Studies in Hemiptera in Honour of Pavel Lauterer and Jaroslav L. Stehlík

Total Page:16

File Type:pdf, Size:1020Kb

Studies in Hemiptera in Honour of Pavel Lauterer and Jaroslav L. Stehlík Acta Musei Moraviae, Scientiae biologicae Special issue, 98(2) Studies in Hemiptera in honour of Pavel Lauterer and Jaroslav L. Stehlík PETR KMENT, IGOR MALENOVSKÝ & JIØÍ KOLIBÁÈ (Eds.) ISSN 1211-8788 Moravian Museum, Brno 2013 RNDr. Pavel Lauterer (*1933) was RNDr. Jaroslav L. Stehlík, CSc. (*1923) born in Brno, to a family closely inter- was born in Jihlava. Ever since his ested in natural history. He soon deve- grammar school studies in Brno and loped a passion for nature, and parti- Tøebíè, he has been interested in ento- cularly for insects. He studied biology mology, particularly the true bugs at the Faculty of Science at Masaryk (Heteroptera). He graduated from the University, Brno, going on to work bri- Faculty of Science at Masaryk Univers- efly as an entomologist and parasitolo- ity, Brno in 1950 and defended his gist at the Hygienico-epidemiological CSc. (Ph.D.) thesis at the Institute of Station in Olomouc. From 1962 until Entomology of the Czechoslovak his retirement in 2002, he was Scienti- Academy of Sciences in Prague in fic Associate and Curator at the 1968. Since 1945 he has been profes- Department of Entomology in the sionally associated with the Moravian Moravian Museum, Brno, and still Museum, Brno and was Head of the continues his work there as a retired Department of Entomology there from research associate. Most of his profes- 1948 until his retirement in 1990. sional career has been devoted to the During this time, the insect collections study of psyllids, leafhoppers, plant- flourished and the journal Acta Musei hoppers and their natural enemies. He Moraviae became established as a sci- has built up a huge collection of these entific periodical. To date, he has pub- groups and has published over 200 sci- lished over 120 scientific papers, many entific papers on their systematics and of them addressing the systematics faunistics, as well as applied entomo- and taxonomy of world Pyrrhocoridae logy. He has also always been an ent- and Largidae and the faunistics of husiastic populariser of entomology, Czech and Slovak Heteroptera. especially among younger people. EDITORIAL This specially-published edition of Acta Musei Moraviae, Scientiae biologicae is dedicated to two outstanding entomologists, RNDr. Jaroslav Stehlík, CSc. and RNDr. Pavel Lauterer who, in 2013, celebrated their ninetieth and eightieth birthdays respectively. Both have devoted their entire professional careers to the Hemiptera and to the Moravian Museum. In the museum, they have, for several decades, set consistently high standards of research and built up huge scientific collections in the Department of Entomology. They kept both the museum and Czech entomology in continuous contact with the international scientific community, even in the times when politics rendered this exceptional and far from easy, and when the world was far less technically interconnected than that which we take for granted today. We include 27 contributions on the taxonomy, systematics, biology and faunistics of the Heteroptera, Auchenorrhyncha and Psylloidea – insect groups close to the hearts of Jaroslav Stehlík and Pavel Lauterer – from a total of 53 authors from all over the world. In addition to the authors, many other colleagues have participated in the volume with peer-reviews of individual papers or personal memories: Charles Bartlett (University of Delaware, Newark, USA), Jérôme Constant (Royal Belgian Institute of Natural Sciences, Brussels, Belgium), Jakob Damgaard (Zoological Museum/Zoological Institute, Copenhagen, Denmark), Dmitry Dmitriev (Illinois Natural History Survey, Champaign, USA), Jowita Drohojowska (University of Silesia, Katowice, Poland), Sakis Drosopoulos (Athens, Greece), Murray Fletcher (Orange Agriculture Institute, Orange, Australia), Dimitri Forero (Pontificia Universidad Javeriana, Bogotá, Colombia), Paul Freytag (University