The Journal of Allergy and Clinical Immunology

Total Page:16

File Type:pdf, Size:1020Kb

The Journal of Allergy and Clinical Immunology 7KH-RXUQDORI$OOHUJ\DQG&OLQLFDO,PPXQRORJ\ $UWHPLVLDSROOHQLVWKHPDLQYHFWRUIRUDLUERUQHHQGRWR[LQ 0DQXVFULSW'UDIW 0DQXVFULSW1XPEHU -$&,'5 $UWLFOH7\SH 2ULJLQDO$UWLFOH 6HFWLRQ&DWHJRU\ (QYLURQPHQWDODQGRFFXSDWLRQDOGLVHDVH .H\ZRUGV HQGRWR[LQDPELHQW%DFWHULDSROOHQJUDPQHJDWLYHUHFRPELQDQW)DFWRUF'DYRV 0XQLFK$UWHPLVLDPLFURELRPHPRXVHPRGHO$OOHUJ\OLSRSRO\VDFFKDULGH/36 VRXUFH30 &RUUHVSRQGLQJ$XWKRU -RVH2WHURV3K' 7HFKQLFDO8QLYHUVLW\RI0XQLFK+HOPKROW]=HQWUXP0¾QFKHQ 0¾QFKHQ*(50$1< )LUVW$XWKRU -RVH2WHURV3K' 2UGHURI$XWKRUV -RVH2WHURV3K' (ONH%DUWXVHO )UDQFHVFD$OHVVDQGULQL $QGUHV1¼³H] 'LHJR$0RUHQR +HLGUXQ%HKUHQGW &DUVWHQ6FKPLGW:HEHU &ODXGLD7UDLGO+RIIPDQQ -HURHQ7%XWHUV 0DQXVFULSW5HJLRQRI2ULJLQ 6:,7=(5/$1' $EVWUDFW %DFNJURXQG(QGRWR[LQ OLSRSRO\VDFFKDULGHV/36 UHOHDVHGIURP*UDPQHJDWLYH EDFWHULDFDXVHVVWURQJLPPXQRORJLFDQGLQIODPPDWRU\HIIHFWVDQGZKHQDLUERUQHPD\ FRQWULEXWHWRUHVSLUDWRU\FRQGLWLRQVVXFKDVDOOHUJLFDVWKPD 2EMHFWLYHV7RLGHQWLI\WKHVRXUFHRIDLUERUQHHQGRWR[LQDQGWKHHIIHFWRIWKLVHQGRWR[LQ RQDOOHUJLFVHQVLWL]DWLRQ 0HWKRGV:HGHWHUPLQHG/36LQRXWGRRUDLURQDGDLO\EDVLVIRUFRQVHFXWLYH\HDUVLQ 0XQLFK *HUPDQ\ DQG'DYRV 6ZLW]HUODQG $LUZDVVDPSOHGDV3DUWLFXODWH0DWWHU 30!wPDQG!30!/36ZDVGHWHUPLQHGXVLQJWKHUHFRPELQDQW)DFWRU& U)& DVVD\ 5HVXOWV2YHURIWKHDQQXDOHQGRWR[LQH[SRVXUHZDVGHWHFWHGLQWKH30! IUDFWLRQVKRZLQJWKDWEDFWHULDGRQRWDHURVROL]HDVLQGHSHQGHQWXQLWVRUDJJUHJDWHV EXWDGKHUHGWRODUJHSDUWLFOHV,Q0XQLFKRIWKHDQQXDOH[SRVXUHZDVGHWHFWHG EHWZHHQ-XQHWKDQG$XJXVWWK0XOWLYDULDWHPRGHOOLQJVKRZHGWKDWHQGRWR[LQ OHYHOVFRXOGEHH[SODLQHGE\SKHQRORJLFDOSDUDPHWHUVLHSODQWJURZWK,QGHHGGD\V ZLWKKLJKDLUERUQHHQGRWR[LQOHYHOVFRUUHODWHGZHOOZLWKWKHDPRXQWRI$UWHPLVLDSROOHQ LQWKHDLU3ROOHQFROOHFWHGIURPSODQWVDFURVV(XURSH ORFDWLRQV VKRZHGWKDWWKH KLJKHVWOHYHOVRIHQGRWR[LQZHUHGHWHFWHGRQ$UWHPLVLDYXOJDULV PXJZRUW SROOHQZLWK OLWWOHRQRWKHUSROOHQ0LFURELRPHDQDO\VLVVKRZHGWKDW/36FRQFHQWUDWLRQVRQPXJZRUW SROOHQZHUHUHODWHGWRWKHSUHVHQFHRI3VHXGRPRQDVVSSDQG3DQWRHDVSS FRPPXQLWLHV,QDPRXVHPRGHORIDOOHUJLFGLVHDVHWKHSUHVHQFHRI/36RQPXJZRUW SROOHQZDVQHHGHGIRUDOOHUJLFVHQVLWL]DWLRQ &RQFOXVLRQV7KHPDMRULW\RIDLUERUQHHQGRWR[LQVWHPVIURPEDFWHULDGLVSHUVHGZLWK SROOHQRIRQO\RQHSODQWPXJZRUW7KLV/36ZDVHVVHQWLDOIRULQGXFLQJLQIODPPDWLRQRI WKHOXQJDQGDOOHUJLFVHQVLWL]DWLRQ Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation 5HYLVLRQ8QPDUNHG0DQXVFULSW 1 Title: Artemisia pollen is the main vector for airborne endotoxin. 2 3 Authors: Jose Oteros1 (PhD), Elke Bartusel1,2 (Tec.), Francesca Alessandrini1 (PhD), 4 Andrés Núñez3 (PhD), Diego Alejandro Moreno3 (PhD), Heidrun Behrendt1,2 (MD), 5 Carsten Schmidt-Weber1 (PhD), Claudia Traidl-Hoffmann2,4 (MD), Jeroen Buters1,2* (PhD) 6 7 Affiliations: 8 9 1 Center of Allergy & Environment (ZAUM), Member of the German Center for Lung 10 Research (DZL), Technical University and Helmholtz Center Munich, Munich, 11 Germany 12 2 Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, 13 Switzerland 14 3 Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de 15 Madrid (ETSII-UPM), Madrid, Spain 16 4 Institute of Environmental Medicine (UNIKA-T), Technische Universität München, 17 Munich, Germany 18 19 20 21 Corresponding author: 22 Jeroen Buters 23 ZAUM-Technical University Munich 24 Biedersteinerstrasse 29, 80802 Munich 25 Germany 26 Phone: +49-89-41403487 27 Fax: +49 89 4140-3452 28 [email protected] 29 30 31 - 1 - 32 Funding: Kühne foundation - Christine Kühne Center for Allergy Research & Education 33 (CK-CARE), Davos, Switzerland. AIRBIOTA-CM Program (S2013/MAE-2874, Community 34 of Madrid, Spain) supported the Microbiome analysis. J. Oteros was partially supported 35 by the Postdoctoral Fellowship Program of the Helmholtz Zentrum München. 36 37 Disclosure of potential conflict of interest: All the authors declare that they have no 38 relevant conflicts of interest. 39 - 2 - 40 Abstract: 41 Background: Endotoxin (lipopolysaccharides, LPS) released from Gram-negative 42 bacteria causes strong immunologic and inflammatory effects and when airborne may 43 contribute to respiratory conditions such as allergic asthma. 44 Objectives: To identify the source of airborne endotoxin and the effect of this endotoxin 45 on allergic sensitization. 46 Methods: We determined LPS in outdoor air on a daily basis for 4 consecutive years in 47 Munich (Germany) and Davos (Switzerland). Air was sampled as Particulate Matter 48 PM>10μm and 10>PM>2.5. LPS was determined using the recombinant Factor C (rFC) 49 assay. 50 Results: Over 60% of the annual endotoxin exposure was detected in the PM>10 fraction 51 showing that bacteria do not aerosolize as independent units or aggregates, but adhered 52 to large particles. In Munich 70% of the annual exposure was detected between June 53 12th and August 28th. Multivariate modelling showed that endotoxin levels could be 54 explained by phenological parameters i.e. plant growth. Indeed, days with high airborne 55 endotoxin levels correlated well with the amount of Artemisia pollen in the air. Pollen 56 collected from plants across Europe (100 locations) showed that the highest levels of 57 endotoxin were detected on Artemisia vulgaris (mugwort) pollen, with little on other 58 pollen. Microbiome analysis showed that LPS concentrations on mugwort pollen were 59 related to the presence of Pseudomonas spp. and Pantoea spp. communities. In a mouse 60 model of allergic disease, the presence of LPS on mugwort pollen was needed for allergic 61 sensitization. 62 Conclusions: The majority of airborne endotoxin stems from bacteria dispersed with 63 pollen of only one plant: mugwort. This LPS was essential for inducing inflammation of 64 the lung and allergic sensitization. 65 66 Key Messages: 67 70% of airborne endotoxin was dispersed with only one specific pollen type: Artemisia 68 pollen. 