A Study of the Interrelation Between Surface Water and Groundwater Using Isotopes and Chlorofluorocarbons in Sanjiang Plain, Northeast China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characteristics of Nitrate in Major Rivers and Aquifers of the Sanjiang Plain, China
View Online / Journal Homepage Journal of Dynamic Article LinksC< Environmental Monitoring Cite this: DOI: 10.1039/c2em30032j www.rsc.org/jem PAPER Characteristics of nitrate in major rivers and aquifers of the Sanjiang Plain, China Yingjie Cao,ab Changyuan Tang,*b Xianfang Song,a Changming Liua and Yinghua Zhanga Received 16th January 2012, Accepted 6th July 2012 DOI: 10.1039/c2em30032j À The characteristics of nitrate (NO3 ) in major rivers and aquifers of the Sanjiang Plain, China were investigated by hydrogeochemical conditions, nitrogen isotope technique and CFCs trace. An overall À understanding on the sources and fate of NO3 in the surface water and the groundwater was obtained. À The NO3 concentrations in the surface water were low and no samples exceeds the WTO standards. À However, 11.4% of the groundwater samples exceeded the WTO standards, indicating local NO3 pollution in rural areas. Redox condition analysis revealed that most of the surface water had oxic condition, while for the shallow groundwater (mean well depth smaller than 30 m), the redox condition began to change into anoxic zone, and the deep groundwater (mean well depth larger than 50 m) 15 showed strong anoxic condition. The d N-NO3 data indicated soil N and fertilizer contributed the À major sources in the surface water, and NO3 in the groundwater mainly showed a manure origin. In the Songhua–Heilong River, dilution effect was dominating, while for the Wusuli River, it showed that À À mix with water contained excess of NO3 resulted in the NO3 concentration increased along the river. À Additionally, the NO3 transportation in the groundwater was analyzed by groundwater ages derived À from environmental tracer (CFCs) data. -
Saving the Flagship Species of North-East Asia
North-East Asian Subregional Programme for Environmental Cooperation (NEASPEC) SAVING THE FLAGSHIP SPECIES THE FLAGSHIP SAVING SAVING THE FLAGSHIP SPECIES OF NORTH-EAST ASIA OF NORTH-EAST ASIA United Nations ESCAP United Nations Economic and Social Commission for Asia and the Pacific Environment and Sustainable Development Division United Nations Building Rajadamnern Nok Avenue Nature Conservation Strategy of NEASPEC Bangkok 10200 Thailand Tel: (662) 288-1234; Fax: (662) 288-1025 E-mail: [email protected] E-mail: [email protected] Website: <http://www.unescap.org/esd> United Nations ESCAP ECONOMIC AND SOCIAL COMMISSION FOR ASIA AND THE PACIFIC ESCAP is the regional development arm of the United Nations and serves as the main economic and social development centre for the United Nations in Asia and the Pacific. Its mandate is to foster cooperation between its 53 members and 9 associate members. ESCAP provides the strategic link between global and country-level programmes and issues. It supports the Governments of the region in consolidating regional positions and advocates regional approaches to meeting the region’s unique socio-economic challenges in a globalizing world. The ESCAP office is located in Bangkok, Thailand. Please visit our website at www.unescap.org for further information. Saving the Flagship Species The grey shaded area of the map represents the members and associate members of ESCAP of North-East Asia: United Nations publication Nature Conservation Strategy of NEASPEC Copyright© United Nations 2007 ST/ESCAP/2495 -
Response of Water Resources to Future Climate Change in a High-Latitude River Basin
sustainability Article Response of Water Resources to Future Climate Change in a High-Latitude River Basin Peng Qi 1, Guangxin Zhang 1,*, Yi Jun Xu 2 , Zhikun Xia 3 and Ming Wang 4 1 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China; [email protected] 2 School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; [email protected] 3 Institute of Hydraulic and Electric Power, Heilongjiang University, No.74, Xuefu Road, Harbin 150080, China; [email protected] 4 Institute of Meteorology in Heilongjiang Province, Harbin 150080, China; [email protected] * Correspondence: [email protected] Received: 22 August 2019; Accepted: 11 October 2019; Published: 12 October 2019 Abstract: Global water resources are affected by climate change as never before. However, it is still unclear how water resources in high latitudes respond to climate change. In this study, the water resource data for 2021–2050 in the Naoli River Basin, a high-latitude basin in China, are calculated by using the SWAT-Modflow Model and future climate scenarios RCP4.5 and RCP8.5. The results show a decreasing trend. When compared to the present, future streamflow is predicted to decrease by 2.73 108 m3 in 2021–2035 and by 1.51 108 m3 in 2036–2050 in the RCP4.5 scenario, and by × × 8.16 108 m3 in 2021–2035 and by 0.56 108 m3 in 2036–2050 in the RCP8.5 scenario, respectively. × × Similarly, groundwater recharge is expected to decrease by 1.79 108 m3 in 2021–2035 and 0.75 − × − × 108 m3 in 2036–2050 in the RCP 4.5 scenario, and by 0.62 108 m3 in 2021–2035 and 0.12 108m3 − × − × in 2036–2050 in the RCP 8.5 scenario, respectively. -