of Kentucky, Lexington, USA), Ian Hodkinson (Liverpool John Moores University, Liverpool, UK), Gernot Kunz (Graz, Austria), Mallik Malipatil (Bioprotection, Ferntree Gully Delivery Centre, Australia), Lorèn Marchal (Muséum national d’Histoire naturelle, Paris, France), Felipe F. F. Moreira (Instituto Oswaldo Cruz, Brazil), Wolfgang Rabitsch (Umweltbundesamt, Biodiversity and Nature Conservation, Vienna, Austria), David Rider (North Dakota State University, Fargo, USA), Dariusz Œwierczewski (Jan D³ugosz University, Czêstochowa, Poland), and James Zahniser (Illinois Natural History Survey, Champaign, USA). Tony Long (Svinošice) sub-edited and helped to work up most of the English texts with his usual enthusiasm and close attention to detail. We thank all of these people for their contributions and, on their behalf, extend to Jaroslav Stehlík and Pavel Lauterer the “Many Happy Returns” that their years and the anniversaries merit. Petr Kment, Igor Malenovský and Jiøí Kolibáè 3 ISSN 1211-8788 Acta Musei Moraviae, Scientiae biologicae (Brno) 98(2): 5–10, 2013 On the occasion of the ninetieth birthday of RNDr. Jaroslav L. Stehlík, CSc. On April 11, our dear colleague and long the mentor to Czech and Slovak heteropterology, RNDr. Jaroslav L. Stehlík, CSc., celebrated his ninetieth birthday. Moreover, the year 2013 is also the seventieth anniversary of the publication of his first scientific paper. For the past decade, Jaroslav has been spending his retirement in fruitful work on his beloved Pyrrhocoroidea, resulting in 38 scientific papers devoted to the taxonomy and chorology of that group. In acknowledgement of Jaroslav’s life achievements in entomology, he was appointed a honorary member of the Czech Entomological Society in 2006. We would like to congratulate Jaroslav Stehlík on his anniversaries and wish him all the best for the years to come. Here we include some recollections by two of his close colleagues, to commemorate the occasion. Petr Kment Meeting Jaroslav Stehlík Two research topics have dominated the scientific life of Jaroslav Stehlík. One is eco-faunistic research into the Heteroptera of Moravia and Slovakia, which has resulted in a plethora of publications containing exemplary summaries of the chorology, bionomics and diagnostics of species concerned. The other has been the alpha-taxonomy of the Pyrrhocoridae (firebugs, red bugs, cotton-stainers) and Largidae of the world. Jaroslav was also able to maintain an overview of general entomological approaches to the true bugs, although he did not actively pursuit such studies. I cannot really remember how I perceived Jaroslav’s abilities when, in early 1950s I was casting about for a suitable topic for my MSc thesis (“diploma thesis” in those days) at the Biological Faculty of Charles University in Prague. From my point of view, it should have been on Heteroptera but could not address taxonomy (a subject then very nearly taboo to the authorities). I was not interested in diapause (then a favoured subject) and I flatly refused applied topics. I asked Jaroslav for advice, warmly embraced his suggestion, and in 1957 I defended a thesis entitled “Ectodermal female genitalia of the trichophorous Heteroptera”. Evidence of the topicality of the subject was that, almost simultaneously, two other university students of the Heteroptera, Geoffrey G. E. Scudder in Oxford and Carl W. Schaefer in Storrs, Connecticut, began their theses along similar lines. I cannot be grateful enough to Jaroslav for setting me on my life-time research course, a combination of morphology, phylogeny, higher classification and taxonomy of critical groups of true bugs. My initial contacts with Jaroslav could, of course, never be entirely free of the limits imposed by our differences in age and status, but these soon disappeared and I had the privilege to know him both as a heteropterist and a personality. He was always true to his 5 P. K MENT, P. ŠTYS, H. GÜNTHER pronounced opinions on science, but he did not expect you to share them; he was friendly and open with those he