69 In an animal model, the endotoxin was essential for inducing allergic sensitization and 70 lung inflammation. - 3 - 71 The microbial load of pollen could enhance their allergenic impact. 72 73 Capsule Summary: Artemisia pollen is the main vector for airborne endotoxin. This 74 endotoxin (LPS) was essential for allergic sensitization against Artemisia pollen. 75 76 Keywords: Endotoxin; ambient; bacteria; pollen; Gram-negative; recombinant Factor c; 77 Davos; Munich; Artemisia; microbiome; mouse model; allergy; lipopolysaccharide; LPS; 78 source; PM10 79 80 Abbreviations: 81 LPS: Lipopolysaccharides. 82 NGS: Next Generation Sequencing. 83 rFC: recombinant Factor C 84 PM: Particulate Matter 85 - 4 - 86 Introduction 87 Endotoxins (lipopolysaccharides, LPS) are macromolecules from the outer 88 cellular wall of all Gram-negative bacteria, and are essential for their viability. These 89 molecules consist of an O-polysaccharide, a Core-oligosaccharide and Lipid A. LPS is one 90 of the most potent activators of the immune system, including in humans. There are 91 many LPS types in nature, but all of them have a phosphorylated diglucosamine 92 backbone substituted with several acyl chains and one or more Kdo (2-Keto-3-desoxy- 93 octonate) residues 1. 94 Endotoxin exposure can influence human health. Airborne endotoxin is a known 95 immunotoxin causing inflammatory reactions of the respiratory system, the main 96 symptoms being: fever, chest tightness, bronchospasm, pyrexia and ultimately chronic 97 neutrophilic airway inflammation. An excessive exposure to LPS results in a systemic 98 inflammatory reaction, leading to multiple organ failure, shock and potentially death 1. 99 A positive association has been found between indoor LPS exposure and wheezing 2. 100 Upon long-term exposure, lung inflammation caused by LPS is a determinant for the 101 progression of chronic respiratory diseases 3. Inhaled endotoxin causes asthma 102 intensification and adverse respiratory symptoms and is also a risk factor for increased 103 asthma prevalence 4, but not all studies show a consensus 2. Although high LPS levels 104 increase asthmatic symptoms, epidemiological data shows that low LPS exposure is 105 related with less allergy and atopic sensitization 5. The possibility of a protective effect 106 of exposure to endotoxin in the development of allergy resulted in the hygiene 107 hypothesis. The exposure to this pro-inflammatory agent may activate the immune 108 system towards Th1 responses. Th1 responses suppress the development of 109 immunoglobulin E antibodies. 