes into some higher-dimensional space. We survey results in the literature (existence theorems and simple explicit embeddings); briefly outline our work on global embeddings as well as explicit results for more com- plex geometries; and provide some examples. These results are contextualized physically, so as to provide a foundation for a detailed commentary on several key issues in the field such as: the mean- ing of ‘Ricci equivalent’ embeddings; the uniqueness of local (or global) embeddings; symmetry inheritance properties; and astrophysical constraints. Keywords. Embedding theory; cosmology; astrophysics. PACS Nos 04.20.Jb, 04.20.Ex, 04.50.−h 1. Introduction Extensions to general relativity often involve extra dimensions. Inspired by string theory [1], D-brane theory [2] and Horava–Witten theory [3], there has been a great deal of inter- est in extra-dimensional effective theories, evidenced by phenomenological models such as the Randall–Sundrum [4], Arkani–Hamed–Dimopoulos–Dvali [5] and Dvali–Gabadadze– Porrati [6] scenarios, which attempt to tackle problems such as the mass-hierarchy problem, the origins of the primordial spectrum, the inflationary field and dark energy. -
M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds
Commun. Math. Res. Vol. 36, No. 3, pp. 336-353 doi: 10.4208/cmr.2020-0052 August 2020 M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds Yun Miao1, Liqun Qi2 and Yimin Wei3,∗ 1 School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. of China. 2 Department of Applied Mathematics, the Hong Kong Polytechnic University, Hong Kong. 3 School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, P. R. of China. Received 6 May 2020; Accepted 28 May 2020 Abstract. We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold. The expressions of M- eigenvalues and M-eigenvectors are presented in this paper. As a special case, M-eigenvalues of conformal flat Einstein manifold have also been discussed, and the conformal the invariance of M-eigentriple has been found. We also reveal the relationship between M-eigenvalue and sectional curvature of a Rie- mannian manifold. We prove that the M-eigenvalue can determine the Rie- mann curvature tensor uniquely. We also give an example to compute the M- eigentriple of de Sitter spacetime which is well-known in general relativity. AMS subject classifications: 15A48, 15A69, 65F10, 65H10, 65N22 Key words: M-eigenvalue, Riemann curvature tensor, Ricci tensor, conformal invariant, canonical form. ∗Corresponding author. Email addresses: [email protected], [email protected] (Y. Wei), [email protected] (Y. Miao), [email protected] (L. Qi) Y. Miao, L. Qi and Y. Wei / Commun. Math. Res., 36 (2020),pp.336-353 337 1 Introduction The eigenvalue problem is a very important topic in tensor computation [4]. -
Gravitational Decoupling in Higher Order Theories
S S symmetry Article Gravitational Decoupling in Higher Order Theories Joseph Sultana Department of Mathematics, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; [email protected] Abstract: Gravitational decoupling via the Minimal Geometric Deformation (MGD) approach has been used extensively in General Relativity (GR), mainly as a simple method for generating exact anisotropic solutions from perfect fluid seed solutions. Recently this method has also been used to generate exact spherically symmetric solutions of the Einstein-scalar system from the Schwarzschild vacuum metric. This was then used to investigate the effect of scalar fields on the Schwarzschild black hole solution. We show that this method can be extended to higher order theories. In particular, we consider fourth order Einstein–Weyl gravity, and in this case by using the Schwarzschild metric as a seed solution to the associated vacuum field equations, we apply the MGD method to generate a solution to the Einstein–Weyl scalar theory representing a hairy black hole solution. This solution is expressed in terms of a series using the Homotopy Analysis Method (HAM). Keywords: Einstein–Weyl gravity; gravitational decoupling; black holes 1. Introduction Obtaining exact physically relevant solutions of Einstein’s field equations is by no means a straightforward task. The spherically symmetric perfect fluid analytic solutions of Einstein’s equations have been derived and analyzed in detail [1,2]. However, as soon as Citation: Sultana, J. Gravitational one relaxes the assumption of a perfect fluid source and considers more realistic sources, Decoupling in Higher Order Theories. then the problem of finding analytic solutions becomes intractable. -
