Downloaded by [New York University] at 21:14 20 August 2016 Innovation and Technological Diffusion

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded by [New York University] at 21:14 20 August 2016 Innovation and Technological Diffusion Downloaded by [New York University] at 21:14 20 August 2016 Innovation and Technological Diffusion This book deals with two key aspects of the history of steam engines, a cornerstone of the Industrial Revolution: specifically, the road that led to its discovery and the process of diffusion of the early steam engines. The first part of the volume outlines the technological and scientific develop- ments which took place between the sixteenth and eighteenth centuries, proving critical for the invention of this strategic technology. The most important question addressed is why England came up with this innovation first as opposed to other countries (e.g., France, Italy), which were more advanced in terms of knowledge pertinent to it. The second part of the volume traces the process of diffusion of the early steam engines, the Newcomen model, through 1773, the year prior to the first commercial application of the second generation of steam engines (the Watt model). The process of diffusion is quantified on the basis of a novel method before proceeding with a discussion of the main determinants of this process. Kitsikopoulos pulls together a large amount of relevant evidence found in primary sources and more technically oriented literature which is often ignored by economic historians. This book will be of interest to economic historians and historians of technology. Harry Kitsikopoulos is Clinical Professor, Department of Economics, New York University, USA. Downloaded by [New York University] at 21:14 20 August 2016 Routledge explorations in economic history Edited by Lars Magnusson Uppsala University, Sweden For a complete list of titles in this series, please visit www.routledge.com. 22 An Economic History of London, 29 The Mechanics of Modernity in 1800–1914 Europe and East Asia Michael Ball and David Sunderland The institutional origins of social change and stagnation 23 The Origins of National Financial Erik Ringmar Systems Alexander Gerschenkron 30 International Economic Integration reconsidered in Historical Perspective Edited by Douglas J. Forsyth and Dennis M. P. McCarthy Daniel Verdier 31 Theories of International 24 The Russian Revolutionary Trade Economy, 1890–1940 Adam Klug Ideas, debates and alternatives Edited by Warren Young and Michael Vincent Barnett Bordo 25 Land Rights, Ethno Nationality and 32 Classical Trade Protectionism Sovereignty in History 1815–1914 Edited by Stanley L. Engerman and Edited by Jean Pierre Dormois and Jacob Metzer Pedro Lains 26 An Economic History of Film 33 Economy and Economics of Ancient Edited by John Sedgwick and Mike Greece Pokorny Takeshi Amemiya Downloaded by [New York University] at 21:14 20 August 2016 27 The Foreign Exchange Market of 34 Social Capital, Trust and the London Industrial Revolution: Development since 1900 1780–1880 John Atkin David Sunderland 28 Rethinking Economic Change in 35 Pricing Theory, Financing of India International Organisations and Labour and livelihood Monetary History Tirthankar Roy Lawrence H. Officer 36 Political Competition and 46 A Cultural History of Finance Economic Regulation Irene Finel-Honigman Edited by Peter Bernholz and Roland Vaubel 47 Managing Crises and De- Globalisation 37 Industrial Development in Postwar Nordic foreign trade and exchange Japan 1919–1939 Hirohisa Kohama Edited by Sven-Olof Olsson 38 Reflections on the Cliometrics 48 The International Tin Cartel Revolution John Hillman Conversations with economic historians 49 The South Sea Bubble Edited by John S. Lyons, Louis P. Helen J. Paul Cain and Samuel H. Williamson 50 Ideas and Economic Crises 39 Agriculture and Economic in Britain from Attlee to Blair Development in Europe Since 1870 (1945–2005) Edited by Pedro Lains and Vicente Matthias Matthijs Pinilla 51 Bengal Industries and the 40 Quantitative Economic History British Industrial Revolution The good of counting (1757–1857) Edited by Joshua Rosenbloom Indrajit Ray 41 A History