110 Endotoxin concentrations in the workplace and other indoor environments, 111 where populations spend most of their time, have been extensively studied. There is, 112 however, a large gap in our knowledge about exposure to endotoxins in outdoor 113 environments. The consequences of prolonged exposure to a constant outdoor LPS are 114 still unknown. Although indoor LPS concentrations are affected by specific indoor factors 115 (e.g. pets in the house, the age of the building, building usage, number of occupants, 116 smoking, etc.) 6, they are also affected by conditions outdoors 7. Furthermore, indoor - 5 - 117 bacterial communities show seasonality over the year 8, which could be driven by 118 outdoor variations 9. Indoor LPS concentrations can be either higher or lower than 119 outside concentrations 10, 11. 120 The identity and source of bacteria producing airborne LPS outdoors is also not 121 well known. Airborne bacteria are ubiquitous, but their communities vary depending on 122 the surrounding environment and are much higher over terrestrial areas than over 123 oceans 12. Bacteria in outdoor air mostly originate from natural rather than anthropic 124 sources 13. Soil dust is thought to be one of the main natural sources
Recommended publications
  • Bacteremia Caused by Pseudomonas Luteola in Pediatric Patients
    Jpn. J. Infect. Dis., 68, 50–54, 2015 Original Article Bacteremia Caused by Pseudomonas luteola in Pediatric Patients Gulsum Iclal Bayhan1*, Saliha Senel2,4, Gonul Tanir1, and Sengul Ozkan3 1Department of Pediatric Infectious Disease, 2Department of Pediatrics, and 3Department of Clinical Microbiology and Infectious Disease, Dr. Sami Ulus Maternity and Children's Health Education and Research Hospital; and 4Department of Pediatrics, Yƒldƒrƒm Beyazit University, Ankara, Turkey SUMMARY: Pseudomonas luteola has rarely been reported as a human pathogen. The clinical mani- festations of P. luteola bacteremia and its susceptibility to antibiotics have not been characterized. This retrospective study was conducted at a 382-bed tertiary care center in Turkey. During the 9-year study period, 7 patients (5 females and 2 males) were diagnosed with P. luteola bacteremia. Six of these patients had hospital-acquired bacteremia, whereas 1 patient had community-acquired P. luteola infec- tion. All patients had monomicrobial bacteremia. Antimicrobial susceptibility testing revealed that all strains of P. luteola were sensitive to amikacin, gentamicin, trimethoprim-sulfamethoxazole, and meropenem, and that all strains were resistant to piperacillin-tazobactam, aztreonam, and colistin. In conclusion, we believe that P. luteola can cause both community- and hospital-acquired bacteremia. Amikacin, gentamicin, trimethoprim-sulfamethoxazole, and meropenem were effective against P. lu- teola in the present study. tion of antibiotic treatment because of clinical deterio- INTRODUCTION ration or antibiogram results, duration of antibiotic Pseudomonas luteola, which is also called Chryseo- treatment, and treatment outcome. monas luteola, is a nonfermenting gram-negative bac- P. luteola bacteremia was diagnosed based on the iso- terium that was previously classified in US Centers for lation of bacterium in 1 peripheral blood cultures.
