(The Psyllid, Aphalara Itadori Shinji) for Invasive Knotweeds

Total Page:16

File Type:pdf, Size:1020Kb

(The Psyllid, Aphalara Itadori Shinji) for Invasive Knotweeds Manipulating Phenotypic Plasticity to Improve Population Establishment of a Classical Biological Control Agent (the Psyllid, Aphalara itadori Shinji) for Invasive Knotweeds by Timothy Owen Skuse A thesis submitted in conformity with the requirements for the degree of Master of Science, Forestry Faculty of Forestry University of Toronto © Copyright by Timothy Owen Skuse 2018 Manipulating Phenotypic Plasticity to Improve Population Establishment of a Classical Biological Control Agent (the Psyllid, Aphalara itadori Shinji) for Invasive Knotweeds Timothy Owen Skuse Master of Science, Forestry Faculty of Forestry University of Toronto 2018 Abstract The psyllid Aphalara itadori was approved for release as a biocontrol agent for invasive knotweeds (Fallopia sp.) in Canada, but has had limited success establishing in the field. Establishing biocontrol agent populations in the field is a common problem and one unexplored possibility in improving establishment is the manipulation of an agent’s phenotype prior to release. We developed a series of laboratory bioassays to assess the psyllid’s fecundity and offspring fitness in response to host plants of varying quality. Results show an increase in fitness measures that appear unrelated to the host plant quality and more closely determined by temperature or humidity. This suggests phenotypic plastic responses in A. itadori populations are less sensitive to changes in their host and more sensitive to environmental variables. Determining which environmental factors drive changes in these fitness variables and rearing A. itadori in these conditions prior to release may improve population establishment. ii Acknowledgments I would like to thank my supervisor Prof. Sandy M. Smith for accepting me into the MScF program, for guiding me through the process to complete this thesis, for financial support, and for her valuable edits needed to finish this document. I would also like to thank Dr. Rob Bourchier for his support as a supervisor, welcoming me into his lab at AAFC Lethbridge, and providing me with the opportunity to work with A. itadori. His guidance was critical in helping to develop the ideas and planning out the experiments that make up this thesis. His help with statistics and edits were invaluable as well as the financial support provided. My thanks to Janine Brooke and Karma Tiberg for their help in all things related to working at AAFC Lethbridge. Their help and patience with preparing for and carrying out my (sometimes frustrating) experiments was immensely appreciated and I could not have finished this document without them. I would also like to acknowledge Prof. Megan Frederickson and Prof. Peter Kotanen for accepting to be on my MScF committee and providing feedback on experimental design and interpretation of results. A big thank you to the students Becky Bedell, Johnathan Reid, and Diana Wilches who helped with setting up and checking experiments. Financial support was provided through Queen Elizabeth II/Buell Graduate Scholarships in Science and Technology and facilitated me completing this work. iii Table of Contents Acknowledgments ......................................................................................................................... iii List of Tables .................................................................................................................................. vi List of Figures ................................................................................................................................. ix List of Appendices ........................................................................................................................ xii Introduction .................................................................................................................................... 1 The invasive knotweed complex ........................................................................................................... 1 Challenges of knotweed management ................................................................................................. 5 Biological control using the psyllid Aphalara itadori Shinji .................................................................. 6 Establishment of classical biological control agents ........................................................................... 10 The role of phenotypic plasticity ........................................................................................................ 13 Research goals .................................................................................................................................... 14 Materials and Methods ................................................................................................................ 16 Plant and insect material .................................................................................................................... 16 Preliminary host quality experiments ................................................................................................. 16 Bioassay experimental design ............................................................................................................. 17 Experiment 1: Damaged versus intact host plants ............................................................................. 19 Experiment 2: Juvenile versus mature host plants ............................................................................. 21 Experiment 3: Hardened leaves .......................................................................................................... 22 Experiment 4: Psyllid density manipulation........................................................................................ 23 Statistical analysis ............................................................................................................................... 