of Macroeconomic Policy 52 The Evolving Structure of the in the United States East Asian Economic System John H. Wood since 1700 Edited by A. J. H. Latham and Heita 42 An Economic History of the Kawakatsu American Steel Industry Robert P. Rogers 53 German Immigration and Servitude in America, 43 Ireland and the Industrial Revolution 1709–1920 The impact of the Industrial Farley Grubb Revolution on Irish industry and society, 1801–1922 54 The Rise of Planning in Industrial Andy Bielenberg America, 1865–1914 Richard Adelstein Downloaded by [New York University] at 21:14 20 August 2016 44 Intra-Asian Trade and Industrialization 55 An Economic History of Modern Essays in memory of Yasukichi Yasuba Sweden Edited by A. J. H. Latham and Heita Lennart Schön Kawakatsu 56 The Standard of Living 45 Nation, State and the Industrial and Revolutions in Russia, Revolution 1700–1917 The visible hand Boris Mironov; edited by Lars Magnusson Gregory L. Freeze 57 Europe’s Green Revolution and 67 Large Databases in Economic Others Since History The rise and fall of peasant-friendly Research methods and plant breeding case studies Jonathan Harwood Edited by Mark Casson and Nigar Hashimzade 58 Economic Analysis of Institutional Change in Ancient Greece 68 A History of Market Carl Hampus-Lyttkens Performance From ancient Babylonia to the 59 Labour-intensive Industrialization modern world in Global History Edited by R. J. van der Spek, Jan Edited by Gareth Austin and Kaoru Luiten van Zanden and Bas van Sugihara Leeuwen 60 The History of Bankruptcy 69 Central Banking in Economic, social and cultural a Democracy implications in Early Modern Europe The Federal Reserve and its Edited by Thomas Max Safley alternatives John H. Wood 61 The Political Economy of Disaster Destitution, plunder and earthquake 70 The History of Migration in in Haiti Europe Mats Lundahl Perspectives from economics, politics and sociology 62 Nationalism and Economic Edited by Francesca Fauri Development in Modern Eurasia Carl Mosk 71 Famines in European Economic History 63 Agricultural Transformation in a The last great European famines Global History Perspective reconsidered Edited by Ellen Hillbom and Patrick Edited by Declan Curran, Svensson Lubomyr Luciuk and Andrew Newby 64 Colonial Exploitation and Economic Development 72 Natural Resources and Economic The Belgian Congo and the Growth Netherlands Indies compared Learning from history Edited by Ewout Frankema and Frans Edited by Marc Badia-Miró, Vicente Downloaded by [New York University] at 21:14 20 August 2016 Buelens Pinilla and Henry Willebald 65 The State and Business in the 73 The Political Economy of Major Powers Mercantilism An economic history 1815–1939 Lars Magnusson Robert Millward 74 Innovation and Technological 66 Privatization and Transition in Diffusion Russia in the Early 1990s An economic history of early steam Carol Scott Leonard and David engines Pitt-Watson Harry Kitsikopoulos Innovation and Technological Diffusion An economic history of early steam engines Harry Kitsikopoulos Downloaded by [New York University] at 21:14 20 August 2016 First published 2016 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN and by Routledge 711 Third Avenue, New York, NY 10017 Routledge is an imprint of the Taylor & Francis Group, an informa business © 2016 Harry Kitsikopoulos The right of Harry Kitsikopoulos to be identified as author of this work has been asserted by him in accordance with Sections 77 and 78 of the Copyright, Designs and Patent Act 1988. All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalog record for this book has been requested. ISBN: 978-1-138-94811-2 (hbk) ISBN: 978-1-315-66969-4 (ebk) Typeset in Times New Roman by Swales & Willis Ltd, Exeter, Devon, UK Downloaded by [New York University] at 21:14 20 August 2016 To my two little fairies, Karina and Klio Downloaded by [New York University] at 21:14 20 August 2016 Downloaded by [New York University] at 21:14 20 August 2016 Contents List of figures x List of tables xi Preface xiii PART I Innovation 1 1 From Hero to Newcomen: the critical scientific and technological developments that led to the invention of the steam engine 3 2 Why did England