    [Show full text]
  • Biotechnological Reclamation of Oil-Polluted Soils
    ECOLOGICAL ENGINEERING & ENVIRONMENTAL TECHNOLOGY Ecological Engineering & Environmental Technology 2021, 22(2), 27–38 Received: 2020.12.22 https://doi.org/10.12912/27197050/133328 Accepted: 2021.02.12 ISSN 2719-7050, License CC-BY 4.0 Published: 2021.02.21 Biotechnological Reclamation of Oil-Polluted Soils Iryna Ablieieva1*, Leonid Plyatsuk1, Iryna Berezhna1, Myroslav Malovanyy2 1 Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine 2 Lviv National Polytechnic University, 12 S. Bandery St., 79013 Lviv, Ukraine * Corresponding author’s email: [email protected] ABSTRACT The aim of the paper was to determine the efficiency of petroleum hydrocarbons (PHs) degradation by devel- oped bacterial consortium during bioremediation of oil-contaminated soils caused by accidental oil spills. The soil samples were collected from three different areas near the Bugruvate field of the Dnieper-Donets oil and gas region, Sumy region, Ukraine. The total petroleum hydrocarbon was determined by conducting measurements us- ing a gravimetric method. Gas chromatographic analysis was performed for determination of polycyclic aromatic hydrocarbons. The level of oil contamination follows an increasing preferential order: Sample 1 < Sample 2 < Sample 3 (5, 10 and 15 g∙kg-1, respectively). The soil samples comprised different concentrations of PHs includ- ing n-alkanes, fluorine, anthracene, phenanthrene, pyrene, toluene, xylene, benzene and other PHs. The results of -1 research indicated that the maximum oil degradation rate at the level of 80% was set at Cin within 4–8 g∙kg and τ = 70 days, under natural condition. In order to improve the efficiency of bioremediation of oil-contaminated soils, bioaugmentation was performed using the developed preparation of such bacteria and fungi strains as Pseu- doxanthomonas spadix, Pseudomonas aeruginosa, Rhodococcus opacus, Acinetobacter baumannii, Bacillus ce- reus, Actinomyces sp., Mycobacterium flavescens.
    [Show full text]
  • WO 2017/184601 Al 26 October 2017 (26.10.2017) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/184601 Al 26 October 2017 (26.10.2017) W !P O PCT (51) International Patent Classification: Declarations under Rule 4.17: A61K 9/00 (2006.01) A61K 35/74 (2015.01) — of inventorship (Rule 4.1 7(iv)) A61K 9/06 (2006.01) Published: (21) International Application Number: — with international search report (Art. 21(3)) PCT/US20 17/028 133 — before the expiration of the time limit for amending the (22) International Filing Date: claims and to be republished in the event of receipt of 18 April 2017 (18.04.2017) amendments (Rule 48.2(h)) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/324,762 19 April 2016 (19.04.2016) US (71) Applicant: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DE¬ PARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institutes Of Health, Office Of Technol ogy Transfer, 601 1 Executive Boulevard, Suite 325, MSC 7660, Bethesda, MD 20852-7660 (US). (72) Inventors: MYLES, Ian, Antheni; 9000 Rockville Pike, Building 33, Room 2wl0a, Bethesda, MD 20892 (US). DATTA, Sandip, K.; 9000 Rockville Pike, Building 33, Room 2W10a, Bethesda, MD 20892 (US). (74) Agent: SIEGEL, Susan Alpert; Klarquist Sparkman, LLP, One World Trade Center, Suite 1600, 121 SW Salmon Street, Portland, OR 97204 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: an Underestimated Risk and the Control Strategies
    foods Review Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies Laura Quintieri , Francesca Fanelli * and Leonardo Caputo Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy * Correspondence: [email protected]; Tel.: +39-0805929317 Received: 19 July 2019; Accepted: 23 August 2019; Published: 1 September 2019 Abstract: Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of Pseudomonas spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few “hubs” where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. Pseudomonas spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains (P. fluorescens, P. putida) are associated with some human diseases, but are still poorly considered in comparison to the pathogen P. aeruginosa.