24 Results ........................................................................................................................................... 26 Preliminary host quality tests ............................................................................................................. 26 Experiment 1: Damaged versus intact plants ..................................................................................... 26 Experiment 2: Juvenile versus mature plants ..................................................................................... 32 Experiment 3: Hardened leaves .......................................................................................................... 36 Overall Morphometrics ....................................................................................................................... 39 Experiment 4: Density manipulation experiment ............................................................................... 40 Further modelling ............................................................................................................................... 44 iv Discussion ..................................................................................................................................... 48 Conclusions, recommendations, and future directions .............................................................. 62 References .................................................................................................................................... 64 Appendix A ................................................................................................................................... 74 v List of Tables Table 1. Factors and corresponding levels used in models predicting Aphalara itadori fitness responses in Experiment 1. Each F0 A. itadori used in the experiment came from the same natal environment (laboratory colony) and F1 and F2 A. itadori were reared on either damaged or intact Japanese knotweed (Fallopia japonica) plants. ................................................................... 21 Table 2. Factors and corresponding levels used in models predicting Aphalara itadori fitness responses in Experiment 2. Each F0 A. itadori used in the experiment came from the same natal environment (laboratory colony) and F1 A. itadori were reared on either juvenile or mature Japanese knotweed (Fallopia japonica) plants. Psyllids from each generation and natal treatment were exposed to either juvenile or mature knotweed resulting in six possible generation*parent natal treatment*treatment combinations. ...................................................................................... 22 Table 3. Factors and corresponding levels used in models predicting Aphalara itadori fitness responses in Experiment 3. Each F0 A. itadori used in the experiment came from the same natal environment (laboratory colony) and F2 A. itadori were reared on mature Japanese knotweed (Fallopia japonica) plants from Experiment 2. Psyllids from each generation and natal treatment were exposed to either hardened or unhardened knotweed resulting in four parent natal treatment*treatment combinations. ........................................................................... 23 Table 4. GLM results of Experiment 1 quasipoisson model testing whether Aphalara itadori oviposition is affected by host plant treatment, generation number, natal environment and the interaction term between treatment and natal environment. Asterisk indicates significance of P<0.05. .........................................................................................................................................
Recommended publications
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Field Release of the Insects Calophya Latiforceps
    United States Department of Field Release of the Insects Agriculture Calophya latiforceps Marketing and Regulatory (Hemiptera: Calophyidae) and Programs Pseudophilothrips ichini Animal and Plant Health Inspection (Thysanoptera: Service Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Field Release of the Insects Calophya latiforceps (Hemiptera: Calophyidae) and Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html.
    [Show full text]
  • A Chromosomal Study of 11 Species of Psyllinea (Insecta: Homoptera)
    © Comparative Cytogenetics, 2007 . Vol. 1, No. 2, P. 149-154. ISSN 1993-0771 (Print), ISSN 1993-078X (Online) A chromosomal study of 11 species of Psyllinea (Insecta: Homoptera) E.S. Labina Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia. E-mail: [email protected] Abstract. Meiotic karyotypes in males of 10 species (assigned to 5 genera and 3 subfamilies) of the family Psyllidae and one species of the family Triozidae are described for the first time. The first data on the genus Crastina are presented. All the species were shown to exhibit the usual (modal) psyllid karyotype of 2n = 24 + X except for Craspedolepta villosa and Crastina myricariae, in which 2n = 22 + X and 2n = 24 + XY are found respectively. Key words: Psyllinea, karyotypes, sex chromosome systems. INTRODUCTION maining three families only few species were in- vestigated: 3 in Calophyidae, 2 in Carsidaridae, Psyllids or jumping plant-lice (Homoptera, and 4 in Homotomidae. In the family Phaco- Sternorrhyncha, Psyllinea) are widely distributed pteronidae no species has been examined cytoge- mono- or oligophagous phloem-sucking insects netically. feeding on dicotyledonous plants. This suborder Psyllids possess holokinetic chromosomes that includes approximately three thousands species are characteristic for Homoptera as a whole. The (Burckhardt, Kofler, 2004). Many psyllids are psyllid karyotypes show high uniformity. One hun- known to be pests of cultivated plants. dred and sixty of the studied species (i.e., approxi- Although in the last few decades there has been mately 85%) exhibit 24 autosomes and one or two considerable study of the taxonomy and phyloge- X-chromosomes in male and female complements netic relationships of psyllids, there is still much respectively.