invent the steam engine? The role of science, economic incentives, institutions, and technical skills 40 PART II The diffusion of Newcomen engines, 1706–73 69 3 Reassessing the diffusion of Newcomen engines, 1706–73 73 4 The cost of steam vs. other power sources in the British economy, 1706–73 107 Downloaded by [New York University] at 21:14 20 August 2016 5 The role of British engineering skills in driving the diffusion of Newcomen engines, 1706–73 141 6 Firm size and market demand as determinants of diffusion: the role of the threshold (minimum) level of output 157 Epilogue 173 Index 183 Figures 1.1 Hero’s aeolipile 4 1.2 De Garay’s “steamboat” 6 1.3 Della Porta’s apparatus 7 1.4 De Caus’s apparatus 8 1.5 Branca’s aeolipile 9 1.6 Guericke’s experiments 12 1.7 Two versions of Somerset’s steam device 15 1.8 Newton’s
Recommended publications
  • Steam Engines
    Evolving Design Steam Engines Tetsuo Tomiyama ([email protected]) 1 Intelligent Mechanical Systems, Bio-Mechanical Engineering Faculty of Mechanical, Maritime and Materials Engineering Overview • A Small Question • History of Thermodynamics • Steam Engines • Thomas Newcomen • James Watt • After Watt • Improvements • Steam Cars • Steam Locomotives • Steamboats • Exam 2008 Wb3110: Steam Engines 2 ©2011 Tetsuo Tomiyama Which is the Oldest? • MIT 1861 • Second Law of Thermodynamics 1850 Rudolf Julius Emanuel Clausius (1822-1888) • TU Delft 1842 Wb3110: Steam Engines 3 ©2011 Tetsuo Tomiyama Definition of Mechanical Engineering • “To Build and Run a Steam Engine!” • (Unofficial Version@ME MIT) Wb3110: Steam Engines 4 ©2011 Tetsuo Tomiyama History of Thermodynamics • 1660: Robert Boyle Boyle's Law • 1712: Thomas Newcomen • 1741: École Nationale des Ponts et Chaussés • 1765: James Watt (Only the Idea) • 1770: Steam Car • 1776: James Watt (The Engine), Steamboat • 1794: Ecole Polytechnique • 1804: Steam Locomotive • 1824: Sadi Carnot, Carnot Cycle • 1842: TU Delft Wb3110: Steam Engines 5 ©2011 Tetsuo Tomiyama History of Thermodynamics • 1843: James Joule, Mechanical Equivalent of Heat • 1847: Hermann von Helmholtz, Definitive Statement of the First Law of Thermodynamics • 1849: William John Macquorn Rankine, Saturated Vapor Table (Pressure and Temperature) • 1850: Rudolf Clausius, The Second Law of Thermodynamics • 1851: Thomson an Alternative Statement of the Second Law • 1854: Clausius, Found dQ/T, but Did Not Name It • 1854: Rankine, Entropy
    [Show full text]
  • The Mechanical Career of Councillor Orffyreus, Confidence
    The mechanical career of Councillor Orffyreus, confidence man Alejandro Jenkins∗ High Energy Physics, Florida State University, Tallahassee, FL 32306-4350, USA and Escuela de F´ısica, Universidad de Costa Rica, 11501-2060 San Jos´e, Costa Rica (Dated: Jan. 2013, last revised Mar. 2013; to appear in Am. J. Phys. 81) In the early 18th century, J. E. E. Bessler, known as Orffyreus, constructed several wheels that he claimed could keep turning forever, powered only by gravity. He never revealed the details of his invention, but he conducted demonstrations (with the machine’s inner workings covered) that persuaded competent observers that he might have discovered the secret of perpetual motion. Among Bessler’s defenders were Gottfried Leibniz, Johann Bernoulli, Professor Willem ’s Gravesande of Leiden University (who wrote to Isaac Newton on the subject), and Prince Karl, ruler of the German state of Hesse-Kassel. We review Bessler’s work, placing it within the context of the intellectual debates of the time about mechanical conservation laws and the (im)possibility of perpetual motion. We also mention Bessler’s long career as a confidence man, the details of which were discussed in popular 19th-century German publications, but have remained unfamiliar to authors in other languages. Keywords: perpetual motion, early modern science, vis viva controversy, scientific fraud PACS: 01.65.+g, 45.20.dg I. INTRODUCTION The perpetual motion devices whose drawings add mystery to the pages of the more effusive encyclopedias do not work either. Nor do the metaphysical and theological theories that customarily declare who we are and what manner of thing the world is.
