ECOLOGICAL ENGINEERING & ENVIRONMENTAL TECHNOLOGY Ecological Engineering & Environmental Technology 2021, 22(2), 27–38 Received: 2020.12.22 https://doi.org/10.12912/27197050/133328 Accepted: 2021.02.12 ISSN 2719-7050, License CC-BY 4.0 Published: 2021.02.21 Biotechnological Reclamation of Oil-Polluted Soils Iryna Ablieieva1*, Leonid Plyatsuk1, Iryna Berezhna1, Myroslav Malovanyy2 1 Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine 2 Lviv National Polytechnic University, 12 S. Bandery St., 79013 Lviv, Ukraine * Corresponding author’s email:
[email protected] ABSTRACT The aim of the paper was to determine the efficiency of petroleum hydrocarbons (PHs) degradation by devel- oped bacterial consortium during bioremediation of oil-contaminated soils caused by accidental oil spills. The soil samples were collected from three different areas near the Bugruvate field of the Dnieper-Donets oil and gas region, Sumy region, Ukraine. The total petroleum hydrocarbon was determined by conducting measurements us- ing a gravimetric method. Gas chromatographic analysis was performed for determination of polycyclic aromatic hydrocarbons. The level of oil contamination follows an increasing preferential order: Sample 1 < Sample 2 < Sample 3 (5, 10 and 15 g∙kg-1, respectively). The soil samples comprised different concentrations of PHs includ- ing n-alkanes, fluorine, anthracene, phenanthrene, pyrene, toluene, xylene, benzene and other PHs. The results of -1 research indicated that the maximum oil degradation rate at the level of 80% was set at Cin within 4–8 g∙kg and τ = 70 days, under natural condition. In order to improve the efficiency of bioremediation of oil-contaminated soils, bioaugmentation was performed using the developed preparation of such bacteria and fungi strains as Pseu- doxanthomonas spadix, Pseudomonas aeruginosa, Rhodococcus opacus, Acinetobacter baumannii, Bacillus ce- reus, Actinomyces sp., Mycobacterium flavescens.