    [Show full text]
  • A Taxonomic Study of Jumping Plant Lice of the Subfamily Liviinae (Hemiptera: Psylloidea) in Central America
    PŘÍRODOVĚDECKÁ FAKULTA A taxonomic study of jumping plant lice of the subfamily Liviinae (Hemiptera: Psylloidea) in Central America Bakalářská práce ELIZAVETA KVINIKADZE Vedoucí práce: Mgr. Igor Malenovský, Ph.D.Mgr. Igor Malenovský, Ph.D. Ústav botaniky a zoologie Obor Ekologická a evoluční biologie Brno 2021 Bibliografický záznam Autor: Elizaveta Kvinikadze Přírodovědecká fakulta Masarykova univerzita Ústav botaniky a zoologie Název práce: A taxonomic study of jumping plant lice of the subfamily Liviinae (Hemiptera: Psylloidea) in Central America Studijní program: Ekologická a evoluční biologie Studijní obor: Ekologická a evoluční biologie Vedoucí práce: Mgr. Igor Malenovský, Ph.D. Rok: 2021 Počet stran: 92 Klíčová slova: Central America, Liviinae, Diclidophlebia, new species, Melastomataceae, biocontrol agent A TAXONOMIC STUDY OF JUMPING PLANT LICE OF THE SUBFAMILY LIVIINAE (HEMIPTERA: PSYLLOIDEA) IN CENTRAL AMERICA Bibliographic record Author: Elizaveta Kvinikadze Faculty of Science Masaryk University Department of Botany and Zoology Title of Thesis: A taxonomic study of jumping plant lice of the subfamily Liviinae (Hemiptera: Psylloidea) in Central America Degree Programme: Ecological and Evolutionary Biology Field of Study: Ecological and Evolutionary Biology Supervisor: Mgr. Igor Malenovský, Ph.D. Year: 2021 Number of Pages: 92 Keywords: Central America, Liviinae, Diclidophlebia, new species, Melastomataceae, biocontrol agent 3 Anotace Mery (Insecta: Hemiptera: Psylloidea) jsou fytofágní hmyz většinou úzce specializovaný na své hostitelské rostliny, a proto potenciálně vyu- žitelný v biologické regulaci invazních druhů rostlin. Miconia calvescens (Melastomataceae) je dřevina původně rozšířená ve Střední a Jižní Ame- rice, představující dnes riziko pro mnoho tropických ekosystémů. Rod Diclidophlebia Crawford, 1920 (Liviidae: Liviinae) je nadějná skupina mer pro vyhledání vhodných druhů pro potlačení této invazní rostliny.
    [Show full text]
  • Efficacy and Host Specificity Compared Between Two Populations of The
    Biological Control 65 (2013) 53–62 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori, candidates for biological control of invasive knotweeds in North America ⇑ Fritzi Grevstad a, , Richard Shaw b, Robert Bourchier c, Paolo Sanguankeo d, Ghislaine Cortat e, Richard C. Reardon f a Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA b CABI, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom c Agriculture and AgriFood Canada-Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1 d Olympic Natural Resources Center, University of Washington, Forks, WA 98331, USA e CABI, CH 2800 Delemont, Switzerland f USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV 26505, USA highlights graphical abstract " Two populations of the psyllid Aphalara itadori are effective at reducing knotweed growth and biomass. " The two populations differ in their performance among different knotweed species. " Development of A. itadori occurred infrequently on several non-target plant species. " The psyllid exhibited non-preference and an inability to persist on non- target plants. article info abstract Article history: Invasive knotweeds are large perennial herbs in the Polygonaceae in the genus Fallopia that are native to Received 2 February 2012 Asia and invasive in North America. They include Fallopia japonica (Japanese knotweed), F. sachalinensis Accepted 4 January 2013 (giant knotweed), and a hybrid species F. x bohemica (Bohemian knotweed). Widespread throughout Available online 12 January 2013 the continent and difficult to control by mechanical or chemical methods, these plants are good targets for classical biological control.