    [Show full text]
  • Vacuum in the 17Th Century and Onward the Beginning of Experimental Sciences Donald M
    HISTORY CORNER A SHORT HISTORY: VACUUM IN THE 17TH CENTURY AND ONWARD THE BEGINNING OF Experimental SCIENCES Donald M. Mattox, Management Plus Inc., Albuquerque, N.M. acuum as defined as a space with nothing in it (“perfect Early Vacuum Equipment vacuum”) was debated by the early Greek philosophers. The early period of vacuum technology may be taken as the V The saying “Nature abhors a vacuum” (horror vacui) is gener- 1640s to the 1850s. In the 1850s, invention of the platinum- ally attributed to Aristotle (Athens ~350 BC). Aristotle argued to-metal seal and improved vacuum pumping technology al- that vacuum was logically impossible. Plato (Aristotle’s teach- lowed the beginning of widespread studies of glow discharges er) argued against there being such a thing as a vacuum since using “Geissler tubes”[6]. Invention of the incandescent lamp “nothing” cannot be said to exist. Hero (Heron) of Alexandria in the 1850s provided the incentive for development of indus- (Roman Egypt) attempted using experimental techniques to trial scale vacuum technology[7]. create a vacuum (~50 AD) but his attempts failed although he did invent the first steam engine (“Heron’s steam engine”) and Single-stroke Mercury-piston Vacuum Pump “Heron’s fountain,” often used in teaching hydraulics. Hero It was the latter part of 1641 that Gasparo Berti demonstrated wrote extensively about siphons in his book Pneumatica and his water manometer, which consisted of a lead pipe about 10 noted that there was a maximum height to which a siphon can meters tall with a glass flask cemented to the top of the pipe “lift” water.
    [Show full text]
  • Blois Et Denis Papin »
    Focus sur enis apin Il y a trois cents ans, un illustre blésois rend son dernier souffle en Angleterre après avoir parcouru l’Europe, et surtout après « En ce qui regarde le seul gouvernement avoir contribué à l’une des inventions majeures du XVIIIe siècle : la machine de l’eau vaporisée, qu’ont fait les successeurs à vapeur. Du haut de l’escalier de Papin sinon d’agencer, de modifier plus éponyme, Denis Papin contemple heureusement ce qu’il a trouvé ? Qui donc aujourd’hui le territoire qui l’a vu est l’inventeur, le vrai, le réel inventeur ? La naître. Une sœur jumelle pour la postérité a répondu : un Français, un Blésois, statue de Blois Denis Papin. » Le dimanche 16 janvier 1887, a lieu dans la cour principale du Conservatoire Sa vie, son œuvre national des arts et métiers, à Paris, Le Service Ville d’art et d’histoire de la Ville de Blois organise Louis de la Saussaye Né en 1647, en région blaisoise, probablement dans la commune l’inauguration de la statue de Denis Papin. Sur toute l’année des visites guidées dont « Blois et Denis Papin ». 1869 de Chitenay, Denis Papin est un savant marqué par la méthode l’initiative du directeur du Conservatoire, monsieur Laussedat, une Pour plus d’informations : Blois Ville d’Art et d’Histoire Château royal de Blois cartésienne. Inventeur ingénieux, il met facilement ses théories en souscription a été ouverte par la Chambre syndicale parisienne des tél : 02 54 90 33 32 mécaniciens, chaudronniers et fondeurs. Il s’agit d’une copie de www.blois.fr rubrique « Découvrir Blois » puis « Histoire » Place du château application.