trusted, but always ready to defend his territory. He loved the research he had chosen for himself, loved the Moravian and Slovakian countryside and its natural history, and in times when boorishness was nearly a required norm, he remained courteous and elegant, a trait surely greatly appreciated by his women collaborators. He did not cease research on retirement, and the volume of flow of his publications on Pyrrhocoroidea is astonishing. Surely all hemipterists would appreciate Jaroslav’s decision to write a kind of synthesis of his unique knowledge of these bugs. Dear Jaroslav, I wish you health, strength and happiness in both your personal and scientific life, and many further years of enjoyment of your research. Pavel Štys A circuit tour and short circuits in southern Slovakia with Jaroslav in 1991 At the invitation of my friend Jaroslav Stehlík we undertook a collecting trip through South Slovakia in June 1991. It was a highly interesting and successful trip with plenty of interesting collection sites and rare species of bugs to capture. Starting in Brno, we first went to the Nové Zámky district with all the famous places in its surroundings. We prepared breakfast in our hotel room and for this purpose Jaroslav had an immersion heater in his luggage. Trying to heat about a litre of water to prepare the coffee, there was a short in the unit and we had coffee neither that morning nor for nearly all the days that followed. Jaroslav was quite upset; the immersion heater belonged his wife, who used it in the school in which she taught. It was not possible to obtain a replacement. This was our first mishap with the electricity. We drove on and took up residence in a hotel in Ve¾ký Krtíš. It was very hot, even during the night, and we kept the window open. This type of window could rotate about its vertical axis. In the night, a strong wind blew up, the window spun and threw the bedside lamp to the ground. In an instant, the whole hotel had no power. A classic case of short circuit. Our last hotel was located in Luèenec, farther to the east. At that time Luèenec was a pretty, small town with many shops and I decided to look for an immersion heater to replace Madame Stehlík’s ruined one.
Recommended publications
  • Topic Paper Chilterns Beechwoods
    . O O o . 0 O . 0 . O Shoping growth in Docorum Appendices for Topic Paper for the Chilterns Beechwoods SAC A summary/overview of available evidence BOROUGH Dacorum Local Plan (2020-2038) Emerging Strategy for Growth COUNCIL November 2020 Appendices Natural England reports 5 Chilterns Beechwoods Special Area of Conservation 6 Appendix 1: Citation for Chilterns Beechwoods Special Area of Conservation (SAC) 7 Appendix 2: Chilterns Beechwoods SAC Features Matrix 9 Appendix 3: European Site Conservation Objectives for Chilterns Beechwoods Special Area of Conservation Site Code: UK0012724 11 Appendix 4: Site Improvement Plan for Chilterns Beechwoods SAC, 2015 13 Ashridge Commons and Woods SSSI 27 Appendix 5: Ashridge Commons and Woods SSSI citation 28 Appendix 6: Condition summary from Natural England’s website for Ashridge Commons and Woods SSSI 31 Appendix 7: Condition Assessment from Natural England’s website for Ashridge Commons and Woods SSSI 33 Appendix 8: Operations likely to damage the special interest features at Ashridge Commons and Woods, SSSI, Hertfordshire/Buckinghamshire 38 Appendix 9: Views About Management: A statement of English Nature’s views about the management of Ashridge Commons and Woods Site of Special Scientific Interest (SSSI), 2003 40 Tring Woodlands SSSI 44 Appendix 10: Tring Woodlands SSSI citation 45 Appendix 11: Condition summary from Natural England’s website for Tring Woodlands SSSI 48 Appendix 12: Condition Assessment from Natural England’s website for Tring Woodlands SSSI 51 Appendix 13: Operations likely to damage the special interest features at Tring Woodlands SSSI 53 Appendix 14: Views About Management: A statement of English Nature’s views about the management of Tring Woodlands Site of Special Scientific Interest (SSSI), 2003.