Research Article Conformal Mappings in Relativistic Astrophysics
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 196385, 12 pages http://dx.doi.org/10.1155/2013/196385 Research Article Conformal Mappings in Relativistic Astrophysics S. Hansraj, K. S. Govinder, and N. Mewalal Astrophysics and Cosmology Research Unit, School of Mathematics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa Correspondence should be addressed to K. S. Govinder; [email protected] Received 1 March 2013; Accepted 10 June 2013 Academic Editor: Md Sazzad Chowdhury Copyright © 2013 S. Hansraj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We describe the use of conformal mappings as a mathematical mechanism to obtain exact solutions of the Einstein field equations in general relativity. The behaviour of the spacetime geometry quantities is given under a conformal transformation, and the Einstein field equations are exhibited for a perfect fluid distribution matter configuration. The field equations are simplified andthenexact static and nonstatic solutions are found. We investigate the solutions as candidates to represent realistic distributions of matter. In particular, we consider the positive definiteness of the energy density and pressure and the causality criterion, as well as the existence of a vanishing pressure hypersurface to mark the boundary of the astrophysical fluid. 1. Introduction By considering the case of a uniform density sphere, Schwarzschild [3]foundauniqueinteriorsolution.However, The gravitational evolution of celestial bodies may be mod- the problem of finding all possible solutions for a nonconstant eled by the Einstein field equations. -
Axisymmetric Spacetimes in Relativity
9, tr' Axisymmetric Spacetimes in Relativity S. P. Drake Department of Physics and Mathematical Physics îåäi,î31 tÏfåi" Australia 22 July 1998 ACKNO\MTEDGEMENTS It is an unfortunate fact that only my name Soes on this thesis' This is not the work of one person, it is an accumulation of the labor of many' AII those who have helped me in ways that none of us could image should be acknowledged, but how. None of this would have been possible were it not for the wisdom and guidance of my supervisor Peter Szekeres. I have often pondered over the difficulty of supervising students. It must be heart-bleaking to watch as students make necessary mistakes. Patience I'm sure must be the key' So for his wisdom, patience and kindness I am deeply indebted to Peter Szekeres. Without the love and support of my family this thesis would never have begun, much less been completed, to them I owe my life, and all that comes with it. It would take too long to write the names of all those I wish to thank. Those who are special to me, have helped me through so much over the years will receive the thanks in Person. I would like to the department of physics here at Adelaide where most of my thesis work was done. I would like to thank the department of physics at Melbourne university, where I did my undergraduate degree and began my PhD. I would like to thank the university of Padova for there hospitality dur- ing my stay there. -
Do Rotating Dust Stars Exist in General Relativity? Herbert Pfister
Do rotating dust stars exist in general relativity? Herbert Pfister To cite this version: Herbert Pfister. Do rotating dust stars exist in general relativity?. Classical and Quantum Gravity, IOP Publishing, 2010, 27 (10), pp.105016. 10.1088/0264-9381/27/10/105016. hal-00594829 HAL Id: hal-00594829 https://hal.archives-ouvertes.fr/hal-00594829 Submitted on 21 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DO ROTATING DUST STARS EXIST IN GENERAL RELATIVITY? Herbert Pfister Institut f¨ur Theoretische Physik, Universit¨at T¨ubingen, Auf der Morgenstelle 14, D 72076 T¨ubingen, Germany E-mail: herbert.pfi[email protected] Abstract If rotating dust stars would exist in general relativity, they would represent ex- amples of an improbable complete balance between the attractive quasi-Newtonian force (gravitoelectricity) and the repulsive gravitomagnetism. However, nonexis- tence proofs are available hitherto only for some dust “stars” extending to infinity, and for isolated dust stars of a very restricted class. By analyzing the lines of con- stant generalized Newtonian potential U in the interior and exterior of a large class of (hypothetical) stationary and axisymmetrically rotating dust stars in general rel- ativity, we find that the existence of such stars can be disproved as soon as minima of the potential U in the exterior vacuum region can be excluded. -