    [Show full text]
  • The Invention of the Steam Engine
    The Invention of the Steam Engine by Rochelle Forrester Copyright © 2019 Rochelle Forrester All Rights Reserved The moral right of the author has been asserted Anyone may reproduce all or any part of this paper without the permission of the author so long as a full acknowledgement of the source of the reproduced material is made. Second Edition Published 30 September 2019 Preface This paper was written in order to examine the order of discovery of significant developments in the history of the steam engine. It is part of my efforts to put the study of social and cultural history and social change on a scientific basis capable of rational analysis and understanding. This has resulted in a hard copy book How Change Happens: A Theory of Philosophy of History, Social Change and ​ Cultural Evolution and a website How Change Happens Rochelle Forrester’s Social Change, Cultural ​ ​ Evolution and Philosophy of History website. There are also philosophy of history papers such as The ​ ​ Course of History, The Scientific Study of History, Guttman Scale Analysis and its use to explain ​ ​ ​ ​ Cultural Evolution and Social Change and the Philosophy of History and papers on Academia.edu, ​ ​ ​ Figshare, Mendeley, Vixra, Phil Papers, Humanities Common and Social Science Research Network ​ ​ ​ ​ ​ ​ ​ ​ ​ websites. This paper is part of a series on the History of Science and Technology. Other papers in the series are The Invention of Stone Tools Fire The Discovery of Agriculture The Invention of Pottery ​ History of Metallurgy The Development of Agriculture
    [Show full text]
  • The Steam Engine in England and France
    Master’s Thesis 2016 30 ECTS School of Economics and Business The spark that ignited the Industrial Revolution An examination of the institutions surrounding the development of the steam engine in England and France Joshua Bragg Development and Natural Resource Economics Contents Preface and Acknowledgements ............................................................................................................. 1 Introduction ............................................................................................................................................. 3 Research Questions ............................................................................................................................. 5 Why did England dominate steam engine development and not France? ..................................... 6 Journey into Great Economic Mysteries ............................................................................................. 6 Background .............................................................................................................................................. 8 Energy Canyons ................................................................................................................................... 8 The Sources of Economic Growth ....................................................................................................... 8 The Mystery of Economic Growth ..................................................................................................... 10 Endogenous Growth
    [Show full text]
  • Experimental Philosophers and Public Demonstrators in Augustan England
    13 J B)HS, 1995, 28, 131-56 Who did the work? Experimental philosophers and public demonstrators in Augustan England STEPHEN PUMFREY* The growth of modern science has been accompanied by the growth of professionalization. We can unquestionably speak of professional science since the nineteenth century, although historians dispute about where, when and how much. It is much more problematic and anachronistic to do so of the late seventeenth century, despite the familiar view that the period saw the origin of modern experimental science. This paper explores the broad implications of that problem. One area of scientific activity, public science lecturing and demonstrating, certainly produced its first professionals in the period 1660-1730. This was a period which Geoffrey Holmes called 'Augustan England', and which he found to be marked by the expansion of many of the professions.1 Swollen lower ranks of physicians, civil servants and teachers crowded onto the ladder up to gentility, and even solicitors achieved respectability. Alongside these established types the professional scientist, such as the public lecturer, was a novelty. Later, in the high Georgian era, a small army of men like Stephen Demainbray and Benjamin Martin made recognized if precarious livings from public experimentation, but the first generation pioneers were entering new and risky territory. As Larry Stewart has shown, 'the rise of public science' was a successful social and economic transformation of the highest significance in the history of science which was part of what has been called England's commercial revolution.2 We are accustomed to think of early, pioneering professionals like Robert Hooke, Francis Hauksbee or Denis Papin as 'notable scientists'.
