2-D Characteristics of Wave Deformation Due to Wave-Current Interactions with Density Currents in an Estuary

Total Page:16

File Type:pdf, Size:1020Kb

2-D Characteristics of Wave Deformation Due to Wave-Current Interactions with Density Currents in an Estuary water Article 2-D Characteristics of Wave Deformation Due to Wave-Current Interactions with Density Currents in an Estuary Woo-Dong Lee 1 , Norimi Mizutani 2 and Dong-Soo Hur 1,* 1 Department of Ocean Civil Engineering, Gyeongsang National University, Tongyeong 53064, Korea; [email protected] 2 Department of Civil and Environmental Engineering, Nagoya University, Nagoya 464-8603, Japan; [email protected] * Correspondence: [email protected]; Tel.: +82-55-772-9122 Received: 15 October 2019; Accepted: 2 January 2020; Published: 9 January 2020 Abstract: In this study, numerical simulations were conducted in order to understand the role of wave-current interactions in wave deformation. The wave-current interaction mechanisms, wave reflection and energy loss due to currents, the effect of incident conditions on wave-current interactions, the advection-diffusion characteristics of saltwater, and the effect of density currents on wave-current interactions were discussed. In addition, the effect of saltwater–freshwater density on wave-current interactions was investigated under a hypopycnal flow field via numerical model testing. Turbulence was stronger under the influence of wave-current interactions than under the influence of waves alone, as wave-current interactions reduced wave energy, which led to decreases in wave height. This phenomenon was more prominent under shorter wave periods and higher current velocities. These results increase our understanding of hydrodynamic phenomena in estuaries in which saltwater–freshwater and wave-current pairs coexist. Keywords: wave-current interaction; hypopycnal flow; estuarine hydraulics; estuarine currents; Navier–Stokes solver 1. Introduction In the ocean, various continually interacting physical external forces. In particular, estuaries are characterized by freshwater flows from land and saltwater flows from the ocean, which meet and form a major pathway for material transportation. Estuaries are complex, therefore it is difficult to investigate their hydrodynamic characteristics. Thus, it is critical to analyze the dynamic interactions between complex estuary features, including wave-current interaction mechanisms. Furthermore, it is necessary to understand the effect of a density current, which is generated by density differences between saltwater and freshwater, on wave-current interactions. In the estuary that exhibits highly complex hydraulic characteristics, the circulation type varies significantly according to vertical salinity distribution, tide, and wave [1,2]. However, if two fluids differing in density meet at the estuary, three types of flow and material transport patterns are largely exhibited [3,4]. As shown in Figure1, homopycnal flow occurs in the case of no density di fference, hypopycnal flow occurs when the influx flow has a lower density, and hyperpycnal flow occurs when the influx flow has a higher density. Hypopycnal flow generally occurs in the estuary when fresh river water flows in to ocean and interacts with ocean waves. However, most studies that attempted to analyze the wave-current interaction mechanism at the estuary region did not consider the density discrepancy between freshwater and saltwater, and were performed under homopycnal flow conditions. Meanwhile, due to the developments of measurement equipment, wave transformation, wave set-up, Water 2020, 12, 183; doi:10.3390/w12010183 www.mdpi.com/journal/water Water 2020, 12, 183 2 of 30 Water 2020, 12, x FOR PEER REVIEW 2 of 30 waveflow rate, set-up, salinity, flow andrate, temperature salinity, and at temperature the estuary are at beingthe estuary observed are [being5–9]. Inobserved some studies, [5–9]. In a modelsome studies,of the estuary a model was of composedthe estuary in was a three-dimensional composed in a three-dimensional experimental tank experi to measuremental tank wave to variationmeasure wavebased variation on wave-current based on interaction wave-current and interaction vertical salinity and vertical distribution salinity influenced distribution by density influenced current by densitybehavior current at the estuary behavior [10 ,11at]. the Onsite estuary investigations [10,11]. orOnsite transport investigations of three-dimensional or transport experiment of three- to dimensionalthe estuary requires experiment significant to the time estuary and money requires and significant only allows time for limitedand money information and only to beallows recorded for limitedat measurement information points. to be recorded at measurement points. (a) (b) (c) Figure 1. ThreeThree types types of of estuarine estuarine hydrodynamics hydrodynamics based based on on the the density density differences differences between river and sea/lakesea/lake water (Modified (Modified from Bates [3] [3] and Boggs [4]). [4]). ( (aa)) Homopycnal Homopycnal flow; flow; ( (bb)) hypopycnal hypopycnal flow; flow; (c) hyperpycnal flow.flow. Therefore, numericalnumerical simulations simulations are frequentlyare freque performedntly performed to analyze to the analyze hydraulic the characteristics hydraulic characteristicsof the estuary. of Most the ofestuary. studies Most have of used studies the model have basedused the on themodel depth-averaged based on the modeldepth-averaged [12–14] or modelthe 3-D [12–14] model or based the 3-D on σ model-coordinate based system on σ-coordinate [15,16]. This system numerical [15,16]. model This numerical cannot directly model simulate cannot directlywave behavior simulate due wave to a largebehavior discrepancy due to a between large discrepancy the calculation between grid andthe time.calculation To consider grid and the wavetime. Toreaction, consider the wavethe wave radiation reaction, stress estimatedthe wave from radi Simulatingation stress WAves estimated Nearshore from (SWAN Simulating [17]) orWAves WAve NearshoreModel (WAM (SWAN [18]) are[17]) substituted or WAve Model into the (WAM momentum [18]) are equations substituted [14, 19into,20 ].the momentum equations [14,19,20].Various theoretical, experimental and observational studies on waves propagating with currents haveVarious previously theoretical, been conducted experimental in the and field observational of coastal and studies ocean on engineering waves propagating [21–25]. with In particular, currents havethere previously have been manybeen conducted studies on in the the e fffieldects of co waveastal kinematics and ocean (changesengineering in the [21–25]. wave In number particular, and therefrequency have duebeen to many shoaling studies and refraction)on the effects and of dynamics wave kinematics (changes in(changes wave steepness in the wave and number wave-action and frequencyconservation) due accordingto shoaling to and wave-current refraction) and interaction dynamics [26 (changes–29]. Wave in wave kinematics steepness include and thewave-action effects of conservation)depth and current according in wavelength to wave-current variation interactio and dispersionn [26–29]. (Doppler Wave kinematics shift) according include to the opposing effects orof depthfollowing and current.current Wavein wavelength dynamics variation include energy and disper and actionsion (Doppler conservation shift) andaccording the variations to opposing in wave or followingheight and current. water levelWave [ 24dynamics,30]. Umeyama include energy [31] and an Leed action et al. conservation [32] explored and the the vertical variations distribution in wave heightof flow and and water turbulence level [24,30]. structures Umeyama under wave-current [31] and Lee et interactions al. [32] expl inored order the to vertical analyze distribution wave-current of flowinteraction and turbulence mechanisms. structures Smith et under al. [10 wave-current] investigated waveinteractions deformation in order by wave-currentto analyze wave-current interactions interaction mechanisms. Smith et al. [10] investigated wave deformation by wave-current interactions in a 3-D experimental basin with an estuary model. However, these experimental studies were not able to define the mechanisms of wave deformation and energy loss due to wave-current interactions. Water 2020, 12, 183 3 of 30 in a 3-D experimental basin with an estuary model. However, these experimental studies were not able to define the mechanisms of wave deformation and energy loss due to wave-current interactions. Numerical studies have reproduced past experimental results, but have focused mostly on wave deformation, neglecting to analyze the mechanisms behind wave-current interactions. In addition, Umeyama [33] measured and analyzed the flow velocity and trace of water particles by combining them with the particle image velocimetry (PIV) and particle tracking velocimetry (PTV) when the wave and current have the same direction. Chen et al. [34] studied the trace of water particles using the electronic hydrometer when the wave and current have opposite directions. However, none of the experimental studies conducted so far describe the wave deformation phenomenon and the mechanism of energy decrease clearly. The abovementioned studies focus on the motion of water particles from the wave-current interaction instead of the characteristics of wave deformation. Fernando et al. [35] discussed the topographic change resulting from the wave-current crossing angle, and the characteristics of local and vertical distribution of flow velocity. However, it is difficult to extend this study to analyze the effect of the hydraulic pattern. Lim and Madsen [36] analyzed the vertical flow velocity structure and shear velocity for wave-current
Recommended publications
  • Accurate Modelling of Uni-Directional Surface Waves