    [Show full text]
  • V Ä Llm Ib a Fta M
    H . R. ЕЛ Л Л 'Ч VÄllM iBAftAM I 5 10 50 TARTU RIIKLIK ÜLIKOOL ZOOLOOGIA KATEEDER H.Remm PUTUKATE VÄLIMÄÄRAJA I (APTERYGOTA, PALAEOPTERA, HEMIMETABOLA) Teine trükk Tartu 1970 S a a t в к e Käesolev määraja on koostatud Sesti NSV-a esinevate suuremate Ja tavalisemate putukate valmikute liikide kind­ lakstegemiseks väliolukorras. Vastavalt sellele on püütud valida tuimuseid, mis on nähtavad palja silmaga või kuni 20-kordse suurendusega luubiga. Seltsidest on välja jäetud mõned väikesed, harvako ha tavad pinna sepu tukad (Prptura, Dlplura)f teiste loomade siseparasiidid ( Strepsiptera) Ja alalised väi ispara siidid (МаЫорЬа§а, Anoplu ra, Aphanlpte- ra). Seltsid) millede liikide määramine nõuab mlkroefcoopi- lise ehituse uurimist, on toodud alamseltsini või sugukon­ nani (Рофда, Thy s^optera). Ülevaate saamiseks seltside liigilisest koostisest on iga seltsi (või alamseltsi) ees toodud käsiteldud liikide nimestik. Nimestikus sulgudes toodud taksoneid pole määra­ mi stab el it esse sisse võetud. Liikide osas, mis Bestie pole seni kindlaks tehtud, kuid võiksid meil tõenäoliselt esi­ neda, on nimetatud naabermaid,kus neid on täheldatud. Fau- n is t ilis e lt nõrgalt uuritud rühmade juures (kevlkulised, karillsed, lehetäilised, kilptäilised) ei ole seda print­ siipi kasutatud. Määraja on mõeldud eeskätt TRÜ bioloogiaosakonna üli­ õpilastele käsiraamatuks välipraktikal. Seetõttu eeldatak­ se, et määraja kasutajal on põhilised entomoloogilised mõis­ ted juba tuttavad. Vastasel korral on kasulik eelnevalt tutvuda putukate kehaehituse iseärasustega kirjanduse põh­ jal: V.Maavara "Noore entomoloogi käsiraamat", TLn., 1956. ja G.Abrikossov jt. "Selgrootute zooloogia", Tln., I960. Rohked Joonised ja skeemid peaksid võimaldama määrajat ka­ sutada ka kõigil loodusehuvilistel ning olema abiks kooli- -3- de bioloogiaõpetajatele ekskursioonidel looduse tundmaõppi­ miseks.
    [Show full text]
  • Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla
    insects Article Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla picta Helps Understanding Its Feeding Behavior Dana Barthel 1,*, Hannes Schuler 2,3 , Jonas Galli 4, Luigimaria Borruso 2 , Jacob Geier 5, Katrin Heer 6 , Daniel Burckhardt 7 and Katrin Janik 1,* 1 Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), Italy 2 Faculty of Science and Technology, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy; [email protected] (H.S.); [email protected] (L.B.) 3 Competence Centre Plant Health, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy 4 Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria; [email protected] 5 Department of Botany, Leopold-Franzens-Universität Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; [email protected] 6 Faculty of Biology—Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch-Straße 8, D-35043 Marburg, Germany; [email protected] 7 Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland; [email protected] * Correspondence: [email protected] (D.B.); [email protected] (K.J.) Received: 10 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 Simple Summary: Cacopsylla picta is an insect vector of apple proliferation phytoplasma, the causative bacterial agent of apple proliferation disease. In this study, we provide an answer to the open question of whether adult Cacopsylla picta feed from other plants than their known host, the apple plant. We collected Cacopsylla picta specimens from apple trees and analyzed the composition of plant DNA ingested by these insects.
