The Geologic Settings of Chinese Coal Deposits

Total Page:16

File Type:pdf, Size:1020Kb

The Geologic Settings of Chinese Coal Deposits International Geology Review ISSN: 0020-6814 (Print) 1938-2839 (Online) Journal homepage: http://www.tandfonline.com/loi/tigr20 The geologic settings of Chinese coal deposits Zengxue Li, Dongdong Wang, Dawei Lv, Ying Li, Haiyan Liu, Pingli Wang, Ying Liu, Jianqiang Liu & Dandan Li To cite this article: Zengxue Li, Dongdong Wang, Dawei Lv, Ying Li, Haiyan Liu, Pingli Wang, Ying Liu, Jianqiang Liu & Dandan Li (2018) The geologic settings of Chinese coal deposits, International Geology Review, 60:5-6, 548-578, DOI: 10.1080/00206814.2017.1324327 To link to this article: https://doi.org/10.1080/00206814.2017.1324327 Published online: 12 May 2017. Submit your article to this journal Article views: 80 View related articles View Crossmark data Citing articles: 4 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tigr20 INTERNATIONAL GEOLOGY REVIEW, 2018 VOL. 60, NOS. 5–6, 548–578 https://doi.org/10.1080/00206814.2017.1324327 REVIEW ARTICLE The geologic settings of Chinese coal deposits Zengxue Lia, Dongdong Wanga, Dawei Lva, Ying Lib, Haiyan Liua, Pingli Wanga, Ying Liua, Jianqiang Liua and Dandan Lia aCollege of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China; bShandong Coalfield Geological Planning Institute, Shandong Bureau of Coal Geology, Ji’nan, Shandong, China ABSTRACT ARTICLE HISTORY China has abundant coal resources, which are extensively developed in marine-influenced, con- Received 19 September 2016 tinental, and transitional environments. The coal-bearing strata in China have complicated gen- Accepted 25 April 2017 eses and distributions. There were eight major coal-forming periods in China, namely the KEYWORDS – – Terreneuvian, Mississippian, Pennsylvanian Cisuralian Guadalupian, Lopingian, Late Triassic, Coal-forming sedimentary Early–Middle Jurassic, and Early Cretaceous Epochs, as well as the Palaeogene–Neogene Periods. environments; coal-forming The distributions of the coal-bearing strata formed during these different coal-forming periods processes; coal-bearing displayed obvious regional and regularity characteristics. In accordance with their plate-tectonic strata; coal-forming periods; settings and coal-bearing characteristics, the coal-bearing basins in China can be divided into six China types. The coal-bearing basins that were formed during the Palaeozoic Era were mainly large epicontinental sea basins. During the early Palaeozoic Era, the shallow sea was the most important coal-forming sedimentary environment. In addition, coastal delta and delta-detrital coast systems were the most important coal-forming sedimentary environments in the late Palaeozoic Era. The coal-bearing basins that were formed during the Late Triassic Epoch were mainly offshore basins, and coastal, coast-delta, coastal alluvial, and coastal inter-mountainous plain environments domi- nated their coal-forming sedimentary environments. Coast–bay and lagoon–estuary systems comprised additional main coal-forming sedimentary environments. The coal-bearing basins that formed during the Early–Middle Jurassic Epochs were large- and medium-sized inland lake basins, in which alluvial-lake delta systems recorded the best coal formation processes, followed by lakeshore sedimentary environments. The coal-bearing basins that formed during the Early Cretaceous Epoch and Palaeogene–Neogene Periods were mainly small-sized continental basin groups. Coal-forming processes mainly occurred in the lake-delta swamp environments during lake siltation stages when the filling evolution of the lake basins occurred. In addition, this study proposed a new coal-forming process that occurs during transgression events. Finally, this study generally summarized the characteristics and evolution theories of coal-forming processes in China and especially focused on the characteristics of the evolution of coal-forming sedimentary environments. 