    Journal of Computational and Applied Mathematics 234 (2010) 1747–1756 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Accurate modelling of uni-directional surface waves E. van Groesen a,b,∗, Andonowati a,b,c, L. She Liam a, I. Lakhturov a a Applied Mathematics, University of Twente, The Netherlands b LabMath-Indonesia, Bandung, Indonesia c Mathematics, Institut Teknologi Bandung, Indonesia article info a b s t r a c t Article history: This paper shows the use of consistent variational modelling to obtain and verify an Received 30 November 2007 accurate model for uni-directional surface water waves. Starting from Luke's variational Received in revised form 3 July 2008 principle for inviscid irrotational water flow, Zakharov's Hamiltonian formulation is derived to obtain a description in surface variables only. Keeping the exact dispersion Keywords: properties of infinitesimal waves, the kinetic energy is approximated. Invoking a uni- AB-equation directionalization constraint leads to the recently proposed AB-equation, a KdV-type Surface waves of equation that is also valid on infinitely deep water, that is exact in dispersion for Variational modelling KdV-type of equation infinitesimal waves, and that is second order accurate in the wave height. The accuracy of the model is illustrated for two different cases. One concerns the formulation of steady periodic waves as relative equilibria; the resulting wave profiles and the speed are good approximations of Stokes waves, even for the Highest Stokes Wave on deep water. A second case shows simulations of severely distorting downstream running bi-chromatic wave groups; comparison with laboratory measurements show good agreement of propagation speeds and of wave and envelope distortions.
    [Show full text]
  • Two-Soliton Interaction As an Elementary Act of Soliton Turbulence in Integrable Systems
    Two-soliton interaction as an elementary act of soliton turbulence in integrable systems E.N. Pelinovsky1,2, E.G. Shurgalina2, A.V. Sergeeva1, T.G. Talipova1, 3 3 G.A. El ∗ and R.H.J. Grimshaw 1 Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia 2 Department of Applied Mathematics, Nizhny Novgorod Technical University, Nizhny Novgorod, Russia 3 Department of Mathematical Sciences, Loughborough University, UK ∗Corresponding author. Tel: +44 1509 222869; Fax: +44 1509 223969; e-mail: [email protected] 1 Abstract Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in integrable systems. To quantify the contribution of these interactions to the dynamical and statistical characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial moments of the two-soliton solution of the Korteweg – de Vries (KdV) equation. While the first two moments are integrals of the KdV evolution, the third and fourth moments undergo significant variations in the dominant interaction region, which could have strong effect on the values of the skewness and kurtosis in soliton turbulence. Keywords: KdV equation, soliton, turbulence 1 Introduction Solitons represent an intrinsic part of nonlinear wave field in weakly dispersive media and their deterministic dynamics in the framework of the Korteweg– de Vries (KdV) equation is understood very well (see e.g.[1, 2, 3]). At the same time, description of statistical properties of a random ensemble of solitons (or a more general problem of the KdV evolution of a random wave field) still remains to a large extent an unsolved problem, especially in the context of concrete physical applications.
    [Show full text]
  • Arxiv:2002.03434V3 [Physics.Flu-Dyn] 25 Jul 2020
    APS/123-QED Modified Stokes drift due to surface waves and corrugated sea-floor interactions with and without a mean current Akanksha Gupta Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India.∗ Anirban Guhay School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK. (Dated: July 28, 2020) arXiv:2002.03434v3 [physics.flu-dyn] 25 Jul 2020 1 Abstract In this paper, we show that Stokes drift may be significantly affected when an incident inter- mediate or shallow water surface wave travels over a corrugated sea-floor. The underlying mech- anism is Bragg resonance { reflected waves generated via nonlinear resonant interactions between an incident wave and a rippled bottom. We theoretically explain the fundamental effect of two counter-propagating Stokes waves on Stokes drift and then perform numerical simulations of Bragg resonance using High-order Spectral method. A monochromatic incident wave on interaction with a patch of bottom ripple yields a complex interference between the incident and reflected waves. When the velocity induced by the reflected waves exceeds that of the incident, particle trajectories reverse, leading to a backward drift. Lagrangian and Lagrangian-mean trajectories reveal that surface particles near the up-wave side of the patch are either trapped or reflected, implying that the rippled patch acts as a non-surface-invasive particle trap or reflector. On increasing the length and amplitude of the rippled patch; reflection, and thus the effectiveness of the patch, increases. The inclusion of realistic constant current shows noticeable differences between Lagrangian-mean trajectories with and without the rippled patch.