    [Show full text]
  • On the Evolution of the Tymbalian Tymbal Organ: Comment On
    Cicadina 18 (2019): 17-26 17 Response to “On the evolution of the tymbalian tymbal organ: Comment on “Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size” by Davranoglou et al. 2019” Leonidas-Romanos Davranoglou1, Alice Cicirello, Beth Mortimer, Graham K. Taylor Zusammenfassung: Kommunikation über Vibrationssignale in der Gruppe der Spitzkopf- zikaden (Hemiptera: Fulgoromorpha) ist allgegenwärtig, doch war der zugrundeliegende Mechanismus bis zu einem kürzlich erschienenen Artikel von Davranoglou et al. (2019) un- bekannt. In diesem Beitrag werden die funktionelle Morphologie, die Biomechanik des Ver- haltens und die systematische Verbreitung eines weitverbreiteten Vibrationsmechanismus´ beschrieben, den die Autoren als Schnapporgan („snapping organ“) bezeichneten. Der Me- chanismus dieses Schnapporgans unterscheidet sich prinzipiell von den einzigen vergleich- baren Vibrationsorganen innerhalb der Hemipteren, nämlich den Trommelorganen (Tymbal) der Singzikaden (Cicadidae, Cicadomorpha). Kurz nach der Veröffentlichung argumentier- ten Hoch et al. (2019), dass es „unnötig, wenn nicht sogar irreführend“ wäre, diesen Mecha- nismus als „snapping organ“ zu bezeichnen und führten aus, dass dieses vielmehr als tym- balähnliches Trommelorgan mit Schnappmechanismus („tymbalian tymbal organ with snap- ping mechanism“) bezeichnet werden sollte. Diese Bezeichnung bezieht sich auf die „Tym- balia“-Hypothese von Wessel et al. (2014), der zufolge alle bekannten abdominalen Vibrati- onsorgane der Hemiptera Modifikationen eines abdominalen Vibrationsorgans darstellen, das im letzten gemeinsamen Vorfahren der Fulgoromorpha, Cicadomorpha und Heterop- terodea vor 300 Mio. Jahren vorhanden war. In unserem Beitrag zeigen wir, dass die Krite- rien, die Wessel et al (2014) verwendeten, um das tymbalähnliche Trommelorgan zu definie- ren, auf fehlerhaften segmentalen Zuordnungen der Schlüsselmuskulaturen beruhen. Die „Tymbalia“-Hypothese muss daher neu evaluiert werden.
    [Show full text]
  • Identification and Ecology of Alternative Insect Vectors Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE www.nature.com/scientificreportsprovided by AIR Universita degli studi di Milano OPEN Identifcation and ecology of alternative insect vectors of ‘Candidatus Phytoplasma solani’ to grapevine Fabio Quaglino1, Francesco Sanna2, Abdelhameed Moussa 1, Monica Faccincani3, Alessandro Passera1, Paola Casati1, Piero Attilio Bianco1 & Nicola Mori 2* Bois noir, a disease of the grapevine yellows complex, is associated with ‘Candidatus Phytoplasma solani’ and transmitted to grapevines in open felds by the cixiids Hyalesthes obsoletus and Reptalus panzeri. In vine-growing areas where the population density of these vectors is low within the vineyard, the occurrence of bois noir implies the existence of alternative vectors. The aim of this study was to identify alternative vectors through screening of the Auchenorrhyncha community, phytoplasma typing by stamp gene sequence analyses, and transmission trials. During feld activities, conducted in Northern Italy in a vineyard where the bois noir incidence was extremely high, nine potential alternative insect vectors were identifed according to high abundance in the vineyard agro-ecosystem, high infection rate, and harbouring phytoplasma strains characterized by stamp gene sequence variants found also in symptomatic grapevines. Transmission trials coupled with molecular analyses showed that at least eight species (Aphrodes makarovi, Dicranotropis hamata, Dictyophara europaea, Euscelis incisus, Euscelidius variegatus, Laodelphax striatella, Philaenus spumarius, and Psammotettix alienus/confnis) are alternative vectors of ‘Candidatus Phytoplasma solani’ to grapevines. These novel fndings highlight that bois noir epidemiology in vineyard agro-ecosystems is more complex than previously known, opening up new perspectives in the disease management. Bois noir (BN), a disease of the grapevine yellows (GY) complex, causes serious crop losses in wine-making grape varieties in the Euro-Mediterranean area and in other vine-growing countries.