Concentration and Species of Dissolved Iron in Waters in Sanjiang Plain, China
CONCENTRATION AND SPECIES OF DISSOLVED IRON IN WATERS IN SANJIANG PLAIN, CHINA 1 1 2 1 YAN B. , ZHANG B. , YOH M. AND PAN X. 1 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun China 2Tokyo University of Agriculture and Technology, Tokyo, Japan ABSTRACT Water samples were collected from May to October in 2005-2008 to investigate the concentrations and fractions of dissolved iron in rivers, wetland and agricultural drainage in Sanjiang Plain, where land-use has been changing greatly since last fifty years although was formerly the largest concentrative distribution area of freshwater marshes in China. cross-flow technique was used to separate iron species by size fraction. The aim of this study is to reveal the iron fraction and to evaluate the effect of land-use change on transport and output flux of dissolved iron. The results show that marsh and marshy rivers exhibited higher concentrations of dissolved iron than in Amur River, Songhua River and Ussuri River and are the primary sources of dissolved iron for the rivers. Low molecular weight (LMW) iron was the major fraction of dissolved iron both in wetland and marshy streams, and 71% of LMW iron was in organic form in wetland. 73%-82% of dissolved iron was in the form of complexed iron in rivers. Ferrous iron accounted for 80.45% of dissolved iron in groundwater. The concentrations of high molecular weight and medium molecular weight iron (colloid iron) increased in paddy waters and ditch waters compared with in groundwater. Ferric and ferrous concentrations in Naoli River decreased between 1960’s and 2008. -
Regional Ecological Risk Assessment of Wetlands in the Sanjiang Plain with Respect to Human Disturbance
sustainability Article Regional Ecological Risk Assessment of Wetlands in the Sanjiang Plain with Respect to Human Disturbance Hui Wang 1,2, Changchun Song 2,* and Kaishan Song 2 1 College of Tourism and Geography, Jiujiang University, Jiujiang 332005, China; [email protected] 2 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; [email protected] * Correspondence: [email protected] Received: 31 December 2019; Accepted: 27 February 2020; Published: 5 March 2020 Abstract: Characterization of the intensity of regional human disturbances on wetlands is an important scientific issue. In this study, the pole-axis system (involving multi-level central places and roads) was recognized as a proxy of direct risk to wetlands stemming from human activities at the regional or watershed scale. In this respect, the pole-axis system and central place theory were adopted to analyze the spatial agglomeration characteristics of regional human activities. Soil erosion and non-point source (NPS) pollution, indicating the indirect effect of human activities on wetlands, were also considered. Based on these human disturbance proxies, which are considered regional risk sources to wetlands, incorporated with another two indicators of regional environment, i.e., vulnerability and ecological capital indexes, the regional ecological risk assessment (RERA) framework of wetlands was finally established. Using this wetland RERA framework, the spatial heterogeneity -
Sustainable Water Resources Planning & Management
SUSTAINABLE WATER RESOURCES PLANNING & MANAGEMENT UNDER CLIMATE CHANGE Lead Speaker: Young-Oh Kim Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia COMPARATIVE STUDY ON EFFECT OF EXTREAME WEATHER AND URBANIZATION TO FLOOD OF TYPICAL RIVERS IN JAPAN KENTARO YAMAMOTO(1), KENICHIRO KOBAYASHI(2) & SATORU OISHI(3) (1) Graduate School of Engineering, Kobe University, Kobe, Japan, (2,3) Research Center for Urban Safety and Security (RCUSS), Kobe University, Kobe, Japan, [email protected] ABSTRACT The impact of extreme rain, urbanization and snow amount variability in typical rivers in Hyogo prefecture as a microcosm of Japan is investigated. In Mukogawa River, urbanization greatly advanced around Sanda, but its influence on