SEIPLED WP - 5 Contribution to the planning process

Energieagentur Obersteiermark DI Josef Bärnthaler, DI (FH) Harald Bergmann Kaserngasse 22 8750 Judenburg

Judenburg, July 2007

Content

1 INTRODUCTION...... 1 2 STRUCTURAL FUNDS...... 2 2.1 ERDF FUND ...... 2 2.1.1 Convergence ...... 3 2.1.2 Regional Competitiveness and Employment...... 3 2.1.3 European Territorial Cooperation ...... 4 2.2 EUROPEAN STRUCTURAL FUNDS 2007 - 2013 IN AUSTRIA...... 4 2.3 OPERATIONAL PROGRAM 2007 - 2013 IN ...... 5 2.3.1 Contribution of structural funds to energy investments ...... 6 2.3.2 Regional development programs ...... 6 3 REGIONAL ENERGY PROGRAM ...... 7 3.1 LOCAL CONDITIONS ...... 7 3.1.1 Topology ...... 7 3.1.2 Demographic development...... 8 3.1.3 Economic background ...... 9 3.1.3.1 Gross regional product ...... 9 3.1.3.2 Labour market...... 9 3.1.3.3 Income...... 11 3.1.3.4 Unemployment rate...... 11 3.1.3.5 Education...... 11 3.2 THE ENERGY-VISION OF ...... 11 3.2.1 Project - Phases ...... 13 3.2.2 Cost efficiency respectively social impacts ...... 14 3.2.3 Multiplication effect...... 15 3.3 INVOLVEMENT OF STAKEHOLDER AND ACTORS ...... 16 3.3.1 Stakeholder involvement ...... 16 3.3.2 Interviews to identify important stakeholders and potential actors ...... 16 3.3.3 Energy-conferences, thematic working groups ...... 16 3.3.4 Steering committee...... 17 3.3.5 Citizens ...... 17 3.3.6 Energy actors ...... 17

CONTENT > I <

3.4 INVOLVEMENT OF LOCAL MUNICIPALITIES ...... 18 3.5 INVOLVEMENT OF LOCAL ENTERPRISES...... 18 3.6 COMMUNICATION INITIATIVES ...... 18 3.7 CURRENT MAIN TOPICS OF THE ENERGY VISION...... 19 3.8 CONTRACTING MODELS AND PROCEDURES ...... 21 3.9 COSTS – THE WAY TO ENERGY SELF SUFFICIENCY ...... 22 3.9.1 Biomass heating and micro nets ...... 22 3.9.2 Private biomass heating systems ...... 23 3.9.3 Thermal solar systems ...... 23 3.9.4 Thermal sanitation...... 24 3.9.5 Large consumers (companies) ...... 24 3.9.6 Overall investments...... 24 3.10 JOBS EVALUATION...... 25 3.11 PUBLIC SUPPORT AND CO-FUNDING OF RENEWABLE ENERGY INVESTMENTS ...... 26 3.11.1 Subsidies for direct energy investments ...... 26 3.11.1.1 Private Investors...... 26 3.11.1.2 Farmers ...... 27 3.11.1.3 Commercial Investors ...... 27 3.11.2 Funding for regional structure and strategy processes ...... 27 3.12 ENERGY CONSUMPTION IN AUSTRIA ...... 29 3.13 PRICES OF ENERGY SUPPLIES – AUSTRIA ...... 30 4 PILOT PROJECTS ...... 31 4.1 GENERAL ISSUES ...... 31 4.2 THE REASONS FOR THE SELECTED ENERGY TECHNOLOGIES...... 31 5 PILOT PROJECT I...... 32 5.1 BIOMASS DISTRICT HEATING - MUNICIPALITY OF ST. MAREIN ...... 32 5.2 TECHNICAL SPECIFICATION ...... 32 5.3 HEAT POWER REQUIREMENT ...... 32 5.4 RAW MATERIAL ...... 36 5.5 CONCEPT – HEATING PLANT...... 36 5.5.1 Boiler...... 36 5.5.2 Fuel storage ...... 36 5.6 CONCEPT - HEATING GRID ...... 36 5.7 CONCEPT- HEAT TRANSFER STATION ...... 37