    [Show full text]
  • Prediction of the Geographic Distribution of the Psyllid, Arytinnis
    Prediction of the Geographic Distribution of the Psyllid, Arytinnis hakani (Homoptera: Psyllidae), a Prospective Biological Control Agent of Genista monspessulana, Based on the Effect of Temperature on Development, Fecundity, and Survival Author(s): Lincoln Smith Source: Environmental Entomology, 43(5):1389-1398. Published By: Entomological Society of America URL: http://www.bioone.org/doi/full/10.1603/EN14086 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. PHYSIOLOGICAL ECOLOGY Prediction of the Geographic Distribution of the Psyllid, Arytinnis hakani (Homoptera: Psyllidae), a Prospective Biological Control Agent of Genista monspessulana, Based on the Effect of Temperature on Development, Fecundity, and Survival LINCOLN SMITH1 Exotic and Invasive Weeds Research Unit, USDA Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 Environ. Entomol. 43(5): 1389Ð1398 (2014); DOI: http://dx.doi.org/10.1603/EN14086 ABSTRACT The psyllid, Arytinnis hakani (Loginova), is a prospective biological control agent of Genista monspessulana (French broom), an invasive shrub originating from western Europe.
    [Show full text]
  • An Updated Classification of the Jumping Plant-Lice (Hemiptera
    European Journal of Taxonomy 736: 137–182 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.736.1257 www.europeanjournaloftaxonomy.eu 2021 · Burckhardt D. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:F2976039-934E-46BE-B839-4D28C92C871F An updated classifi cation of the jumping plant-lice (Hemiptera: Psylloidea) integrating molecular and morphological evidence Daniel BURCKHARDT 1,*, David OUVRARD 2 & Diana M. PERCY 3 1 Naturhistorisches Museum, Augustinergasse 2, 4001 Basel, Switzerland. 2 ANSES, Plant Health Laboratory, Entomology and invasive plants unit, 755 avenue du campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez Cedex, France. 3 Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver V6T 1Z4, Canada. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:2FA5C7E5-D28E-4220-9796-02717E892B1D 2 urn:lsid:zoobank.org:author:2748132A-5D53-4BBA-9E33-F2723DCAAF19 3 urn:lsid:zoobank.org:author:84F3C908-9927-40A6-BBBF-6951B7736278 Abstract. The classifi cation of the superfamily Psylloidea is revised to incorporate fi ndings from recent molecular studies, and to integrate a reassessment of monophyla primarily based on molecular data with morphological evidence and previous classifi cations. We incorporate a reinterpretation of relevant morphology in the light of the molecular fi ndings and discuss confl icts with respect to different data sources and sampling strategies. Seven families are recognised of which four (Calophyidae, Carsidaridae, Mastigimatidae and Triozidae) are strongly supported, and three (Aphalaridae, Liviidae and Psyllidae) weakly or moderately supported.