the outflow process was relatively small at Sanda in the main stream and large in a tributary of Nagano River. Therefore, when evaluating the influence of urbanization on the outflow of rivers, it is necessary to pay attention to the rate of change of land use in the entire catchment. In the Kishidagawa River, it was found that there was a big difference in the amount of snow water in the watershed in the spring season between the year of much snow and the year of little snow. In the years with little snow, it turns out that the use of stable snow melting water cannot be expected. Based on these results, we considered that the risk of water problems in the river basin of Japan will further increase with the change of climate and life style. From now on, what kind of action will be taken according to the risk and how to inform people of the risk will be a problem. -
Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility -
The Effects of Forest Area Changes on Extreme Temperature Indexes Between the 1900S and 2010S in Heilongjiang Province, China
remote sensing Article The Effects of Forest Area Changes on Extreme Temperature Indexes between the 1900s and 2010s in Heilongjiang Province, China Lijuan Zhang 1,*, Tao Pan 1, Hongwen Zhang 2, Xiaxiang Li 1 ID and Lanqi Jiang 3,4,5 1 Key Laboratory of Remote Sensing Monitoring of Geographic Environment, Harbin Normal University, Harbin 150025, China; [email protected] (T.P.); [email protected] (X.L.) 2 Key Laboratory of Land Surface Process and Climate Change in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] 3 Innovation and Opening Laboratory of Regional Eco-Meteorology in Northeast, China Meteorological Administration, Harbin 150030, China; [email protected] 4 Meteorological Academician Workstation of Heilongjiang Province, Harbin 150030, China 5 Heilongjiang Province Institute of Meteorological Sciences, Harbin 150030, China * Correspondence: [email protected] Received: 29 October 2017; Accepted: 6 December 2017; Published: 9 December 2017 Abstract: Land use and land cover changes (LUCC) are thought to be amongst the most important impacts exerted by humans on climate. However, relatively little research has been carried out so far on the effects of LUCC on extreme climate change other than on regional temperatures and precipitation. In this paper, we apply a regional weather research and forecasting (WRF) climate model using LUCC data from Heilongjiang Province, that was collected between the 1900s and 2010s, to explore how changes in forest cover influence extreme temperature indexes. Our selection of extreme high, low, and daily temperature indexes for analysis in this study enables the calculation of a five-year numerical integration trail with changing forest space. -
Palaeontology and Biostratigraphy of the Lower Cretaceous Qihulin
Dissertation Submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Master of Science: Gang Li Born in: Heilongjiang, China Oral examination: 30 November 2001 Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes (Printed with the support of German Academic Exchange Service) Palaeontology and biostratigraphy of the Lower Cretaceous Qihulin Formation in eastern Heilongjiang, northeastern China Referees: Prof. Dr. Peter Bengtson Prof. Pei-ji Chen This manuscript is produced only for examination as a doctoral dissertation and is not intended as a permanent scientific record. It is therefore not a publication in the sense of the International Code of Zoological Nomenclature. Abstract The purpose of the study was to provide conclusive evidence for a chronostratigraphical assignment of the Qihulin Formation of the Longzhaogou Group exposed in Mishan and Hulin counties of eastern Heilongjiang, northeastern China. To develop an integrated view of the formation, all collected fossil groups, i.e. the macrofossils (ammonites and bivalves) and microfossils (agglutinated foraminifers and radiolarians) have been studied. The low-diversity ammonite fauna consists of Pseudohaploceras Hyatt, 1900, and Eogaudryceras Spath, 1927, which indicate a Barremian–Aptian age. The bivalve fauna consists of eight genera and 16 species. The occurrence of Thracia rotundata (J. de C: Sowerby) suggests an Aptian age. The agglutinated foraminifers comprise ten genera and 16 species, including common Lower Cretaceous species such as Ammodiscus rotalarius Loeblich & Tappan, 1949, Cribrostomoides? nonioninoides (Reuss, 1836), Haplophragmoides concavus (Chapman, 1892), Trochommina depressa Lozo, 1944. The radiolarians comprise ten genera and 17 species, where Novixitus sp., Xitus cf. -
DRAINAGE BASINS of the SEA of OKHOTSK and SEA of JAPAN Chapter 2