    [Show full text]
  • Gottfried Wilhelm Leibniz, the Humanist Agenda and the Scientific Method
    3237827: M.Sc. Dissertation Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Kundan Misra A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Research), University of New South Wales School of Mathematics and Statistics Faculty of Science University of New South Wales Submitted August 2011 Changes completed September 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Misra First name: Kundan Other name/s: n/a Abbreviation for degree as given in the University calendar: MSc School: Mathematics and Statistics Faculty: Science Title: Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Abstract 350 words maximum: Modernity began in Leibniz’s lifetime, arguably, and due to the efforts of a group of philosopher-scientists of which Leibniz was one of the most significant active contributors. Leibniz invented machines and developed the calculus. He was a force for peace, and industrial and cultural development through his work as a diplomat and correspondence with leaders across Europe, and in Russia and China. With Leibniz, science became a means for improving human living conditions. For Leibniz, science must begin with the “God’s eye view” and begin with an understanding of how the Creator would have designed the universe. Accordingly, Leibniz advocated the a priori method of scientific discovery, including the use of intellectual constructions or artifices. He defended the usefulness and success of these methods against detractors. While cognizant of Baconian empiricism, Leibniz found that an unbalanced emphasis on experiment left the investigator short of conclusions on efficient causes.
    [Show full text]
  • European Steamboats Prior to The
    222 Scientific American SEPTEMBER 25, 1909. to the exercise of the profession of a civil engineer. He The engine was horizontal, and the reciprocating mo­ EUROPEAN STEAMBOATS PRIOR obtained patents for several improvements in the steam tion of the piston was converted into rotary motion by engine, and deSigned a steam carriage, which in 1786 means of "a ratchet' gear acting upon a spur wheel upon TO THE "CLERMONT." he submitted to several learned and scientific men in the main driving axle. ------,-._..... HI Edinburgh. Here he met Patrick Miller of Dalswin­ ....__ - ____ ton, a wealthy banker, who informed Symington that AMERICAN STEAMBOATS PRIOR TO THE "CLERMONT." As in America, so in Europe, the quarter of a cen­ h'l had "spent much time in making experim ents as (Concluded. from page 219.) tury preceding the successful inauguration of steam­ to the propelling of vessels upon water by using Council, after a trip on the Delaware, were so greatly boat service on �he Hudson River was a period of wheels in place of sails or oars. These �heels he pleased as to present Fitch with a suit of colors for his extraordinary interest among inventors in the possi­ had put in motion, applying the strength of men to boat. bilities of steamboat navigation, during which a great the turning of a handle or winch." Symington told The new venture was now ready for commercial amount of thought and experimental work was devoted Miller that he believed a steam engine might be con­ exploitation. A schedule of sailing dates and fares to the development of a successful steam-driven ves­ structed for the purpose, and he proposed that favorite was drawn up, and during the following three months sel.
    [Show full text]
  • Translating Early Modern Science
    Translating Early Modern Science Sietske Fransen, Niall Hodson, and Karl A.E. Enenkel - 978-90-04-34926-1 Downloaded from Brill.com02/23/2021 02:30:39PM via free access Intersections Interdisciplinary Studies in Early Modern Culture General Editor Karl A.E. Enenkel (Chair of Medieval and Neo-Latin Literature Westfälische Wilhelms-Universität Münster e-mail: kenen_01@uni_muenster.de) Editorial Board W. van Anrooij (University of Leiden) W. de Boer (Miami University) Chr. Göttler (University of Bern) J.L. de Jong (University of Groningen) W.S. Melion (Emory University) R. Seidel (Goethe University Frankfurt am Main) P.J. Smith (University of Leiden) J. Thompson (Queen’s University Belfast) A. Traninger (Freie Universität Berlin) C. Zittel (University of Stuttgart) C. Zwierlein (Ruhr-Universität Bochum) VOLUME 51 – 2017 The titles published in this series are listed at brill.com/inte Sietske Fransen, Niall Hodson, and Karl A.E. Enenkel - 978-90-04-34926-1 Downloaded from Brill.com02/23/2021 02:30:39PM via free access Translating Early Modern Science Edited by Sietske Fransen Niall Hodson Karl A.E. Enenkel LEIDEN | BOSTON Sietske Fransen, Niall Hodson, and Karl A.E. Enenkel - 978-90-04-34926-1 Downloaded from Brill.com02/23/2021 02:30:39PM via free access Cover illustration: Adriaen Lommelin, frontispiece of Noël de Berlaimont, Dictionariolum et colloquia octo linguarum, Latinae, Gallicae, Belgicae, Teutonicae, Hispanicae, Italicae, Anglicae et Portugallicae (Antwerp, Hendrick Aertsen: 1662). Engraving. The Hague, Koninklijke Bibliotheek. Image © Koninklijke Bibliotheek. Library of Congress Cataloging-in-Publication Data Names: Fransen, Sietske, editor. | Hodson, Niall, editor. | Enenkel, K. A. E., editor.