    [Show full text]
  • Sparus Aurata) and Sea Bass (Dicentrarchus Labrax)
    Gut bacterial communities in geographically distant populations of farmed sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) Eleni Nikouli1, Alexandra Meziti1, Efthimia Antonopoulou2, Eleni Mente1, Konstantinos Ar. Kormas1* 1 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece 2 Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece * Corresponding author; Tel.: +30-242-109-3082, Fax: +30-242109-3157, E-mail: [email protected], [email protected] Supplementary material 1 Table S1. Body weight of the Sparus aurata and Dicentrarchus labrax individuals used in this study. Chania Chios Igoumenitsa Yaltra Atalanti Sample Body weight S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax (g) 1 359 378 558 420 433 448 481 346 260 785 2 355 294 579 442 493 556 516 397 240 340 3 376 275 468 554 450 464 540 415 440 500 4 392 395 530 460 440 483 492 493 365 860 5 420 362 483 479 542 492 406 995 6 521 505 506 461 Mean 380.40 340.80 523.17 476.67 471.60 487.75 504.50 419.67 326.25 696.00 SEs 11.89 23.76 17.36 19.56 20.46 23.85 8.68 21.00 46.79 120.29 2 Table S2. Ingredients of the diets used at the time of sampling. Ingredient Sparus aurata Dicentrarchus labrax (6 mm; 350-450 g)** (6 mm; 450-800 g)** Crude proteins (%) 42 – 44 37 – 39 Crude lipids (%) 19 – 21 20 – 22 Nitrogen free extract (NFE) (%) 20 – 26 19 – 25 Crude cellulose (%) 1 – 3 2 – 4 Ash (%) 5.8 – 7.8 6.2 – 8.2 Total P (%) 0.7 – 0.9 0.8 – 1.0 Gross energy (MJ/Kg) 21.5 – 23.5 20.6 – 22.6 Classical digestible energy* (MJ/Kg) 19.5 18.9 Added vitamin D3 (I.U./Kg) 500 500 Added vitamin E (I.U./Kg) 180 100 Added vitamin C (I.U./Kg) 250 100 Feeding rate (%), i.e.
    [Show full text]
  • Emendation of Pseudomonas Straminea Iizuka and Komagata 1963
    International Journal of Systematic and Evolutionary Microbiology (2000), 50, 1513–1519 Printed in Great Britain Emendation of Pseudomonas straminea Iizuka NOTE and Komagata 1963 Masataka Uchino,1 Yoshimasa Kosako,2 Tai Uchimura1 and Kazuo Komagata1 Author for correspondence: Tai Uchimura. Tel: j81 3 5477 2327. Fax: j81 3 3427 6435. e-mail: tai!nodai.ac.jp 1 Department of Applied The description of Pseudomonas straminae Iizuka and Komagata 1963 was Biology and Chemistry, emended with data newly obtained. The spelling of the name of this taxon is Faculty of Applied Bioscience, Tokyo also corrected as Pseudomonas straminea. Strains that were previously named University of Agriculture, ‘Pseudomonas ochracea’ were identified as P. straminea. Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan Keywords: Pseudomonas straminea, Pseudomonas straminae, Pseudomonas 2 Japan Collection of Microorganisms, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan During the study of the microflora of rice, Iizuka & Recently, Behrendt et al. (1999) reported the isolation Komagata (1963c, d, e) isolated large numbers of of yellow-pigmented bacteria from the phyllosphere of Pseudomonas strains from unhulled rice and rough grasses and identified them as Pseudomonas graminis. rice. Pseudomonas straminea was isolated from The distribution of these Pseudomonas species that Japanese paddies and was characterized by the pro- produce water-insoluble yellow pigments is rather duction of a water-insoluble yellow pigment and a limited to plant materials, and their pathogenicity has water-soluble greenish-yellow pigment (Iizuka & not been reported (Iizuka & Komagata, 1963c; Komagata, 1963e). This species was validated and the Hildebrand et al., 1994; Behrendt et al., 1999).