60 DRAINAGE BASINS OF THE SEA OF OKHOTSK AND SEA OF JAPAN Chapter 2 SEA OF OKHOTSK AND SEA OF JAPAN 61 62 AMUR RIVER BASIN 66 LAKE XINGKAI/KHANKA 66 TUMEN RIVER BASIN Chapter 2 62 SEA OF OKHOTSK AND SEA OF JAPAN This chapter deals with major transboundary rivers discharging into the Sea of Okhotsk and the Sea of Japan and their major transboundary tributaries. It also includes lakes located within the basins of these seas. TRANSBOUNDARY WATERS IN THE BASINS OF THE SEA OF OKHOTSK AND THE SEA OF JAPAN1 Basin/sub-basin(s) Total area (km2) Recipient Riparian countries Lakes in the basin Amur 1,855,000 Sea of Okhotsk CN, MN, RU … - Argun 164,000 Amur CN, RU … - Ussuri 193,000 Amur CN, RU Lake Khanka Sujfun 18,300 Sea of Japan CN, RU … Tumen 33,800 Sea of Japan CN, KP, RU … 1 The assessment of water bodies in italics was not included in the present publication. 1 AMUR RIVER BASIN o 55 110o 120o 130o 140o SEA OF Zeya OKHOTSK R U S S I A N Reservoir F E mur D un A E mg Z A e R Ulan Ude Chita y ilka a A a Sh r od T u Ing m n A u I Onon g ya r re A Bu O n e N N Khabarovsk Ulaanbaatar Qiqihar i MONGOLIA a r u u gh s n s o U CHIN A S Lake Khanka N Harbin 45o Sapporo A Suj fu Jilin n Changchun SEA O F P n e JA PA N m Vladivostok A Tu Kilometres Shenyang 0 200 400 600 The boundaries and names shown and the designations used on this map Ch’ongjin J do not imply official endorsement or acceptance by the United Nations. -
Water Use Conflict Between Wetland and Farmland and Its Mitigation Strategies
WATER USE CONFLICT BETWEEN WETLAND AND FARMLAND AND ITS MITIGATION STRATEGIES Case study in typical major grain- producing area (Sanjiang Plain) of Amur River Basin, Northeast China Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences December 2017 This report on Water use conflict between wetland and farmland and its mitigation strategies in typical major grain-producing area (Sanjiang Plain) of Amur River Basin, Northeast China, was prepared by Dr. Yuanchun Zou and the team from the Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences. The team was entrusted by the Northeast China Office, WWF China. The created intellectual property belongs to both parties. Client: the Northeast China Project Office, Partner: Northeast Institute of Geography and World Wide Fund for Nature Beijing Office Agroecology, Chinese Academy of Sciences Address: Room 202, Block9B, Haojing Villa Address: No. 4888,Shengbei Street, Changchun, Jilin Changchun, Jilin Tel: 0431-81112688 Tel: 0431-85542207 Fax: 0431-81112671 Fax: 0431-85542298 Contents Abstract......................................................................................................................................i Chapter I Background and Significance...............................................................................1 1. Introduction..................................................................................................1 2. Objectives................................................................................................... -
Global Map of Irrigation Areas CHINA
Global Map of Irrigation Areas CHINA Area equipped for irrigation (ha) Area actually irrigated Province total with groundwater with surface water (ha) Anhui 3 369 860 337 346 3 032 514 2 309 259 Beijing 367 870 204 428 163 442 352 387 Chongqing 618 090 30 618 060 432 520 Fujian 1 005 000 16 021 988 979 938 174 Gansu 1 355 480 180 090 1 175 390 1 153 139 Guangdong 2 230 740 28 106 2 202 634 2 042 344 Guangxi 1 532 220 13 156 1 519 064 1 208 323 Guizhou 711 920 2 009 709 911 515 049 Hainan 250 600 2 349 248 251 189 232 Hebei 4 885 720 4 143 367 742 353 4 475 046 Heilongjiang 2 400 060 1 599 131 800 929 2 003 129 Henan 4 941 210 3 422 622 1 518 588 3 862 567 Hong Kong 2 000 0 2 000 800 Hubei 2 457 630 51 049 2 406 581 2 082 525 Hunan 2 761 660 0 2 761 660 2 598 439 Inner Mongolia 3 332 520 2 150 064 1 182 456 2 842 223 Jiangsu 4 020 100 119 982 3 900 118 3 487 628 Jiangxi 1 883 720 14 688 1 869 032 1 818 684 Jilin 1 636 370 751 990 884 380 1 066 337 Liaoning 1 715 390 783 750 931 640 1 385 872 Ningxia 497 220 33 538 463 682 497 220 Qinghai 371 170 5 212 365 958 301 560 Shaanxi 1 443 620 488 895 954 725 1 211 648 Shandong 5 360 090 2 581 448 2 778 642 4 485 538 Shanghai 308 340 0 308 340 308 340 Shanxi 1 283 460 611 084 672 376 1 017 422 Sichuan 2 607 420 13 291 2 594 129 2 140 680 Tianjin 393 010 134 743 258 267 321 932 Tibet 306 980 7 055 299 925 289 908 Xinjiang 4 776 980 924 366 3 852 614 4 629 141 Yunnan 1 561 190 11 635 1 549 555 1 328 186 Zhejiang 1 512 300 27 297 1 485 003 1 463 653 China total 61 899 940 18 658 742 43 241 198 52