M-Eigenvalues of Riemann Curvature Tensor of Conformally Flat Manifolds
M-eigenvalues of Riemann Curvature Tensor of Conformally Flat Manifolds Yun Miao∗ Liqun Qi† Yimin Wei‡ August 7, 2018 Abstract We generalized Xiang, Qi and Wei’s results on the M-eigenvalues of Riemann curvature tensor to higher dimensional conformal flat manifolds. The expression of M-eigenvalues and M-eigenvectors are found in our paper. As a special case, M-eigenvalues of conformal flat Einstein manifold have also been discussed, and the conformal the invariance of M- eigentriple has been found. We also discussed the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold. We proved that the M-eigenvalue can determine the Riemann curvature tensor uniquely and generalize the real M-eigenvalue to complex cases. In the last part of our paper, we give an example to compute the M-eigentriple of de Sitter spacetime which is well-known in general relativity. Keywords. M-eigenvalue, Riemann Curvature tensor, Ricci tensor, Conformal invariant, Canonical form. AMS subject classifications. 15A48, 15A69, 65F10, 65H10, 65N22. 1 Introduction The eigenvalue problem is a very important topic in tensor computation theories. Xiang, Qi and Wei [1, 2] considered the M-eigenvalue problem of elasticity tensor and discussed the relation between strong ellipticity condition of a tensor and it’s M-eigenvalues, and then extended the M-eigenvalue problem to Riemann curvature tensor. Qi, Dai and Han [12] introduced the M-eigenvalues for the elasticity tensor. The M-eigenvalues θ of the fourth-order tensor Eijkl are defined as follows. arXiv:1808.01882v1 [math.DG] 28 Jul 2018 j k l Eijkly x y = θxi, ∗E-mail: [email protected]. -
General Relativistic Static Fluid Solutions with Cosmological Constant
General Relativistic Static Fluid Solutions with Cosmological Constant Diplomarbeit von Christian G. B¨ohmer aus Berlin eingereicht bei der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨at Potsdam arXiv:gr-qc/0308057v3 4 Feb 2006 durchgefuhrt¨ am Max-Planck-Institut fur¨ Gravitationsphysik - Albert-Einstein-Institut - in Golm unter Anleitung von Prof. Dr. Bernd G. Schmidt Contents 1 Introduction 3 2 Cosmological TOV equation 7 2.1 TheCosmologicalConstant . 7 2.2 Remarks on the Newtonian limit . 8 2.3 TOV-Λequation ......................... 8 2.4 Schwarzschild-anti-de Sitter and Schwarzschild-de Sitter so- lution ............................... 11 2.5 Newtonianlimits ......................... 13 2.5.1 Limit of Schwarzschild-anti-de Sitter and Schwarzschild- deSittermodels ..................... 13 2.5.2 Limit of the TOV-Λ equation . 13 3 Solutions with constant density 15 3.1 Spatial geometry of solutions . 16 3.2 Solutions with negative cosmological constant . 17 3.2.1 Stellar models with spatially hyperbolic geometry . 18 3.2.2 Joining interior and exterior solution . 20 3.2.3 Stellar models with spatially Euclidean geometry . 22 3.2.4 Stellar models with spatially spherical geometry . 24 3.3 Solutions with vanishing cosmological constant . 27 3.4 Solutions with positive cosmological constant . 28 3.4.1 Stellar models with spatially spherical geometry . 28 3.4.2 Solutions with exterior Nariai metric . 31 3.4.3 Solutions with decreasing group orbits at the boundary 33 3.4.4 Decreasing solutions with two regular centres . 35 3.4.5 The Einstein static universe . 37 3.4.6 Increasing solutions with two regular centres . 38 3.4.7 Solutions with geometric singularity . -
Generalized Relativistic Anisotropic Compact Star Models by Gravitational Decoupling
Eur. Phys. J. C (2019) 79:85 https://doi.org/10.1140/epjc/s10052-019-6602-1 Regular Article - Theoretical Physics Generalized relativistic anisotropic compact star models by gravitational decoupling S. K. Maurya1,a, Francisco Tello-Ortiz2,b 1 Department of Mathematics and Physical Science, College of Arts and Science, University of Nizwa, Nizwa, Sultanate of Oman 2 Departamento de Física, Facultad de ciencias básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile Received: 29 November 2018 / Accepted: 15 January 2019 / Published online: 29 January 2019 © The Author(s) 2019 Abstract In this work we have extended the Maurya-Gupta main ingredient of this scheme is to add an extra source to isotropic fluid solution to Einstein field equations to an aniso- the energy momentum tensor of a spherically symmetric and tropic domain. To do so, we