    [Show full text]
  • Two New Leafhopper Genera of the Alebroides Genus Group (Hemiptera: Cicadellidae: Typhlocybinae) from China, with a Key to Genera of the Group
    Entomological Science (2017) doi: 10.1111/ens.12260 ORIGINAL ARTICLE Two new leafhopper genera of the Alebroides genus group (Hemiptera: Cicadellidae: Typhlocybinae) from China, with a key to genera of the group Ye XU1,SihanLU1, Yuru WANG1, Christopher H. DIETRICH2 and Daozheng QIN1 1 Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, China and 2 Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA Abstract Two new microleafhopper genera in the Alebroides genus group, Nulliata Lu, Xu & Qin, gen. nov., based on the type species N. rubrostriata Lu, Xu & Qin, sp. nov.,andInflatopina Lu, Dietrich & Qin, gen. nov., based on the type species I. intonsa Lu, Dietrich & Qin, sp. nov., are described from southwest China. Five known species in the Alebroides sohii species group are transferred to Inflatopina as new combinations. Keys to genera of the Alebroides genus group and species of Inflatopina are given. Key words: Auchenorrhyncha, microleafhopper, morphology, taxonomy. INTRODUCTION the cosmopolitan genus Empoasca Walsh, 1862). In contrast, the Alebroides group appears more stable in The microleafhopper tribe Empoascini comprises more classification, comprising 156 species in 25 genera so than 1,000 species in 85 previously described genera far, widely distributed in the Oriental, Palaearctic, from throughout the world. It can be distinguished from Afrotropical and Australian Regions but absent from other tribes of Typhlocybinae as follows: ocelli usually the New World (Xu et al. 2016). well developed; forewing without appendix; hind wing In China, the Alebroides group includes 14 genera and submarginal vein extended between apices of veins 58 species known to date (see checklist).
    [Show full text]
  • First Record of Nearctic Issid Planthopper Thionia Simplex (Hemiptera: Fulgoroidea: Issidae) from Europe
    238 V.M. GNEZDILOV & F. POGGI. FIRST RECORD OF THIONIA SIMPLEX FROM EUROPE Figs 1–3. Thionia simplex (Germar, 1830), male, Italy. 1, dorsal view; 2, lateral view; 3, frontal view. Total length of specimen is 5.2 mm. ZOOSYSTEMATICA ROSSICA, 23(2): 238–241 25 DECEMBER 2014 First record of Nearctic issid planthopper Thionia simplex (Hemiptera: Fulgoroidea: Issidae) from Europe Первое указание неарктической иссиды Thionia simplex (Hemiptera: Fulgoroidea: Issidae) из Европы V.M. GNEZDILOV* & F. POGGI В.М. ГНЕЗДИЛОВ & Ф. ПОДЖИ V.M. Gnezdilov, Zoological Institute of the Russian Academy of Sciences, 1 Universitetskaya Emb., St Petersburg 199034, Russia. E-mails: [email protected], [email protected] F. Poggi, Via Madonnina 6, I-23873 Missaglia (LC), Italia. E-mail: [email protected] The Nearctic issid species Thionia simplex (Germar, 1830) is recorded for the first time from Europe. Other alien Auchenorrhyncha species in Europe are listed and discussed. Неарктическая иссида Thionia simplex (Germar, 1830) впервые указана из Европы. Пере- числены и обсуждены другие случаи завозов в Европу цикадовых. Key words: alien species, U.S.A., Europe, Italy, Auchenorrhyncha, Fulgoroidea, Issidae, Issini, planthopper, new record Ключевые слова: инвазивный вид, США, Европа, Италия, Auchenorrhyncha, Fulgoroi- dea, Issidae, Issini, фулгороидные цикадовые, новое указание INTRODUCTION description (including of the male genita- lia) given by Doering (1938). Italy has become the “gateway for New Thionia simplex (Germar, 1830) was de- World planthoppers in Europe” since the scribed from Kentucky in U.S.A. (Germar, last century as several species which are 1830). Currently this species is recorded adventive for Europe were first recorded from 19 states in eastern U.S.A.