    [Show full text]
  • Tllllllll:. Journal of Coastal Research, 17(4),919-930
    Journal of Coastal Research 919-930 West Palm Beach, Florida Fall 2001 Obliquely Incident Wave Reflection and Runup on Steep Rough Slope Nobuhisa Kobayashi and Entin A. Karjadi Center for Applied Coastal Research University of Delaware Newark, DE 19716 ABSTRACT _ KOBAYASHI, N. and KARJADI, E.A., 2001. Obliquely incident wave reflection and runup on steep rough slope. .tllllllll:. Journal of Coastal Research, 17(4),919-930. West Palm Beach (Florida), ISSN 0749-0208. ~ A two-dimensional, time-dependent numerical model for finite amplitude, shallow-water waves with arbitrary incident eusss~~ angles is developed to predict the detailed wave motions in the vicinity of the still waterline on a slope. The numerical --+4 method and the seaward and landward boundary algorithms are fairly general but the lateral boundary algorithm is b--- limited to periodic boundary conditions. The computed results for surging waves on a rough 1:2.5 slope are presented for the incident wave angles in the range 0-80°. The time-averaged continuity, momentum and energy equations are used to check the accuracy of the numerical model as well as to examine the cross-shore variations of wave setup, return current, longshore current, momentum fluxes, energy fluxes and dissipation rates. The computed reflected waves and waterline oscillations are shown to have the same alongshore wavelength as the specified nonlinear inci­ dent waves. The computed variations of the reflected wave phase shift and wave runup are shown to be consistent with available empirical formulas. More quantitative comparisons will be required to evaluate the model accuracy. ADDITIONAL INDEX WORDS: Oblique waves, reflection, runup, revetments, breakwaters, wave setup, return current, longshore current.
    [Show full text]
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • Dynamics of Wave Setup Over a Steeply Sloping Fringing Reef
    DECEMBER 2015 B U C K L E Y E T A L . 3005 Dynamics of Wave Setup over a Steeply Sloping Fringing Reef MARK L. BUCKLEY AND RYAN J. LOWE School of Earth and Environment, and The Oceans Institute, and ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, Western Australia, Australia JEFF E. HANSEN School of Earth and Environment, and The Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia AP R. VAN DONGEREN Unit ZKS, Department AMO, Deltares, Delft, Netherlands (Manuscript received 6 April 2015, in final form 8 September 2015) ABSTRACT High-resolution observations from a 55-m-long wave flume were used to investigate the dynamics of wave setup over a steeply sloping reef profile with a bathymetry representative of many fringing coral reefs. The 16 runs incorporating a wide range of offshore wave conditions and still water levels were conducted using a 1:36 scaled fringing reef, with a 1:5 slope reef leading to a wide and shallow reef flat. Wave setdown and setup observations measured at 17 locations across the fringing reef were compared with a theoretical balance between the local cross-shore pressure and wave radiation stress gradients. This study found that when ra- diation stress gradients were calculated from observations of the radiation stress derived from linear wave theory, both wave setdown and setup were underpredicted for the majority of wave and water level conditions tested. These underpredictions were most pronounced for cases with larger wave heights and lower still water levels (i.e., cases with the greatest setdown and setup).
