2-D Characteristics of Wave Deformation Due to Wave-Current Interactions with Density Currents in an Estuary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accurate Modelling of Uni-Directional Surface Waves
Journal of Computational and Applied Mathematics 234 (2010) 1747–1756 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Accurate modelling of uni-directional surface waves E. van Groesen a,b,∗, Andonowati a,b,c, L. She Liam a, I. Lakhturov a a Applied Mathematics, University of Twente, The Netherlands b LabMath-Indonesia, Bandung, Indonesia c Mathematics, Institut Teknologi Bandung, Indonesia article info a b s t r a c t Article history: This paper shows the use of consistent variational modelling to obtain and verify an Received 30 November 2007 accurate model for uni-directional surface water waves. Starting from Luke's variational Received in revised form 3 July 2008 principle for inviscid irrotational water flow, Zakharov's Hamiltonian formulation is derived to obtain a description in surface variables only. Keeping the exact dispersion Keywords: properties of infinitesimal waves, the kinetic energy is approximated. Invoking a uni- AB-equation directionalization constraint leads to the recently proposed AB-equation, a KdV-type Surface waves of equation that is also valid on infinitely deep water, that is exact in dispersion for Variational modelling KdV-type of equation infinitesimal waves, and that is second order accurate in the wave height. The accuracy of the model is illustrated for two different cases. One concerns the formulation of steady periodic waves as relative equilibria; the resulting wave profiles and the speed are good approximations of Stokes waves, even for the Highest Stokes Wave on deep water. A second case shows simulations of severely distorting downstream running bi-chromatic wave groups; comparison with laboratory measurements show good agreement of propagation speeds and of wave and envelope distortions. -
Two-Soliton Interaction As an Elementary Act of Soliton Turbulence in Integrable Systems
Two-soliton interaction as an elementary act of soliton turbulence in integrable systems E.N. Pelinovsky1,2, E.G. Shurgalina2, A.V. Sergeeva1, T.G. Talipova1, 3 3 G.A. El ∗ and R.H.J. Grimshaw 1 Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia 2 Department of Applied Mathematics, Nizhny Novgorod Technical University, Nizhny Novgorod, Russia 3 Department of Mathematical Sciences, Loughborough University, UK ∗Corresponding author. Tel: +44 1509 222869; Fax: +44 1509 223969; e-mail: [email protected] 1 Abstract Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in integrable systems. To quantify the contribution of these interactions to the dynamical and statistical characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial moments of the two-soliton solution of the Korteweg – de Vries (KdV) equation. While the first two moments are integrals of the KdV evolution, the third and fourth moments undergo significant variations in the dominant interaction region, which could have strong effect on the values of the skewness and kurtosis in soliton turbulence. Keywords: KdV equation, soliton, turbulence 1 Introduction Solitons represent an intrinsic part of nonlinear wave field in weakly dispersive media and their deterministic dynamics in the framework of the Korteweg– de Vries (KdV) equation is understood very well (see e.g.[1, 2, 3]). At the same time, description of statistical properties of a random ensemble of solitons (or a more general problem of the KdV evolution of a random wave field) still remains to a large extent an unsolved problem, especially in the context of concrete physical applications. -
Arxiv:2002.03434V3 [Physics.Flu-Dyn] 25 Jul 2020
APS/123-QED Modified Stokes drift due to surface waves and corrugated sea-floor interactions with and without a mean current Akanksha Gupta Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India.∗ Anirban Guhay School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK. (Dated: July 28, 2020) arXiv:2002.03434v3 [physics.flu-dyn] 25 Jul 2020 1 Abstract In this paper, we show that Stokes drift may be significantly affected when an incident inter- mediate or shallow water surface wave travels over a corrugated sea-floor. The underlying mech- anism is Bragg resonance { reflected waves generated via nonlinear resonant interactions between an incident wave and a rippled bottom. We theoretically explain the fundamental effect of two counter-propagating Stokes waves on Stokes drift and then perform numerical simulations of Bragg resonance using High-order Spectral method. A monochromatic incident wave on interaction with a patch of bottom ripple yields a complex interference between the incident and reflected waves. When the velocity induced by the reflected waves exceeds that of the incident, particle trajectories reverse, leading to a backward drift. Lagrangian and Lagrangian-mean trajectories reveal that surface particles near the up-wave side of the patch are either trapped or reflected, implying that the rippled patch acts as a non-surface-invasive particle trap or reflector. On increasing the length and amplitude of the rippled patch; reflection, and thus the effectiveness of the patch, increases. The inclusion of realistic constant current shows noticeable differences between Lagrangian-mean trajectories with and without the rippled patch. -