    [Show full text]
  • Nomina Insecta Nearctica Table of Contents
    5 NOMINA INSECTA NEARCTICA TABLE OF CONTENTS Generic Index: Dermaptera -------------------------------- 73 Introduction ----------------------------------------------------------------- 9 Species Index: Dermaptera --------------------------------- 74 Structure of the Check List --------------------------------- 11 Diplura ---------------------------------------------------------------------- 77 Original Orthography ---------------------------------------- 13 Classification: Diplura --------------------------------------- 79 Species and Genus Group Name Indices ----------------- 13 Alternative Family Names: Diplura ----------------------- 80 Structure of the database ------------------------------------ 14 Statistics: Diplura -------------------------------------------- 80 Ending Date of the List -------------------------------------- 14 Anajapygidae ------------------------------------------------- 80 Methodology and Quality Control ------------------------ 14 Campodeidae -------------------------------------------------- 80 Classification of the Insecta -------------------------------- 16 Japygidae ------------------------------------------------------ 81 Anoplura -------------------------------------------------------------------- 19 Parajapygidae ------------------------------------------------- 81 Classification: Anoplura ------------------------------------ 21 Procampodeidae ---------------------------------------------- 82 Alternative Family Names: Anoplura --------------------- 22 Generic Index: Diplura --------------------------------------
    [Show full text]
  • Effect of Humidity and Temperature on the Performance of Three Strains Of
    Biological Control 146 (2020) 104269 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Effect of humidity and temperature on the performance of three strains of T Aphalara itadori, a biocontrol agent for Japanese Knotweed ⁎ Chanida Funga, , Pablo González-Morenob, Corin Prattb, Tom H. Olivera, Robert S. Bourchierc, Manuela González-Suáreza a Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading RG6 6AS, UK b CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK c Agriculture and AgriFood Canada-Lethbridge Research Centre, Lethbridge, AB T1J 4B1, Canada ARTICLE INFO ABSTRACT Keywords: Japanese knotweed (Fallopia japonica) is a highly damaging invasive species affecting UK infrastructure and Biological control biodiversity. Under laboratory conditions, the psyllid Aphalara itadori has demonstrated its potential to be a Climate change successful biocontrol agent for F. japonica. However, this potential has not materialised in the field where long- Fallopia japonica term establishment of A. itadori has been unsuccessful and faces the added challenge of climate change. Intraspecific variation Intraspecific variation (variation among individuals of a species) has been shown to support establishment in Invasive species alien species and improve resilience to changing environmental conditions. Here we propose it could improve Japanese psyllid Saturation Deficiency Index the performance of biocontrols. To test this possibility we compared the performance and impact on F. japonica of three strains of A. itadori with different genetic backgrounds, including a newly created hybrid. Wehy- pothesize that genetic variability would be increased in hybrids resulting in greater biocontrol effectiveness (greater impact on plant growth). We also explored the potential influence of changing climate on performance, testing all strains under two humidity conditions (with the same temperature).
    [Show full text]
  • Species List for Garey Park-Inverts
    Species List for Garey Park-Inverts Category Order Family Scientific Name Common Name Abundance Category Order Family Scientific Name Common Name Abundance Arachnid Araneae Agelenidae Funnel Weaver Common Arachnid Araneae Thomisidae Misumena vatia Goldenrod Crab Spider Common Arachnid Araneae Araneidae Araneus miniatus Black-Spotted Orbweaver Rare Arachnid Araneae Thomisidae Misumessus oblongus American Green Crab Spider Common Arachnid Araneae Araneidae Argiope aurantia Yellow Garden Spider Common Arachnid Araneae Uloboridae Uloborus glomosus Featherlegged Orbweaver Uncommon Arachnid Araneae Araneidae Argiope trifasciata Banded Garden Spider Uncommon Arachnid Endeostigmata Eriophyidae Aceria theospyri Persimmon Leaf Blister Gall Rare Arachnid Araneae Araneidae Gasteracantha cancriformis Spinybacked Orbweaver Common Arachnid Endeostigmata Eriophyidae Aculops rhois Poison Ivy Leaf Mite Common Arachnid Araneae Araneidae Gea heptagon Heptagonal Orbweaver Rare Arachnid Ixodida Ixodidae Amblyomma americanum Lone Star Tick Rare Arachnid Araneae Araneidae Larinioides cornutus Furrow Orbweaver Common Arachnid Ixodida Ixodidae Dermacentor variabilis American Dog Tick Common Arachnid Araneae Araneidae Mangora gibberosa Lined Orbweaver Uncommon Arachnid Opiliones Sclerosomatidae Leiobunum vittatum Eastern Harvestman Uncommon Arachnid Araneae Araneidae Mangora placida Tuft-legged Orbweaver Uncommon Arachnid Trombidiformes Anystidae Whirligig Mite Rare Arachnid Araneae Araneidae Mecynogea lemniscata Basilica Orbweaver Rare Arachnid Eumesosoma roeweri
    [Show full text]