1. Introduction with the main global coal-forming periods, although Coal geology in China is characterized by its rich and they differed in the sizes and intensity levels of their varied coal deposits, eight coal-forming periods, com- coal deposits. The coal-bearing basin types, basin back- plex tectonic framework, and various types of sedimen- grounds, peat accumulations, and coal-forming intensi- tary environments. In its geologic history, sediments in ties differed significantly between various periods of China have mainly formed within continental environ- coal formation, which led to differences in the spatial ments, followed by transitional environments, and then distribution and characteristics of coals formed in dif- marine-influenced environments. The coal resources ferent periods. In this study, the sedimentation types of formed in continental environments are the most abun- coal-bearing processes in China are divided into inter- dant, followed by those formed in marine-continental active marine and continental deposits within plates, transitional and marine-influenced environments. marine-continental transitional deposits on plate edges, Among the global coal geological systems, the char- inland depressed-basin deposits, and inland rifted-basin acteristics of coal geology in China are both globally deposits. comparable and unique. The formation periods of The differences in the characteristics and types of China’s coal-bearing processes were basically consistent coal-forming basins in China depended on the CONTACT Zengxue Li [email protected]; Dongdong Wang [email protected] Shandong University of Science and Technology, Qingdao, Shandong 266590, China © 2017 Informa UK Limited, trading as Taylor & Francis Group INTERNATIONAL GEOLOGY REVIEW 549 background of the basins’ tectonic events during the land plants grew along the coast of a shallow epeiric different stages of crustal evolution, their tectonic- sea. In the Middle Devonian Epoch in China, coal-bear- palaeogeographic background, the tectonic events ing deposits were of littoral or neritic origin, and that occurred during the basin-forming period, and Devonian coals thus contain a great deal of cuticles the nature of the basins’ basements. Based on the and microspores; hence, they are called cutinitic lipto- degree of tectonic stability of the basins during the biolith or ‘Luquanite’ (Han 1989). These coals are classi- coal-forming period, these coal basins can be divided fied as cutinitic liptobiolith, sporinite-rich durain, into stable coal-forming basins, transitional coal-form- cutinite-rich durain, and sporinitic liptobiolith. Their ing basins, and active coal-forming basins. vitrinite content is very low, and they are dominated Coal-forming intensity varied greatly during different by collodetrinite, collotelinite, and corpogelinite (Dai periods in China due to differences in the types of coal- et al. 2006). forming basins, the tectonic activity that occurred dur- The coal-forming plants differed within each of the ing the coal-forming periods, the continuity of peat coal-forming periods following the Devonian Period swamp development, and palaeogeographic features due to plant evolution. In particular, when a historically during the peat accumulation periods. The strength of large crustal movement occurred, the terrain, climate, the coal-forming processes in different areas of China, and atmospheric CO2 and O2 contents, among others as well as the locations of the basins, also varied. (Beerling and Woodward 2001), continuously changed, This article describes the different aspects of China’s which not only promoted the evolution of plants in coal-forming periods and plant types, as well as its coal each stage, but also led to different degrees of accu- basin types, distribution and evolution, the spatial and mulation occurring during each period. Moreover, due temporal distribution of coal-bearing strata, its coal- to the influence of tectonic movements on land–sea forming geological background, sedimentary sources, distribution, the depositional effects and intensities of coal-forming processes, and some aspects of recent the coal-forming processes during each period were research progress, thus allowing readers to gain a bet- distinctly different (Figure 1) (Han and Yang 1980). ter understanding of China’s coal geological The coal-forming processes during each of the geo- characteristics. logic periods of China experienced significantly differ- ent development histories (Figure 1). There were eight periods with strong coal-forming processes in China. 2. Coal-forming periods in China These included the Terreneuvian, Mississippian, Pennsylvanian–Cisuralian–Guadalupian, Lopingian, Late 2.1. Coal-forming plants and coal-forming periods Triassic, Early–Middle Jurassic, and Early Cretaceous in China Epochs, as well as the Palaeogene–Neogene Periods. Coal formation has occurred since multicellular organ- Among these periods, the four coal-forming periods of isms first appeared on the Earth. The coal that formed the Pennsylvanian–Cisuralian–Guadalupian Epochs, during the Proterozoic Era in China was mainly com- Lopingian Epoch, Late Triassic Epoch, and Early– posed of fungi and, in particular, algae. During the Middle Jurassic Epoch displayed the strongest coal- Cambrian Period, a large number of fungi and algal- forming processes. Coals formed during the eight geo- type plants bred rapidly in water, resulting in the coal in logical periods were mainly humic. The coals formed the Early Palaeozoic Era containing a large