    [Show full text]
  • Control of Phytopathogenic Microorganisms with Pseudomonas Sp. and Substances and Compositions Derived Therefrom
    (19) TZZ Z_Z_T (11) EP 2 820 140 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 63/02 (2006.01) A01N 37/06 (2006.01) 10.01.2018 Bulletin 2018/02 A01N 37/36 (2006.01) A01N 43/08 (2006.01) C12P 1/04 (2006.01) (21) Application number: 13754767.5 (86) International application number: (22) Date of filing: 27.02.2013 PCT/US2013/028112 (87) International publication number: WO 2013/130680 (06.09.2013 Gazette 2013/36) (54) CONTROL OF PHYTOPATHOGENIC MICROORGANISMS WITH PSEUDOMONAS SP. AND SUBSTANCES AND COMPOSITIONS DERIVED THEREFROM BEKÄMPFUNG VON PHYTOPATHOGENEN MIKROORGANISMEN MIT PSEUDOMONAS SP. SOWIE DARAUS HERGESTELLTE SUBSTANZEN UND ZUSAMMENSETZUNGEN RÉGULATION DE MICRO-ORGANISMES PHYTOPATHOGÈNES PAR PSEUDOMONAS SP. ET DES SUBSTANCES ET DES COMPOSITIONS OBTENUES À PARTIR DE CELLE-CI (84) Designated Contracting States: • O. COUILLEROT ET AL: "Pseudomonas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB fluorescens and closely-related fluorescent GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO pseudomonads as biocontrol agents of PL PT RO RS SE SI SK SM TR soil-borne phytopathogens", LETTERS IN APPLIED MICROBIOLOGY, vol. 48, no. 5, 1 May (30) Priority: 28.02.2012 US 201261604507 P 2009 (2009-05-01), pages 505-512, XP55202836, 30.07.2012 US 201261670624 P ISSN: 0266-8254, DOI: 10.1111/j.1472-765X.2009.02566.x (43) Date of publication of application: • GUANPENG GAO ET AL: "Effect of Biocontrol 07.01.2015 Bulletin 2015/02 Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere (73) Proprietor: Marrone Bio Innovations, Inc.
    [Show full text]
  • Nefermentující Tyčinky Jako Původci Nozokomiálních Infekcí
    Nefermentující tyčinky jako původci infekcínozokomiálních spojených infekcí se zdravotníKrejčí péčí Eva1, 2 (ISZP) 1Oddělení bakteriologie a mykologie, Centrum klinických laboratoří, Zdravotní ústav se sídlem v Ostravě 2Katedra biomedicínských oborů, Lékařská fakulta, Ostravská univerzita kontaminace – kolonizace – infekce - okolnost odběru klinického materiálu - klinický stav pacienta Chryseobacterium indologenes Rhizobium radiobacter Sit and wait Burkholderiales, β Burkholderiales, β Xanthomonadales, γ Caulobacterales, α Pseudomonadales, γ Kmen Proteobacteria Alphaproteobacteria Betaproteobacteria Gammaproteobacteria • Rhodobacterales • Burkholderiales • Xanthomonadales – Paracoccus – Burkholderia – Stenotrophomonas • Sphingomonadales – Cupriavidus • Cardiobacteriales – Sphingomonas – Ralstonia – Cardiobacterium – • Caulobacterales Massilia • Legionellales – Alcaligenes – Brevundimonas – Legionella – Achromobacter • • Rhizobiales – Bordetella Pseudomonadales – – Rhizobium – Oligella Pseudomonas – – Ochrobactrum – Commamonas Moraxella – – Roseomonas – Acidovorax Acinetobacter – Delfia • Vibrionales • Neisseriales – Vibrio – Chromobacterium • Aeromonadales – Eikenella – Aeromonas – Kingella • Enterobacteriales • Pasteurellales https://microbiologyinfo.com/wop-content/uploads/2011t/014/featured-of-test.jpg Nefermentující G- tyčinky • velmi heterogenní skupina bakterií • časté taxonomické změny • běžně přítomné v prostředí - v přírodě • nutričně nenáročné • přirozená rezistence k antbiotkům Obávaní původci infekcí spojených s nemocniční
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • An Insight Into Beneficial Pseudomonas Bacteria