    [Show full text]
  • Leibniz, in the Best of Company
    LEIBNIZ, IN THE BEST OF COMPANY Insights into correspondence with 8 personalities 000I0 3 Leibniz, in the best Gottfried Wilhelm Leibniz (1646–1716) was a tireless Interesting insights in the life and work of one of the of company writer of letters. A fact demonstrated by some 20,000 most prominent scientists and universal scholars of his letters from and to about 1,300 correspondents with time can be gained, for example, from the exchange of whom he was in contact across the globe. The Gottfried letters with the following eight eminent contemporaries: Wilhelm Leibniz Bibliothek (GWLB), part of the Nieder- Queen Sophia Charlotte, Sir Isaac Newton, Czar Peter I, sächsische Landesbibliothek (Lower Saxony State Library), Baruch de Spinoza, Electress Sophia, Emperor Kangxi, houses the lion’s share of his extensive legacy. Denis Papin and Princess Caroline. UNESCO accepted the Leibniz correspondence into To see and listen to three letters and a memorandum the Memory of the World Register in August 2007 as a penned by Leibniz, please visit: ‘unique testimony of the European republic of scholars www.wissen.hannover.de/leibniz in its transition from Baroque to the early Enlighten - ment’. 00I00 Gottfried Wilhelm Leibniz in Hannover 5 For Leibniz, Hannover was a blessing and a curse Europe as a scientist, philosopher and science organ - at the same time. iser he was unable to permanently settle in Vienna, Paris or London. Leibniz died after a short illness on “Every morning he (Leibniz) would travel past my 14 November 1716 in his apartment in the Schmiede- parents’ house to the court, because every time his straße in Hannover and was buried on 14 December in large jet black wig caught my eye (...).
    [Show full text]
  • 17. Engineering Empires: Chaps 1–2 1. Cultural History of Technology
    17. Engineering Empires: Chaps 1–2 1. Cultural History of Technology Whig history "...the history of the winning side, valuing the past only where it matches, or approaches, the present, and all but ignoring the 'failures', 'dead-ends' or paths not taken, except where they stand as salutary reminders of the extent of human folly, nurtured by arrogance or fashion". (MS05, pg. viii.) "A central aim of our book... is to highlight the cultural contingencies which shaped the varied technologies of empire in the long 19th century [~1760–WWII]." (MS05, pg. ix.) history of technology Cultural history = history of science of technology cultural history Types of history of technology: (i) Popularized accounts: "...the inexorable march of material technological progress; the individual triumph over adversity and the forces of conservatism; and the moralized life of the engineering 'visionary', outside—and yet ahead of—his (always his) time." (ii) Economic accounts: quantitative analyses of technologies based on "economic impact". (iii) Antiquarian accounts: "Internal", detail-specific accounts, as opposed to "external" accounts of broader meanings or patterns of use. Cultural history = "the study of the construction (or production) and the dissemination (or reproduction) of meanings in varying historical and cultural settings." Is there a distinction between "technology" and "culture"? • Does technology produce culture, or does culture produce technology? "...we might instead prefer to see 'technology' and 'culture' in simultaneous reciprocal transformation—each involved in the other's production and each conferring meaning on the other." (MS05, pg. 5.) "We accept, therefore, historical contingency rather than assuming the inevitable success of certain projects or technologies, especially those subsequently found to have been 'successful', in some sense, in the long term." (MS05, pg.
    [Show full text]