    [Show full text]
  • Variational Principles for Water Waves from the Viewpoint of a Time-Dependent Moving Mesh
    Variational principles for water waves from the viewpoint of a time-dependent moving mesh Thomas J. Bridges & Neil M. Donaldson Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK May 21, 2010 Abstract The time-dependent motion of water waves with a parametrically-defined free surface is mapped to a fixed time-independent rectangle by an arbitrary transformation. The emphasis is on the general properties of transformations. Special cases are algebraic transformations based on transfinite interpolation, conformal mappings, and transformations generated by nonlinear elliptic PDEs. The aim is to study the effect of transformation on variational principles for water waves such as Luke’s Lagrangian formulation, Zakharov’s Hamiltonian formulation, and the Benjamin-Olver Hamiltonian formulation. Several novel features are exposed using this approach: a conservation law for the Jacobian, an explicit form for surface re-parameterization, inner versus outer variations and their role in the generation of hidden conservation laws of the Laplacian, and some of the differential geometry of water waves becomes explicit. The paper is restricted to the case of planar motion, with a preliminary discussion of the extension to three-dimensional water waves. 1 Introduction In the theory of water waves, the fluid domain shape is changing with time. Therefore it is appealing to transform the moving domain to a fixed domain. This approach, first for steady waves and later for unsteady waves, has been widely used in the study of water waves. However, in all cases the transformation is either algebraic (explicit) or a conformal mapping. In this paper we look at the equations governing the motion of water waves from the viewpoint of an arbitrary time-dependent transformation of the form x(µ,ν,τ) (µ,ν,τ) y(µ,ν,τ) , (1.1) 7→ t(τ) where (µ,ν) are coordinates for a fixed time-independent rectangle D := (µ,ν) : 0 µ L and h ν 0 , (1.2) { ≤ ≤ − ≤ ≤ } with h, L given positive parameters.
    [Show full text]
  • Waves on Deep Water, I
    Lecture 14: Waves on deep water, I Lecturer: Harvey Segur. Write-up: Adrienne Traxler June 23, 2009 1 Introduction In this lecture we address the question of whether there are stable wave patterns that propagate with permanent (or nearly permanent) form on deep water. The primary tool for this investigation is the nonlinear Schr¨odinger equation (NLS). Below we sketch the derivation of the NLS for deep water waves, and review earlier work on the existence and stability of 1D surface patterns for these waves. The next lecture continues to more recent work on 2D surface patterns and the effect of adding small damping. 2 Derivation of NLS for deep water waves The nonlinear Schr¨odinger equation (NLS) describes the slow evolution of a train or packet of waves with the following assumptions: • the system is conservative (no dissipation) • then the waves are dispersive (wave speed depends on wavenumber) Now examine the subset of these waves with • only small or moderate amplitudes • traveling in nearly the same direction • with nearly the same frequency The derivation sketch follows the by now normal procedure of beginning with the water wave equations, identifying the limit of interest, rescaling the equations to better show that limit, then solving order-by-order. We begin by considering the case of only gravity waves (neglecting surface tension), in the deep water limit (kh → ∞). Here h is the distance between the equilibrium surface height and the (flat) bottom; a is the wave amplitude; η is the displacement of the water surface from the equilibrium level; and φ is the velocity potential, u = ∇φ.
    [Show full text]
  • 0123737354Fluidmechanics.Pdf
    Fluid Mechanics, Fourth Edition Founders of Modern Fluid Dynamics Ludwig Prandtl G. I. Taylor (1875–1953) (1886–1975) (Biographical sketches of Prandtl and Taylor are given in Appendix C.) Photograph of Ludwig Prandtl is reprinted with permission from the Annual Review of Fluid Mechanics, Vol. 19, Copyright 1987 by Annual Reviews www.AnnualReviews.org. Photograph of Geoffrey Ingram Taylor at age 69 in his laboratory reprinted with permission from the AIP Emilio Segre` Visual Archieves. Copyright, American Institute of Physics, 2000. Fluid Mechanics Fourth Edition Pijush K. Kundu Oceanographic Center Nova Southeastern University Dania, Florida Ira M. Cohen Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia, Pennsylvania with contributions by P. S. Ayyaswamy and H. H. Hu AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400 Burlington, MA 01803, USA Elsevier, The Boulevard, Langford Lane Kidlington, Oxford, OX5 1GB, UK © 2008 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
    [Show full text]
  • Sensitivity Analysis of Non-Linear Steep Waves Using VOF Method
    Tenth International Conference on ICCFD10-268 Computational Fluid Dynamics (ICCFD10), Barcelona, Spain, July 9-13, 2018 Sensitivity Analysis of Non-linear Steep Waves using VOF Method A. Khaware*, V. Gupta*, K. Srikanth *, and P. Sharkey ** Corresponding author: [email protected] * ANSYS Software Pvt Ltd, Pune, India. ** ANSYS UK Ltd, Milton Park, UK Abstract: The analysis and prediction of non-linear waves is a crucial part of ocean hydrodynamics. Sea waves are typically non-linear in nature, and whilst models exist to predict their behavior, limits exist in their applicability. In practice, as the waves become increasingly steeper, they approach a point beyond which the wave integrity cannot be maintained, and they 'break'. Understanding the limits of available models as waves approach these break conditions can significantly help to improve the accuracy of their potential impact in the field. Moreover, inaccurate modeling of wave kinematics can result in erroneous hydrodynamic forces being predicted. This paper investigates the sensitivity of non-linear wave modeling from both an analytical and a numerical perspective. Using a Volume of Fluid (VOF) method, coupled with the Open Channel Flow module in ANSYS Fluent, sensitivity studies are performed for a variety of non-linear wave scenarios with high steepness and high relative height. These scenarios are intended to mimic the near-break conditions of the wave. 5th order solitary wave models are applied to shallow wave scenarios with high relative heights, and 5th order Stokes wave models are applied to short gravity waves with high wave steepness. Stokes waves are further applied in the shallow regime at high wave steepness to examine the wave sensitivity under extreme conditions.