    [Show full text]
  • Rare Leafhopper Species in Polish Fauna – Distributional Maps (Hemiptera: Fulgoromorpha Et Cicadomorpha)
    CHEMISTRY, ENVIRONMENT, BIOTECHNOLOGY 2010, X IV, 41–99 Dariusz Świerczewski a, Paweł Gruca b a Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University of Cz ęstochowa, 42-200 Cz ęstochowa, Armii Krajowej 13/15 e-mail: [email protected] b 44 892 Bochum-Langendreer, Wittkampstrasse 39, Germany Rare leafhopper species in Polish fauna – distributional maps (Hemiptera: Fulgoromorpha et Cicadomorpha) Abstract The paper presents detailed localities for 137 rare leafhopper species record- ed in Poland supplemented by distributional maps. Chorological and ecologi- cal data are also provided for each species. Keywords: Insecta, Hemiptera, Fulgoromorpha, Cicadomorpha, Poland, rare species, distributional maps Introduction Leafhoppers represent a group of herbivorous insects belonging to the He- miptera ordo, which includes two separate developmental lineages as suborders – Fulgoromorpha and Cicadomorpha. They are an important component of ter- restrial or semi-aquatic ecosystems, where specimens and species can be found in large numbers 1. They are exclusively phytophagous with many species feed- ing on a certain plant genus or even on one single plant species thus ecological- ly forming a homogenous group known also as 'Auchenorrhyncha'. Phloem sap is their usual food but some families like Cicadidae, Cercopidae and some Ci- cadellidae utilize xylem sap instead, and most Typhlocybinae cicadellids feed on the content of mesophyll cells 2. According to Nickel and Hildebrandt, leaf- hoppers are a useful tool for monitoring the biotic conditions of grassland habi- tats since: i) the numerous species occur in high population densities, ii) being primary consumers they interact with both plants and predators, iii) they show specific life strategies and occupy specific spatial and temporal niches, iv) they respond rapidly to the management regime and v) whole assemblages can be described quickly by sampling several times a year 3.
    [Show full text]
  • A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)L
    Pacific Science (1997), vol. 51, no. 4: 366-376 © 1997 by University of Hawai'i Press. All rights reserved A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)l MANFRED ASCHE2 ABSTRACT: With 206 endemic species, the phytophagous Fulgoroidea, or planthop­ pers, are among the most important elements of the native Hawaiian fauna. These principally monophagous or oligophagous insects occur in nearly all Hawaiian terrestrial ecosystems. Species of two of the 18 planthopper families occurring worldwide have successfully colonized and subsequently radiated in Hawai'i. Based on collections made mainly by Perkins, Kirkaldy, Muir, Giffard, and Swezey, more than 95% of these species were described in the first three decades of this century. The systematics of the Hawaiian planthoppers has changed little in the past 60 yr and is not based on any phylogenetic analyses. This paper attempts a preliminary phylogenetic evaluation ofthe native Hawaiian p1anthoppers on the basis ofcompara­ tive morphology to recognize monophyletic taxa and major evolutionary lines. The following taxa are each descendants of single colonizing species: in Cixiidae, the Hawaiian Oliarus and Iolania species; in De1phacidae, Aloha partim, Dictyophoro­ delphax, Emoloana, Leialoha + Nesothoe, Nesodryas, and at least four groups within Nesosydne. Polyphyletic taxa are the tribe "Alohini," Aloha s.l., Nesorestias, Nesosydne s.l., and Nothorestias. Non-Hawaiian species currently placed in Iolania, Oliarus, Aloha, Leialoha, and Nesosydne are not closely allied to the Hawaiian taxa. The origin of the Hawaiian planthoppers is obscure. The Hawaiian Oliorus appear to have affinities to (North) American taxa. ALTHOUGH THE HAWAIIAN ISLANDS are the most Other groups of Hawaiian insects have isolated islands on earth, they house a remark­ received far less attention, although they are ably rich flora and fauna.