Tllllllll:. Journal of Coastal Research, 17(4),919-930
Journal of Coastal Research 919-930 West Palm Beach, Florida Fall 2001 Obliquely Incident Wave Reflection and Runup on Steep Rough Slope Nobuhisa Kobayashi and Entin A. Karjadi Center for Applied Coastal Research University of Delaware Newark, DE 19716 ABSTRACT _ KOBAYASHI, N. and KARJADI, E.A., 2001. Obliquely incident wave reflection and runup on steep rough slope. .tllllllll:. Journal of Coastal Research, 17(4),919-930. West Palm Beach (Florida), ISSN 0749-0208. ~ A two-dimensional, time-dependent numerical model for finite amplitude, shallow-water waves with arbitrary incident eusss~~ angles is developed to predict the detailed wave motions in the vicinity of the still waterline on a slope. The numerical --+4 method and the seaward and landward boundary algorithms are fairly general but the lateral boundary algorithm is b--- limited to periodic boundary conditions. The computed results for surging waves on a rough 1:2.5 slope are presented for the incident wave angles in the range 0-80°. The time-averaged continuity, momentum and energy equations are used to check the accuracy of the numerical model as well as to examine the cross-shore variations of wave setup, return current, longshore current, momentum fluxes, energy fluxes and dissipation rates. The computed reflected waves and waterline oscillations are shown to have the same alongshore wavelength as the specified nonlinear inci dent waves. The computed variations of the reflected wave phase shift and wave runup are shown to be consistent with available empirical formulas. More quantitative comparisons will be required to evaluate the model accuracy. ADDITIONAL INDEX WORDS: Oblique waves, reflection, runup, revetments, breakwaters, wave setup, return current, longshore current. -
Part II-1 Water Wave Mechanics
Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32 -
Dynamics of Wave Setup Over a Steeply Sloping Fringing Reef
DECEMBER 2015 B U C K L E Y E T A L . 3005 Dynamics of Wave Setup over a Steeply Sloping Fringing Reef MARK L. BUCKLEY AND RYAN J. LOWE School of Earth and Environment, and The Oceans Institute, and ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, Western Australia, Australia JEFF E. HANSEN School of Earth and Environment, and The Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia AP R. VAN DONGEREN Unit ZKS, Department AMO, Deltares, Delft, Netherlands (Manuscript received 6 April 2015, in final form 8 September 2015) ABSTRACT High-resolution observations from a 55-m-long wave flume were used to investigate the dynamics of wave setup over a steeply sloping reef profile with a bathymetry representative of many fringing coral reefs. The 16 runs incorporating a wide range of offshore wave conditions and still water levels were conducted using a 1:36 scaled fringing reef, with a 1:5 slope reef leading to a wide and shallow reef flat. Wave setdown and setup observations measured at 17 locations across the fringing reef were compared with a theoretical balance between the local cross-shore pressure and wave radiation stress gradients. This study found that when ra- diation stress gradients were calculated from observations of the radiation stress derived from linear wave theory, both wave setdown and setup were underpredicted for the majority of wave and water level conditions tested. These underpredictions were most pronounced for cases with larger wave heights and lower still water levels (i.e., cases with the greatest setdown and setup). -
Variational Principles for Water Waves from the Viewpoint of a Time-Dependent Moving Mesh