Recommended publications
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Characteristics of Nitrate in Major Rivers and Aquifers of the Sanjiang Plain, China
    View Online / Journal Homepage Journal of Dynamic Article LinksC< Environmental Monitoring Cite this: DOI: 10.1039/c2em30032j www.rsc.org/jem PAPER Characteristics of nitrate in major rivers and aquifers of the Sanjiang Plain, China Yingjie Cao,ab Changyuan Tang,*b Xianfang Song,a Changming Liua and Yinghua Zhanga Received 16th January 2012, Accepted 6th July 2012 DOI: 10.1039/c2em30032j À The characteristics of nitrate (NO3 ) in major rivers and aquifers of the Sanjiang Plain, China were investigated by hydrogeochemical conditions, nitrogen isotope technique and CFCs trace. An overall À understanding on the sources and fate of NO3 in the surface water and the groundwater was obtained. À The NO3 concentrations in the surface water were low and no samples exceeds the WTO standards. À However, 11.4% of the groundwater samples exceeded the WTO standards, indicating local NO3 pollution in rural areas. Redox condition analysis revealed that most of the surface water had oxic condition, while for the shallow groundwater (mean well depth smaller than 30 m), the redox condition began to change into anoxic zone, and the deep groundwater (mean well depth larger than 50 m) 15 showed strong anoxic condition. The d N-NO3 data indicated soil N and fertilizer contributed the À major sources in the surface water, and NO3 in the groundwater mainly showed a manure origin. In the Songhua–Heilong River, dilution effect was dominating, while for the Wusuli River, it showed that À À mix with water contained excess of NO3 resulted in the NO3 concentration increased along the river. À Additionally, the NO3 transportation in the groundwater was analyzed by groundwater ages derived À from environmental tracer (CFCs) data.
    [Show full text]
  • Saving the Flagship Species of North-East Asia
    North-East Asian Subregional Programme for Environmental Cooperation (NEASPEC) SAVING THE FLAGSHIP SPECIES THE FLAGSHIP SAVING SAVING THE FLAGSHIP SPECIES OF NORTH-EAST ASIA OF NORTH-EAST ASIA United Nations ESCAP United Nations Economic and Social Commission for Asia and the Pacific Environment and Sustainable Development Division United Nations Building Rajadamnern Nok Avenue Nature Conservation Strategy of NEASPEC Bangkok 10200 Thailand Tel: (662) 288-1234; Fax: (662) 288-1025 E-mail: [email protected] E-mail: [email protected] Website: <http://www.unescap.org/esd> United Nations ESCAP ECONOMIC AND SOCIAL COMMISSION FOR ASIA AND THE PACIFIC ESCAP is the regional development arm of the United Nations and serves as the main economic and social development centre for the United Nations in Asia and the Pacific. Its mandate is to foster cooperation between its 53 members and 9 associate members. ESCAP provides the strategic link between global and country-level programmes and issues. It supports the Governments of the region in consolidating regional positions and advocates regional approaches to meeting the region’s unique socio-economic challenges in a globalizing world. The ESCAP office is located in Bangkok, Thailand. Please visit our website at www.unescap.org for further information. Saving the Flagship Species The grey shaded area of the map represents the members and associate members of ESCAP of North-East Asia: United Nations publication Nature Conservation Strategy of NEASPEC Copyright© United Nations 2007 ST/ESCAP/2495
    [Show full text]
  • DRAINAGE BASINS of the SEA of OKHOTSK and SEA of JAPAN Chapter 2