    [Show full text]
  • Waves and Structures
    WAVES AND STRUCTURES By Dr M C Deo Professor of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai 400 076 Contact: [email protected]; (+91) 22 2572 2377 (Please refer as follows, if you use any part of this book: Deo M C (2013): Waves and Structures, http://www.civil.iitb.ac.in/~mcdeo/waves.html) (Suggestions to improve/modify contents are welcome) 1 Content Chapter 1: Introduction 4 Chapter 2: Wave Theories 18 Chapter 3: Random Waves 47 Chapter 4: Wave Propagation 80 Chapter 5: Numerical Modeling of Waves 110 Chapter 6: Design Water Depth 115 Chapter 7: Wave Forces on Shore-Based Structures 132 Chapter 8: Wave Force On Small Diameter Members 150 Chapter 9: Maximum Wave Force on the Entire Structure 173 Chapter 10: Wave Forces on Large Diameter Members 187 Chapter 11: Spectral and Statistical Analysis of Wave Forces 209 Chapter 12: Wave Run Up 221 Chapter 13: Pipeline Hydrodynamics 234 Chapter 14: Statics of Floating Bodies 241 Chapter 15: Vibrations 268 Chapter 16: Motions of Freely Floating Bodies 283 Chapter 17: Motion Response of Compliant Structures 315 2 Notations 338 References 342 3 CHAPTER 1 INTRODUCTION 1.1 Introduction The knowledge of magnitude and behavior of ocean waves at site is an essential prerequisite for almost all activities in the ocean including planning, design, construction and operation related to harbor, coastal and structures. The waves of major concern to a harbor engineer are generated by the action of wind. The wind creates a disturbance in the sea which is restored to its calm equilibrium position by the action of gravity and hence resulting waves are called wind generated gravity waves.
    [Show full text]
  • Answers of the Reviewers' Comments Reviewer #1 —- General
    Answers of the reviewers’ comments Reviewer #1 —- General Comments As a detailed assessment of a coupled high resolution wave-ocean modelling system’s sensitivities in an extreme case, this paper provides a useful addition to existing published evidence regarding coupled systems and is a valid extension of the work in Staneva et al, 2016. I would therefore recommend this paper for publication, but with some additions/corrections related to the points below. —- Specific Comments Section 2.1 Whilst this information may well be published in the authors’ previous papers, it would be useful to those reading this paper in isolation if some extra details on the update frequencies of atmosphere and river forcing data were provided. Authors: More information about the model setup, including a description of the open boundary forcing, atmospheric forcing and river runoff, has been included in Section 2.1. Additional references were also added. Section 2.2 This is an extreme case in shallow water, so please could the source term parameterizations for bottom friction and depth induced breaking dissipation that were used in the wave model be stated? Authors: Additional information about the parameterizations used in our model setup, including more references, was provided in Section 2.2. Section 2.3 I found the statements that "<u> is the sum of the Eulerian current and the Stokes drift" and "Thus the divergence of the radiation stress is the only (to second order) force related to waves in the momentum equations." somewhat contradictory. In the equations, Mellor (2011) has been followed correctly and I see the basic point about radiation stress being the difference between coupled and uncoupled systems, so just wondering if the authors can review the text in this section for clarity.
    [Show full text]