    [Show full text]
  • A Chromosomal Study of 11 Species of Psyllinea (Insecta: Homoptera)
    © Comparative Cytogenetics, 2007 . Vol. 1, No. 2, P. 149-154. ISSN 1993-0771 (Print), ISSN 1993-078X (Online) A chromosomal study of 11 species of Psyllinea (Insecta: Homoptera) E.S. Labina Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia. E-mail: [email protected] Abstract. Meiotic karyotypes in males of 10 species (assigned to 5 genera and 3 subfamilies) of the family Psyllidae and one species of the family Triozidae are described for the first time. The first data on the genus Crastina are presented. All the species were shown to exhibit the usual (modal) psyllid karyotype of 2n = 24 + X except for Craspedolepta villosa and Crastina myricariae, in which 2n = 22 + X and 2n = 24 + XY are found respectively. Key words: Psyllinea, karyotypes, sex chromosome systems. INTRODUCTION maining three families only few species were in- vestigated: 3 in Calophyidae, 2 in Carsidaridae, Psyllids or jumping plant-lice (Homoptera, and 4 in Homotomidae. In the family Phaco- Sternorrhyncha, Psyllinea) are widely distributed pteronidae no species has been examined cytoge- mono- or oligophagous phloem-sucking insects netically. feeding on dicotyledonous plants. This suborder Psyllids possess holokinetic chromosomes that includes approximately three thousands species are characteristic for Homoptera as a whole. The (Burckhardt, Kofler, 2004). Many psyllids are psyllid karyotypes show high uniformity. One hun- known to be pests of cultivated plants. dred and sixty of the studied species (i.e., approxi- Although in the last few decades there has been mately 85%) exhibit 24 autosomes and one or two considerable study of the taxonomy and phyloge- X-chromosomes in male and female complements netic relationships of psyllids, there is still much respectively.
    [Show full text]
  • A Taxonomic Study of Jumping Plant Lice of the Subfamily Liviinae (Hemiptera: Psylloidea) in Central America
    PŘÍRODOVĚDECKÁ FAKULTA A taxonomic study of jumping plant lice of the subfamily Liviinae (Hemiptera: Psylloidea) in Central America Bakalářská práce ELIZAVETA KVINIKADZE Vedoucí práce: Mgr. Igor Malenovský, Ph.D.Mgr. Igor Malenovský, Ph.D. Ústav botaniky a zoologie Obor Ekologická a evoluční biologie Brno 2021 Bibliografický záznam Autor: Elizaveta Kvinikadze Přírodovědecká fakulta Masarykova univerzita Ústav botaniky a zoologie Název práce: A taxonomic study of jumping plant lice of the subfamily Liviinae (Hemiptera: Psylloidea) in Central America Studijní program: Ekologická a evoluční biologie Studijní obor: Ekologická a evoluční biologie Vedoucí práce: Mgr. Igor Malenovský, Ph.D. Rok: 2021 Počet stran: 92 Klíčová slova: Central America, Liviinae, Diclidophlebia, new species, Melastomataceae, biocontrol agent A TAXONOMIC STUDY OF JUMPING PLANT LICE OF THE SUBFAMILY LIVIINAE (HEMIPTERA: PSYLLOIDEA) IN CENTRAL AMERICA Bibliographic record Author: Elizaveta Kvinikadze Faculty of Science Masaryk University Department of Botany and Zoology Title of Thesis: A taxonomic study of jumping plant lice of the subfamily Liviinae (Hemiptera: Psylloidea) in Central America Degree Programme: Ecological and Evolutionary Biology Field of Study: Ecological and Evolutionary Biology Supervisor: Mgr. Igor Malenovský, Ph.D. Year: 2021 Number of Pages: 92 Keywords: Central America, Liviinae, Diclidophlebia, new species, Melastomataceae, biocontrol agent 3 Anotace Mery (Insecta: Hemiptera: Psylloidea) jsou fytofágní hmyz většinou úzce specializovaný na své hostitelské rostliny, a proto potenciálně vyu- žitelný v biologické regulaci invazních druhů rostlin. Miconia calvescens (Melastomataceae) je dřevina původně rozšířená ve Střední a Jižní Ame- rice, představující dnes riziko pro mnoho tropických ekosystémů. Rod Diclidophlebia Crawford, 1920 (Liviidae: Liviinae) je nadějná skupina mer pro vyhledání vhodných druhů pro potlačení této invazní rostliny.