    60 DRAINAGE BASINS OF THE SEA OF OKHOTSK AND SEA OF JAPAN Chapter 2 SEA OF OKHOTSK AND SEA OF JAPAN 61 62 AMUR RIVER BASIN 66 LAKE XINGKAI/KHANKA 66 TUMEN RIVER BASIN Chapter 2 62 SEA OF OKHOTSK AND SEA OF JAPAN This chapter deals with major transboundary rivers discharging into the Sea of Okhotsk and the Sea of Japan and their major transboundary tributaries. It also includes lakes located within the basins of these seas. TRANSBOUNDARY WATERS IN THE BASINS OF THE SEA OF OKHOTSK AND THE SEA OF JAPAN1 Basin/sub-basin(s) Total area (km2) Recipient Riparian countries Lakes in the basin Amur 1,855,000 Sea of Okhotsk CN, MN, RU … - Argun 164,000 Amur CN, RU … - Ussuri 193,000 Amur CN, RU Lake Khanka Sujfun 18,300 Sea of Japan CN, RU … Tumen 33,800 Sea of Japan CN, KP, RU … 1 The assessment of water bodies in italics was not included in the present publication. 1 AMUR RIVER BASIN o 55 110o 120o 130o 140o SEA OF Zeya OKHOTSK R U S S I A N Reservoir F E mur D un A E mg Z A e R Ulan Ude Chita y ilka a A a Sh r od T u Ing m n A u I Onon g ya r re A Bu O n e N N Khabarovsk Ulaanbaatar Qiqihar i MONGOLIA a r u u gh s n s o U CHIN A S Lake Khanka N Harbin 45o Sapporo A Suj fu Jilin n Changchun SEA O F P n e JA PA N m Vladivostok A Tu Kilometres Shenyang 0 200 400 600 The boundaries and names shown and the designations used on this map Ch’ongjin J do not imply official endorsement or acceptance by the United Nations.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history Main articles: History of the Earth and Geological his- chondrules,[1] are a key signature of a supernova ex- tory of Earth plosion. See also: Geologic time scale and Timeline of evolution- ary history of life • 4,567±3 Ma: Rapid collapse of hydrogen molecular For earlier events, see Timeline of the formation of the cloud, forming a third-generation Population I star, Universe. the Sun, in a region of the Galactic Habitable Zone This timeline of natural history summarizes signifi- (GHZ), about 25,000 light years from the center of the Milky Way Galaxy.[2] • 4,566±2 Ma: A protoplanetary disc (from which Earth eventually forms) emerges around the young Sun, which is in its T Tauri stage. • 4,560–4,550 Ma: Proto-Earth forms at the outer (cooler) edge of the habitable zone of the Solar Sys- tem. At this stage the solar constant of the Sun was only about 73% of its current value, but liquid wa- ter may have existed on the surface of the Proto- Earth, probably due to the greenhouse warming of high levels of methane and carbon dioxide present in the atmosphere. Early bombardment phase begins: because the solar neighbourhood is rife with large planetoids and debris, Earth experiences a number of giant impacts that help to increase its overall size. Visual representation of the history of life on Earth as a spiral 2 Hadean Eon cant geological and biological events from the formation of the Earth to the rise of modern humans. Times are listed in millions of years, or megaanni (Ma).
    [Show full text]
  • A Study of the Interrelation Between Surface Water and Groundwater Using Isotopes and Chlorofluorocarbons in Sanjiang Plain, Northeast China
    Environ Earth Sci (2014) 72:3901–3913 DOI 10.1007/s12665-014-3279-5 ORIGINAL ARTICLE A study of the interrelation between surface water and groundwater using isotopes and chlorofluorocarbons in Sanjiang plain, Northeast China Bing Zhang • Xianfang Song • Yinghua Zhang • Dongmei Han • Changyuan Tang • Lihu Yang • Zhongliang Wang • Tingyi Liu Received: 14 June 2013 / Accepted: 7 April 2014 / Published online: 27 April 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract Surface water and groundwater are the main recharged from Songhua river. The combination of stable water resources used for drinking and production. Assess- isotopes, tritium, and CFCs was an effectively method to ments of the relationship between surface water and study the groundwater ages and interrelation between sur- groundwater provide information for water resource man- face water and groundwater. Practically, the farmlands near agement in Sanjiang plain, Northeast China. The surface the river and under foot of the mountain could be culti- water (river, lake, and wetland) and groundwater were vated, but the farmlands in the central plain should be sampled and analyzed for stable isotopic (dD, d18O) controlled. composition, tritium, and chlorofluorocarbons concentra- tions. The local meteoric water line is dD = 7.3d18O–6.7. Keywords Hydrogen and oxygen isotopes Á The tritium (T) and chlorofluorocarbon (CFC) contents in Chlorofluorocarbons Á Surface water Á Groundwater Á groundwater were analyzed to determine the groundwater Sanjiang plain ages. Most groundwater were modern water with the ages \50 years. The groundwaters in mountain area and near rivers were younger than in the central plain. The oxygen Introduction isotope (d18O) was used to quantify the relationship between surface water and groundwater.