CONTENT > II <

5.8 ECONOMIC EVALUATION – INVESTMENT COSTS ...... 38 5.8.1 Investment costs – Heating plant and grid...... 38 5.8.2 Investment costs – alteration and connecting of buildings ...... 39 5.8.3 Overall Investment ...... 39 5.8.4 Funding for the investment ...... 39 5.8.4.1 Investors ...... 39 5.8.4.2 Clients respectively owners of buildings ...... 40 5.9 CUSTOMER CONTRACTS ...... 40 5.9.1 Consumer prices ...... 41 5.9.2 Price index ...... 41 5.9.3 Contracts...... 41 5.10 CURRENT STATUS (SUMMER 2007) ...... 41 6 PILOT PROJECT II...... 43 6.1 “ENERGY CABIN”...... 43 6.2 GENERAL ISSUES ...... 44 6.3 TECHNICAL SPECIFICATION ...... 44 6.4 INVESTMENT MODELS ...... 45 6.4.1 Self investment...... 45 6.4.2 Contracting model ...... 45 6.4.3 Leasing model ...... 47 6.5 ECONOMIC EVALUATION, COST CALCULATIONS...... 48 6.5.1 Investment costs for self investment...... 48 6.5.2 Calculation of the contracting model...... 49 6.5.3 Calculation of the leasing model...... 49 6.6 FUNDING ASPECTS ...... 50 6.7 RÉSUMÉ ...... 50 7 PILOT PROJECT III...... 52 7.1 BIOGAS FACILITY – INDUSTRIAL AREA ...... 52 7.2 LOCATION...... 52 7.2.1 Regional structure ...... 52 7.2.2 Biogas location ...... 53 7.3 RAW MATERIAL POTENTIALS (INPUT) ...... 54 7.3.1 Agricultural raw materials (energy crops) and liquid manure ...... 54 7.3.2 Biological waste from municipalities and industry ...... 55

CONTENT > III <

7.4 UTILIZATION OF THE FERMENTATION RESIDUALS (OUTPUT) ...... 56 7.4.1 Use of fermentation residuals on agricultural fields ...... 56 7.4.2 Production of drying fertilizer ...... 56 7.5 USAGE OF ENERGY ...... 57 7.5.1 Combined heat and power station (CHP) ...... 57 7.5.2 Feed in the biogas in the public gas grid ...... 58 7.5.3 Biogas micro net...... 58 7.6 ECONOMIC EVALUATION OF THE BIOGAS SYSTEM...... 59 7.6.1 Investment costs ...... 59 7.6.2 Heat delivery contracts ...... 59 7.6.3 Feed in of the green electricity to the power grid ...... 60 7.6.4 Public funding...... 60 7.7 RECOMMENDATIONS ...... 60 8 CONCLUSION / PERSPECTIVE...... 62 9 LIST OF FIGURES ...... 63 10 LIST OF TABLES ...... 64 11 LIST OF LITERATURE...... 65 12 ANNEX ...... 67

CONTENT > IV <

1 Introduction The SEIPLED general objective is to demonstrate that sustainable energy investment projects can have a positive local economic development impact1. The present document describes the support of local and regional development by carrying out three different renewable energy pilot case studies, which have a high potential for replication inside the target region (district of Murau/Styria) as well as for other regions in other countries. This projects also shows how sustainable energy projects can be linked and financed by structural funds. The document is divided into three main sectors; the first sector embraces structural funds and their contribution to energy investments in Austria. The second sector gives an overview about the local conditions in the district of Murau and the overall energy strategy of the “Energievision Murau”that was decided officially by the municipalities. The third sector describes the results of the three pilot case studies that were carried out by the Energieagentur Obersteiermark. These case studies are a biomass district heating, a biogas plant and an innovative biomass heating solution. The main aspects of the case studies are the economical development, technical aspects as well as aspects of funding, related to structural funds.

1 Ref.: Annex I - SEIPLED

> 1 <

2 Structural funds More than 30% of the overall budget of the European Union is used for development of regions to decrease the imbalances in development of the different regions. The most important fund for regional development is the ERDF fund.

2.1 ERDF Fund2 As part of its task to promote regional development, the ERDF contributes towards financing the following measures: • Productive investment to create and safeguard sustainable jobs; • Investment in infrastructure which contributes, in regions covered by Objective 1, to development, structural adjustment and creation and maintenance of sustainable jobs, or, in all eligible regions, to diversification, revitalisation, improved access and regeneration of economic sites and industrial areas suffering from decline, depressed urban areas, rural areas and areas dependent on fisheries. Such investment may also target the development of trans-European networks in the areas of transport, telecommunications and energy in the regions covered by Objective 1; • Development of the endogenous potential by measures which support local development and employment initiatives and the activities of small and medium-sized enterprises; such assistance is aimed at services for enterprises, transfer of technology, development of financing instruments, direct aid to investment, provision of local infrastructure, and aid for structures providing neighbourhood services; • Investment in education and health (only in the context of Objective 1). • The areas in which these measures provide support include development of the productive environment, research and technological development, development of the information society, protection and improvement of the environment, equality between men and women in the field of employment, and cross-border transnational and inter-regional cooperation. The ERDF aims to strengthen economic and social cohesion in the European Union by correcting imbalances between its regions. In short, the ERDF finances:

• direct aid to investments in companies (in particular SMEs) to create sustainable jobs; • infrastructures linked notably to research and innovation, telecommunications, environment, energy and transport; • financial instruments (capital risk funds, local development funds, etc.) to support regional and local development and to foster cooperation between towns and regions;

2 Ref.: http://ec.europa.eu/regional_policy/funds/feder/index_en.htm

> 2 <

• technical assistance measures. The ERDF can intervene in the three objectives of regional policy. These objectives are convergence, regional Competitiveness and Employment, European Territorial Cooperation.

2.1.1 Convergence In regions covered by the Convergence objective, ERDF focuses its intervention on modernising and diversifying economic structures as well as safeguarding or creating sustainable jobs, with action in the following areas: • research and technological development (RTD) • innovation and entrepreneurship • information society • environment • risk prevention • tourism • culture • transport • energy • education • health

2.1.2 Regional Competitiveness and Employment For the Regional Competitiveness and Employment objective, the priorities are based on three sections: • innovation and knowledge-based economy: strengthening regional capacities for research and technological development, fostering innovation and entrepreneurship and strengthening financial engineering notably for companies involved in knowledge-based economy; • environment and risk prevention: cleaning up polluted areas, boosting energy efficiency, promoting clean public transport within towns and drawing up plans to prevent and limit natural and technological risks; • access to transport and telecommunications services of general economic interest.

> 3 <

2.1.3 European Territorial Cooperation For the European Territorial Cooperation objective, the ERDF focuses its aid on three main areas: • development of economic and social cross-border activities; • establishment and development of transnational cooperation, including bilateral cooperation between maritime regions; • increasing the efficiency of regional policy through interregional promotion and cooperation, the networking and exchange of experiences between regional and local authorities. • Specific Territorial Characteristics • The ERDF also gives particular attention to specific territorial characteristics. ERDF action is designed to reduce economic, environmental and social problems in towns. Naturally disadvantaged areas geographically speaking (remote, mountainous or sparsely populated areas) benefit from special treatment. Lastly, the outermost areas also benefit from specific assistance from the ERDF to address possible disadvantages due to their remoteness.

2.2 European structural funds 2007 - 2013 in Austria3 In Austria, the “National Strategic Reference Framework“ (NSRF, in Austria named STRAT.AT), was drafted in an intensive dialogue process which included all relevant partners at the Federal and the Länder level. According to the federalistic structure of regional policy in Austria, the platform for this process has been provided by the Austrian Conference on Spatial Planning (Österreichische Raumordnungskonferenz, ÖROK).1 The STRAT.AT provides the goals and the basic strategic framework for the 8 operational programmes on the objective “Regional competitiveness and employment“, one “Convergence- Phasing Out”-programme for Burgenland, one national programme on “Employment growth” and for several regional programmes on Objective 3, “Territorial cooperation”. It also includes the links to the national programme for the development of rural areas 2007 – 2013. Resulting from the intention to provide a coherent overall development strategy for Austria and given the fact that there still is an ongoing debate about budgets and precise definitions of the structural fund aid regulations, the strategy and the spectrum of measures included in the STRAT.AT exceed the realistic use of EU funding in Austria. Therefore, the strategy outlined in the document includes a number of measures which will be funded on a strictly national basis – but these also will be in line with the overall framework of the Community Strategic Guidelines. This applies to measures with very high costs, e.g. transport and

3 Ref.: www.oerok.gv.at

> 4 <

logistic infrastructures, or to framework conditions, which cannot be influenced with SF monies. Some of the SF-funded measures will clearly provide an innovative impulse for (infrastructure-) investment, as in planning and project development, managing tools, R&D etc. As described the STRAT.AT process defined the framework for regional programmes of the provinces of Austria. The outcome of STRAT.AT is the basis of the programs of the provinces. Therefore each province developed its own program for regional development 2007 – 2013. In the following chapter 2.3 the regional development plan of the province of styria is described.