    [Show full text]
  • Efficacy and Host Specificity Compared Between Two Populations of The
    Biological Control 65 (2013) 53–62 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori, candidates for biological control of invasive knotweeds in North America ⇑ Fritzi Grevstad a, , Richard Shaw b, Robert Bourchier c, Paolo Sanguankeo d, Ghislaine Cortat e, Richard C. Reardon f a Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA b CABI, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom c Agriculture and AgriFood Canada-Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1 d Olympic Natural Resources Center, University of Washington, Forks, WA 98331, USA e CABI, CH 2800 Delemont, Switzerland f USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV 26505, USA highlights graphical abstract " Two populations of the psyllid Aphalara itadori are effective at reducing knotweed growth and biomass. " The two populations differ in their performance among different knotweed species. " Development of A. itadori occurred infrequently on several non-target plant species. " The psyllid exhibited non-preference and an inability to persist on non- target plants. article info abstract Article history: Invasive knotweeds are large perennial herbs in the Polygonaceae in the genus Fallopia that are native to Received 2 February 2012 Asia and invasive in North America. They include Fallopia japonica (Japanese knotweed), F. sachalinensis Accepted 4 January 2013 (giant knotweed), and a hybrid species F. x bohemica (Bohemian knotweed). Widespread throughout Available online 12 January 2013 the continent and difficult to control by mechanical or chemical methods, these plants are good targets for classical biological control.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Hemiptera: Heteroptera) from the Oriental Region
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 8.xii.2008 Volume 48(2), pp. 611-648 ISSN 0374-1036 New taxa of the Largidae and Pyrrhocoridae (Hemiptera: Heteroptera) from the Oriental Region Jaroslav L. STEHLÍK1) & Zdeněk JINDRA2) 1) Department of Entomology, Moravian Museum, Hviezdoslavova 29a, CZ-627 00 Brno – Slatina, Czech Republic 2) Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Agriculture, CZ-165 21 Praha 6 – Suchdol, Czech Republic; e-mail: [email protected] Abstract. The following new taxa are described in the Largidae and Pyrrhocoridae: Largidae – Delacampius alboarcuatus sp. nov. (Indonesia: Bali), D. parvulus sp. nov. (Thailand), D. siberutensis sp. nov. (Indonesia: Siberut), Iphita fasciata sp. nov. (India: Maharastra), I. fuscorubra sp. nov. (India: Maharastra), I. heissi sp. nov. (Indonesia: Sumatra), I. rubricata albolutea subsp. nov. (Malaysia: Sabah), I. varians rubra subsp. nov. (Indonesia: Nias), Physopelta kotheae sp. nov. (Indonesia: Sumatra, Java), Ph. melanopyga rufi femur subsp. nov. (Indonesia: Seram), and Ph. trimaculata sp. nov. (India: Maharastra); Pyrrhocoridae – Arma- tillus sulawesiensis sp. nov. (Indonesia: Sulawesi), Brancucciana (Rubriascopus) orientalis sp. nov. (Indonesia: Alor, Sumatra, Timor, Yamdena; Philippines: Mindanao), Dindymus (Dindymus) baliensis sp. nov. (Indonesia: Bali), D. (Din- dymus) sundaensis sp. nov. (Indonesia: Alor), D. (Pseudodindymus) albicornis siberutensis subsp. nov. (Indonesia: Siberut, Nias), D. (Pseudodindymus) stysi sp. nov. (Indonesia: Butung Island), Dysdercus (Paradysdercus) transversalis castaneus subsp. nov. (Indonesia: Yamdena, Banda Islands), Ectatops riedeli sp. nov. (Indonesia: Sulawesi), E. schoenitzeri sp. nov. (Indonesia: Sulawesi), and Eu- scopus tristis sp. nov. (India: Kerala). Two new combinations within the Largidae are established: Iphita fi mbriata (Stål, 1863) comb.
    [Show full text]