    [Show full text]
  • Field Trip B2: Triassic to Early Cretaceous Geodynamic History of the Central Northern Calcareous Alps (Northwestern Tethyan Realm)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2013 Band/Volume: 99 Autor(en)/Author(s): Gawlick Hans-Jürgen, Missoni Sigrid Artikel/Article: Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm). 216-270 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm) Hans-Jürgen Gawlick & Sigrid Missoni University of Leoben, Department of Applied Geosciences and Geophysics, Petroleum Geology, Peter-Tunner-Strasse 5, 8700 Leoben, Austria Content Abstract 1 Introduction 2 Overall geodynamic and sedimentary evolution 3 Palaeogeography, sedimentary successions and stratigraphy 3.1 Hauptdolomit facies zone 3.2 Dachstein Limestone facies zone 3.3 Hallstatt facies zone (preserved in the reworked Jurassic Hallstatt Mélange) 4 The Field Trip 4.1 The Late Triassic Dachstein/Hauptdolomit Carbonate Platform 4.1.1 Hauptdolomit (Mörtlbach road) 4.1.2 Lagoonal Dachstein Limestone: The classical Lofer cycle (Pass Lueg) 4.1.3 The Kössen Basin (Pass Lueg and Mörtlbach road) 4.2 Jurassic evolution 4.2.1 Hettangian to Aalenian 4.2.2 Bajocian to Tithonian 4.3 Early Cretaceous References Abstract The topic of this field trip is to get to know and understand the sedimentation of Austria’s Northern Calcareous Alps and its tectonic circumstances from Triassic rifting/drifting to Jurassic collision/accretion, and the Early Cretaceous “post-tectonic” sedimentary history.
    [Show full text]
  • Mesozoic Basins and Associated Palaeogeographic Evolution in North China
    Journal of Palaeogeography 2015, 4(2): 189-202 DOI: 10.3724/SP.J.1261.2015.00073 Tectonopalaeogeography andPalaeogeography palaeotectonics Mesozoic basins and associated palaeogeographic evolution in North China Yong-Qing Liu*, Hong-Wei Kuang, Nan Peng, Huan Xu, Peng Zhang, Neng-Sheng Wang, Wei An* Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China Abstract In North China, the Mesozoic terrestrial basins, sedimentary palaeogeography and tectonic settings involved five evolutionary stages: (1) the Early-Middle Triassic, (2) the Late Triassic to Early-Middle Jurassic, (3) the Late Jurassic to early Early Cretaceous, (4) the middle-late Early Cretaceous and (5) the Late Cretaceous. The regional punctuated tectonic events occurred during these evolutionary stages. During the Early-Middle Triassic (stage 1), the Xingmeng Orogenic Belt (XMOB, i.e., east- ern part of Central Asia Orogenic Belt, CAOB) of the northern North China was settled in the transition of tectonic environment from syn-orogenic compression to post-orogenic extension with intensive uplifting. It is a main provenance in the unified Ordos-North China Basin.The united continental plate of China and the Qinling-Dabie-Sulu Orogenic Belt formed due to convergence and collision between the North China Plate and the Yangtze Plate along two suture zones of the Mianlue and the Shangdan in the terminal Middle Triassic. During the Late Triassic to the Early-Middle Jurassic (stage 2), the Late Triassic mafic or alkaline rocks and intrusions occurred on the northern and southern margins of North China Craton (NCC) and XMOB, implying that intensified extension happened all over the North China (early phase of stage 2).
    [Show full text]
  • The Report on the Quantity Monitoring, Threatening Factors and Protection Proposals of Breeding Population of Oriental White Stork in Sanjiang Plain
    The Report on the Quantity Monitoring, Threatening Factors and Protection Proposals of Breeding Population of Oriental White Stork in Sanjiang Plain Authors:Wang qiang, Ma zhilong, E mingju Consultant: Liu peiqi Contents Authors:Wang qiang, Ma zhilong, E mingju................................................................................... 1 Consultant: Liu peiqi...........................................................................................................................1 Introduction......................................................................................................................................... 3 1 The historical distribution area and population quantity of Oriental White Stork..........................4 1.1 Breeding ground distribution................................................................................................ 4 1.2 Migration route......................................................................................................................6 1.2.1 Heilongjiang province................................................................................................6 1.2.2 Jilin province..............................................................................................................6 1.2.3 Inner Mongolia province............................................................................................7 2 The comparison of the number of breeding population of Oriental White Storks in nature reserves of Sanjiang Plain..................................................................................................................