Variational principles for water waves from the viewpoint of a time-dependent moving mesh Thomas J. Bridges & Neil M. Donaldson Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK May 21, 2010 Abstract The time-dependent motion of water waves with a parametrically-defined free surface is mapped to a fixed time-independent rectangle by an arbitrary transformation. The emphasis is on the general properties of transformations. Special cases are algebraic transformations based on transfinite interpolation, conformal mappings, and transformations generated by nonlinear elliptic PDEs. The aim is to study the effect of transformation on variational principles for water waves such as Luke’s Lagrangian formulation, Zakharov’s Hamiltonian formulation, and the Benjamin-Olver Hamiltonian formulation. Several novel features are exposed using this approach: a conservation law for the Jacobian, an explicit form for surface re-parameterization, inner versus outer variations and their role in the generation of hidden conservation laws of the Laplacian, and some of the differential geometry of water waves becomes explicit. The paper is restricted to the case of planar motion, with a preliminary discussion of the extension to three-dimensional water waves. 1 Introduction In the theory of water waves, the fluid domain shape is changing with time. Therefore it is appealing to transform the moving domain to a fixed domain. This approach, first for steady waves and later for unsteady waves, has been widely used in the study of water waves. However, in all cases the transformation is either algebraic (explicit) or a conformal mapping. In this paper we look at the equations governing the motion of water waves from the viewpoint of an arbitrary time-dependent transformation of the form x(µ,ν,τ) (µ,ν,τ) y(µ,ν,τ) , (1.1) 7→ t(τ) where (µ,ν) are coordinates for a fixed time-independent rectangle D := (µ,ν) : 0 µ L and h ν 0 , (1.2) { ≤ ≤ − ≤ ≤ } with h, L given positive parameters. -
Waves on Deep Water, I
Lecture 14: Waves on deep water, I Lecturer: Harvey Segur. Write-up: Adrienne Traxler June 23, 2009 1 Introduction In this lecture we address the question of whether there are stable wave patterns that propagate with permanent (or nearly permanent) form on deep water. The primary tool for this investigation is the nonlinear Schr¨odinger equation (NLS). Below we sketch the derivation of the NLS for deep water waves, and review earlier work on the existence and stability of 1D surface patterns for these waves. The next lecture continues to more recent work on 2D surface patterns and the effect of adding small damping. 2 Derivation of NLS for deep water waves The nonlinear Schr¨odinger equation (NLS) describes the slow evolution of a train or packet of waves with the following assumptions: • the system is conservative (no dissipation) • then the waves are dispersive (wave speed depends on wavenumber) Now examine the subset of these waves with • only small or moderate amplitudes • traveling in nearly the same direction • with nearly the same frequency The derivation sketch follows the by now normal procedure of beginning with the water wave equations, identifying the limit of interest, rescaling the equations to better show that limit, then solving order-by-order. We begin by considering the case of only gravity waves (neglecting surface tension), in the deep water limit (kh → ∞). Here h is the distance between the equilibrium surface height and the (flat) bottom; a is the wave amplitude; η is the displacement of the water surface from the equilibrium level; and φ is the velocity potential, u = ∇φ. -
0123737354Fluidmechanics.Pdf
Fluid Mechanics, Fourth Edition Founders of Modern Fluid Dynamics Ludwig Prandtl G. I. Taylor (1875–1953) (1886–1975) (Biographical sketches of Prandtl and Taylor are given in Appendix C.) Photograph of Ludwig Prandtl is reprinted with permission from the Annual Review of Fluid Mechanics, Vol. 19, Copyright 1987 by Annual Reviews www.AnnualReviews.org. Photograph of Geoffrey Ingram Taylor at age 69 in his laboratory reprinted with permission from the AIP Emilio Segre` Visual Archieves. Copyright, American Institute of Physics, 2000. Fluid Mechanics Fourth Edition Pijush K. Kundu Oceanographic Center Nova Southeastern University Dania, Florida Ira M. Cohen Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia, Pennsylvania with contributions by P. S. Ayyaswamy and H. H. Hu AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400 Burlington, MA 01803, USA Elsevier, The Boulevard, Langford Lane Kidlington, Oxford, OX5 1GB, UK © 2008 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). -
Sensitivity Analysis of Non-Linear Steep Waves Using VOF Method