have employed the gravitational static spacetime through a dimensionless constant β decoupling via the minimal geometric deformation approach. m = ˜ m + βθm, The present model is representing the strange star candidate Tn Tn n (1) LMC X-4. A mathematical, physical and graphical analy- ˜ m sis, shown that the obtained model fulfills all the criteria where Tn represents a perfect fluid matter distribution and θ m to be an admissible solution of the Einstein field equations. n is the extra source which encodes the anisotropy and Specifically, we have analyzed the regularity of the metric can be formed by scalar, vector or tensor fields. It is worth ˜ m potentials and the effective density, radial and tangential pres- mentioning that Tn does not necessarily should corresponds sures within the object, causality condition, energy condi- to a perfect fluid, in fact it can describes, for example, an tions, equilibrium via Tolman–Oppenheimer–Volkoff equa- anisotropic fluid, a charged fluid, etc. -
An Algorithm to Generate Anisotropic Rotating Fluids with Vanishing Viscosity
An algorithm to generate anisotropic rotating fluids with vanishing viscosity Stefano Viaggiu∗1,2,3 1Dipartimento di Fisica Nucleare, Subnucleare e delle Radiazioni, Universit´adegli Studi Guglielmo Marconi, Via Plinio 44, I-00193 Rome, Italy 2Dipartimento di Matematica, Universit`adi Roma “Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Roma, Italy. 3INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia Edificio 6, 80126 Napoli, Italy. December 31, 2018 Abstract Starting with generic stationary axially symmetric spacetimes de- pending on two spacelike isotropic orthogonal coordinates x1, x2, we build anisotropic fluids with and without heat flow but with wanish- ing viscosity. In the first part of the paper, after applying the trans- formation x1 J(x1), x2 F (x2)(with J(x1), F (x2) regular func- → → 1 2 1 2 tions) to general metrics coefficients gab(x , x ) gab(J(x ), F (x )) → with Gx1x2 = 0, being Gab the Einstein’s tensor, we obtain that 1 2 G˜x1x2 = 0 Gx1x2 (J(x ), F (x )) = 0. Therefore, the transformed arXiv:1811.00769v2 [gr-qc] 27 Dec 2018 → spacetime is endowed with an energy-momentum tensor Tab with ex- pression gabQi + heat term (where gab is the metric and Qi ,i =1..4 are functions depending on the physical parameters of the{ fluid),} i.e. without viscosity and generally with a non-vanishing heat flow. We show that after introducing suitable coordinates, we can obtain in- terior solutions that can be matched to the Kerr one on spheroids or Cassinian ovals, providing the necessary mathematical machinery. In the second part of the paper we study the equation involving the heat flow and thus we generate anisotropic solutions with vanishing ∗[email protected] and [email protected] 1 heat flow. -
Dust, Time, and Symmetry
FORTHCOMING IN BJPS Dust, Time, and Symmetry Gordon Belot ABSTRACT Two symmetry arguments are discussed, each purporting to show that there is no more room in general relativistic cosmology than in Minkowski spacetime for a preferred division of spacetime into instants of time. The first argument is due to Gödel, and concerns the symmetries of his famous rotating cosmologies. The second turns upon the symmetries of a certain space of relativistic possibilities. Both arguments are found wanting. 1 Introduction 2 Symmetry Arguments 3 Gödel’s Argument 3.1 Time in Special Relativity 3.2 Time in the Standard Cosmological Models 3.3 Time in Gödel’s Stationary Rotating Solutions 3.4 Gödel’s Argument for the Significance of these Results 3.5 Is Gödel’s Argument Successful? 4 Another Argument 4.1 Time Translation Invariance in Classical Mechanics 4.2 Time Translation Invariance in General Relativity? 4.3 Time Translation Invariance in Dust Cosmology 4.4 Is this Second Argument Successful 5 Conclusion 1 Introduction In Newtonian physics there is a preferred notion of time: spacetime falls in a natural way into a one dimensional family of three dimensional subsets that we identify as the instants of time. There is, of course, no such preferred division of spacetime into instants of time in the Minkowski spacetime of special relativity. But if we introduce into Minkowski spacetime a preferred inertial frame—a family of freely falling observers, exactly one passing through each point of spacetime—then we do get a preferred division of Minkowski spacetime into instants of time—the one dimensional family of three dimensional subsets orthogonal to our family of observers.