    [Show full text]
  • Questionnaire of Community and Forest Farm
    IPP779 V1 Public Disclosure Authorized Landscape Approach to Wildlife Conservation in Northeast China Project Public Disclosure Authorized Social Impact Assessment Report Public Disclosure Authorized Public Disclosure Authorized March, 2015 Executive Summary In order to promote the protection and management of the Siberian tiger and its habitat, the State Forestry Administration and the World Bank jointly applied for the GEF “Landscape Approach to Wildlife Conservation in Northeast China Project”, and got approval in principle on Feb, 29th, 2012. This project is implemented in Northeast China, at the junction area of Heilongjiang Province and Jilin Province, close to the Primorsky Region of Russia and Hamgyong Province of North Korea. It involves Hunchun City, Wangqing County, Dongning County, and Muling County, with a total area of 13879.26 square kilometers. The aggregate amount of the project is 18 million US dollars. The undertaking units of the project include Jilin Forestry Department, Heilongjiang Forestry Department, and the General Bureau of Heilongjiang Forest Industry. Contents of the project mainly include conservation station construction, new nature reserve construction or expansion, tiger-friendly forest management activities and supplementary feeding stations construction. The implementation area all belong to the state-owned forest farms affiliated to the General Bureau of Heilongjiang Forest Industry, Heilongjiang Forestry Department and Jilin Forestry Department. Departments in charge of these involved forest farms
    [Show full text]
  • Microfacies, Carbon and Oxygen Isotopes of the Late Archean
    Microfacies, Carbon and Oxygen Isotopes of the Late Archean Stromatolitic Carbonate Platform of the Kaapvaal Craton, South Africa: Implications for Changes in Paleo-environment Dissertation der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München Vorgelegt von Baiquan Xu München, Juni 2011 Erstgutachter: Prof. Dr. Wladyslaw Altermann Zweitgutachter: PD. Dr. Christoph Mayr Tag der mündl. Prüfung : 14.12.2011 ACKNOWLEDGEMENTS I am indebted to many people for their long-lasting support and encouragement which were invaluable for the successful completion of this thesis. Here, I would like to express my gratitude to all those people who gave me the possibility to complete this thesis and to a great number of good things have happened to me during the past years. Firstly, I would like to take this opportunity to thank the organization who provided scientific and financial support to make this work possible. I am grateful to the China Scholarship Council (CSC) for financially supporting my doctoral research at Ludwig-Maximilians University München, between 2007 and 2011. I am deeply indebted to my supervisor Prof. Dr. Wladyslaw Altermann for: the opportunity to work on the Ghaap Group carbonates in South Africa and the money to do so; the freedom to follow my scientific curiosity and allowing my interests to shape the direction of this research; innumerable discussions, stimulating suggestions and encouragement that helped me develop the ideas presented here and writing of this thesis; encouraging participation in other research projects including the field work in various Archean carbonate platforms; actively promoting my work to the geological community at large. Thanks to Dr.
    [Show full text]
  • The Research on Temporal–Spatial Distribution and Morphological Characteristics of Ancient Settlements in the Songhua River Basin
    sustainability Article The Research on Temporal–Spatial Distribution and Morphological Characteristics of Ancient Settlements in the Songhua River Basin Meng Zhu 1,2, Jianfei Dong 2,* and Yingzhi Gao 2,* 1 School of architecture, Harbin institute of technology, Harbin 150001, China; [email protected] 2 Heilongjiang Cold Region Architectural Science Key Laboratory, Harbin 150006, China * Correspondence: [email protected] (M.Z.); [email protected] (Y.G.) Received: 4 January 2019; Accepted: 5 February 2019; Published: 12 February 2019 Abstract: Settlements have a high cultural and historical value in regions as indicators of human habitation and culture. The Songhua River Basin is on the edge of a traditional cultural center, which has scattered ecological elements, a special culture, and historical faults. Because of the superposition of traces of different ethnic activities in different periods, the Songhua River has a special and diversified cultural foundation and heritage, which is of high research value. However, the ancient settlements in this region have not been given sufficient attention and as a result it is difficult to achieve a complete and systematic study. In order to promote the cultural value of this historical region and the development of a regional and cultural industry, this paper seeks to study the ancient settlements of Songhua River Basin. With the help of GIS technology, archeological excavations, and the concept of ethnic pedigree in ethnology, this study analyzes the temporal–spatial distribution and morphological characteristics of ancient settlements in the Songhua River Basin, in order to determine how the heritage value of these settlements can be sustainably protected.
    [Show full text]