Tenth International Conference on ICCFD10-268 Computational Fluid Dynamics (ICCFD10), Barcelona, Spain, July 9-13, 2018 Sensitivity Analysis of Non-linear Steep Waves using VOF Method A. Khaware*, V. Gupta*, K. Srikanth *, and P. Sharkey ** Corresponding author: [email protected] * ANSYS Software Pvt Ltd, Pune, India. ** ANSYS UK Ltd, Milton Park, UK Abstract: The analysis and prediction of non-linear waves is a crucial part of ocean hydrodynamics. Sea waves are typically non-linear in nature, and whilst models exist to predict their behavior, limits exist in their applicability. In practice, as the waves become increasingly steeper, they approach a point beyond which the wave integrity cannot be maintained, and they 'break'. Understanding the limits of available models as waves approach these break conditions can significantly help to improve the accuracy of their potential impact in the field. Moreover, inaccurate modeling of wave kinematics can result in erroneous hydrodynamic forces being predicted. This paper investigates the sensitivity of non-linear wave modeling from both an analytical and a numerical perspective. Using a Volume of Fluid (VOF) method, coupled with the Open Channel Flow module in ANSYS Fluent, sensitivity studies are performed for a variety of non-linear wave scenarios with high steepness and high relative height. These scenarios are intended to mimic the near-break conditions of the wave. 5th order solitary wave models are applied to shallow wave scenarios with high relative heights, and 5th order Stokes wave models are applied to short gravity waves with high wave steepness. Stokes waves are further applied in the shallow regime at high wave steepness to examine the wave sensitivity under extreme conditions. -
Waves and Structures
WAVES AND STRUCTURES By Dr M C Deo Professor of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai 400 076 Contact: [email protected]; (+91) 22 2572 2377 (Please refer as follows, if you use any part of this book: Deo M C (2013): Waves and Structures, http://www.civil.iitb.ac.in/~mcdeo/waves.html) (Suggestions to improve/modify contents are welcome) 1 Content Chapter 1: Introduction 4 Chapter 2: Wave Theories 18 Chapter 3: Random Waves 47 Chapter 4: Wave Propagation 80 Chapter 5: Numerical Modeling of Waves 110 Chapter 6: Design Water Depth 115 Chapter 7: Wave Forces on Shore-Based Structures 132 Chapter 8: Wave Force On Small Diameter Members 150 Chapter 9: Maximum Wave Force on the Entire Structure 173 Chapter 10: Wave Forces on Large Diameter Members 187 Chapter 11: Spectral and Statistical Analysis of Wave Forces 209 Chapter 12: Wave Run Up 221 Chapter 13: Pipeline Hydrodynamics 234 Chapter 14: Statics of Floating Bodies 241 Chapter 15: Vibrations 268 Chapter 16: Motions of Freely Floating Bodies 283 Chapter 17: Motion Response of Compliant Structures 315 2 Notations 338 References 342 3 CHAPTER 1 INTRODUCTION 1.1 Introduction The knowledge of magnitude and behavior of ocean waves at site is an essential prerequisite for almost all activities in the ocean including planning, design, construction and operation related to harbor, coastal and structures. The waves of major concern to a harbor engineer are generated by the action of wind. The wind creates a disturbance in the sea which is restored to its calm equilibrium position by the action of gravity and hence resulting waves are called wind generated gravity waves. -
Answers of the Reviewers' Comments Reviewer #1 —- General
Answers of the reviewers’ comments Reviewer #1 —- General Comments As a detailed assessment of a coupled high resolution wave-ocean modelling system’s sensitivities in an extreme case, this paper provides a useful addition to existing published evidence regarding coupled systems and is a valid extension of the work in Staneva et al, 2016. I would therefore recommend this paper for publication, but with some additions/corrections related to the points below. —- Specific Comments Section 2.1 Whilst this information may well be published in the authors’ previous papers, it would be useful to those reading this paper in isolation if some extra details on the update frequencies of atmosphere and river forcing data were provided. Authors: More information about the model setup, including a description of the open boundary forcing, atmospheric forcing and river runoff, has been included in Section 2.1. Additional references were also added. Section 2.2 This is an extreme case in shallow water, so please could the source term parameterizations for bottom friction and depth induced breaking dissipation that were used in the wave model be stated? Authors: Additional information about the parameterizations used in our model setup, including more references, was provided in Section 2.2. Section 2.3 I found the statements that "<u> is the sum of the Eulerian current and the Stokes drift" and "Thus the divergence of the radiation stress is the only (to second order) force related to waves in the momentum equations." somewhat contradictory. In the equations, Mellor (2011) has been followed correctly and I see the basic point about radiation stress being the difference between coupled and uncoupled systems, so just wondering if the authors can review the text in this section for clarity.