    Chapter 5 An Insight Into Beneficial Pseudomonas bacteria Galina Novik, Victoria Savich and Elena Kiseleva Additional information is available at the end of the chapter http://dx.doi.org/10.5772/60502 Abstract Pseudomonas is a widespread bacterial genus embracing a vast number of species. Various genosystematic methods are used to identify Pseudomonas and differentiate these bacteria from species of the same genus and species of other genera. Ability to degrade and produce a whole spectrum of compounds makes these species perspec‐ tive in industrial applications. It also makes possible to use various media, including wastes, for cultivation of Pseudomonas. Pseudomonads may be applied in bioreme‐ diation, production of polymers and low-molecular-weight compounds, biocontrol. Recent studies open up new frontiers for further use of Pseudomonas in various areas. Keywords: Pseudomonas bacteria, physiology, taxonomy, application 1. Introduction Pseudomonas is one of the most studied species of bacteria. They were first identified at the end of 19th century by Migula as Gram-negative, rod-shaped and polar-flagellated bacteria. Since that time description of genus Pseudomonas has widened; development of new methods allowed to study in detail the morphology and physiology of these bacteria. However, the morphological characteristics of Pseudomonas are common to many bacterial genera and so are of little value in the positive identification of members of the genus. Advanced nucleic acid- based methods allow to differentiate it from other similar genera and reveal taxonomic relationships among various bacterial species including Pseudomonas. Genus Pseudomonas is represented by species that occupy a wide range of niches owing to metabolic and physiological diversity.
    [Show full text]
  • An Investigation of Airborne Bioaerosols and Endotoxins Present in Indoor Traditional Wet Markets Before and After Operation in Taiwan: a Case Study
    International Journal of Environmental Research and Public Health Article An Investigation of Airborne Bioaerosols and Endotoxins Present in Indoor Traditional Wet Markets before and after Operation in Taiwan: A Case Study Da-Jiun Wei 1, Wen-Te Liu 2, Huin-Tsung Chin 3, Ching-Hsing Lin 4, I-Chun Chen 5,* and Yi-Tang Chang 1,* 1 Department of Microbiology, Soochow University, Taipei 11102, Taiwan; [email protected] 2 Department of Tourism, Tungnan University, New Taipei City 22202, Taiwan; [email protected] 3 The Graduate School of Technology for Hazards Mitigation, Tungnan University, New Taipei City 22202, Taiwan; fi[email protected] 4 Center of General Education, National Taitung College, Taitung 95045, Taiwan; [email protected] 5 Department of Land Resources, Chinese Culture University, Taipei 11114, Taiwan * Correspondence: [email protected] (I-C.C.); [email protected] (Y.-T.C.); Tel.: +886-2-2861051 (ext. 31431) (I.-C.C.); +886-2-28819471 (ext. 6862) (Y.-T.C.) Abstract: Customers in Taiwan prefer to purchase fresh foods and household supplies at indoor traditional wet markets (TWMs). The health risk to indoor TWM staff exposed to bioaerosols needs to be evaluated, since these workers spend long periods of time in the market for stall preparation, selling, and stall cleaning. This study investigated the bioaerosols present in two indoor TWMs. The results showed that the cleaning process at Market A after operations, involving the use of an agitated waterspout, was able to decrease the concentration of bacterial bioaerosols (BBs) by an average of 64%, while at the same time increasing the concentration of fungal bioaerosols (FBs) by about 2.4 fold.
    [Show full text]
  • Identification of Pseudomonas Species and Other Non-Glucose Fermenters
    UK Standards for Microbiology Investigations Identification of Pseudomonas species and other Non- Glucose Fermenters Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 17 | Issue no: 3 | Issue date: 13.04.15 | Page: 1 of 41 © Crown copyright 2015 Identification of Pseudomonas species and other Non-Glucose Fermenters Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories
    [Show full text]