2.3 Operational program 2007 - 2013 in styria The program of the province of styria focuses on three main priorities. In these different priorities ten fields of action have been defined. Priority 1: a) Strengthening of innovation and knowledge based economy (1) Superior research and development (2) Strengthening of the actors of the innovation system (3) Support of innovation in businesses (4) Research and development in businesses (5) Support of the business spirit for founders of businesses (6) Know-how gathering and knowledge transfer for innovations

b) Strengthening of regions (7) Tourism in disadvantaged regions (8) Integrated sustainable development (9) Environmental investments for businesses (10) Development of urban areas

c) Governance and technical help

The topics energy, environment and sustainability are integrated into the program as cross-cutting issues that wield influence to all fields of action and to all priorities. In the research and development sector, the program focuses on renewable raw materials. Already existing results of several research studies will be transferred to be manufactured and to get concrete economic results of the research studies. Further the realisation of concrete pilot and demonstration facilities to implement and develop new or essential better technologies will have a strategically

> 5 <

importance to ensure better marketing possibilities for the province of styria. Additional support for investments in environmental friendly production cycles (cleaner production).

2.3.1 Contribution of structural funds to energy investments In the field of action 9 the direct linkage between structural funds and energy investments is present. The aim of this field is better energy efficiency and the reduction of resources use in companies, industrial buildings, etc.. The avoidance of air pollution, noise and dangerous waste as well as the preparation of waste water are the main investments to be funded. Further businesses should get more incentives to invest in better energy efficiency (such as passive houses, thermal sanitation of buildings…) and the use of renewable energy sources (solar systems, CHP…). Results of already implemented studies should be transferred into the manufacturing of products. Therefore the realisation of pilot projects is an important step to implement new environmental technologies. In Austria the support for environmental investments from companies amounts 30% of the whole investment. If the company fulfils several criteria (e.g. location, branch, etc.) the support can be increased by contribution of structural fund up to 35% of the investment. The maximum amount that can be granted by structural funds amounts € 10.000,-. Further structural funds can support the implementation of regional development programs. A main topic of most regional development programs are renewable energy sources regarding the increased usage of regional utilizable energy sources like biomass, wind, etc. The idea is the strengthening of regions by using regional energy sources so that money remains in the region, small business cycles are created, etc. Mostly these regional development programs are supported by several superior development programs like LEADER+ (see chapter 3.11.2)

2.3.2 Regional development programs As mentioned in previous chapter, regional development plans as well as regional energy plans can bring valuable contributions to the overall aims of structural funds. In the district of Murau the regional energy plan is called the Energy Vision of Murau. The aim of the energy vision is to create a self sufficient district by using local energy resources. Thus regional business cycles are created money remains in the region and regional economy is strengthened. Further the energy vision with its aims was worked into several guidelines of the region like LEADER and NUTS 3 guidelines. Thereby the regional energy plan became an official strategy of the region.

> 6 <

3 Regional energy program In the district of Murau, the regional energy program was established trough a bottom-up process. A participation process was started in 2002 where regional energy actors defined an energy strategy for the district of Murau, and called it “Energievision Murau” the energy vision of Murau. The main goal of the energy vision is to establish a self sufficient region based on 100 % renewable energy sources in the heat and electricity sector. During the last years the energy vision became a strong guideline for the whole district and for the people living there. The energy vision and the objectives of the guideline have been integrated in regional development guidelines such as LEADER and NUTS3 (see chapter 0). These development plans have been decided by the municipalities officially.

3.1 Local conditions

3.1.1 Topology The district of Murau is situated in the alpine region, is bounded by the Niedere Tauern in the north as well as the Gurktaler Alpen in the south. Due to the high mountain area only about 20% of the district surface continuous residential area are accordingly low are also the population densities. The entire district has 23 inhabitants per km² (112 EW per km² continuous residential area). 61 % of the landscape is covered by forests, mostly conifers. Settlement and working centres are the district principal city Murau, the municipalities Neumarkt in Steiermark and Sankt Lambrecht as well as St. Peter am Kammersberg and . Further working centres are Stolzalpe (hospital) and Laßnitz bei Murau. The district can be designated as a rural area because of its distant situation to the state capital and to the large economic centres (Graz, Vienna, Linz, Salzburg) The most important railway connection from Vienna to leads across the Murtal to Carinthia. Further a regional railway - The “Murtalbahn” – is working inner regional in the district of Murau.

> 7 <

3.1.2 Demographic development In 2001 the district Murau had 31.472 inhabitants; these are 2.7% of the whole styrian resident population. With 2.331 inhabitants the district capital Murau is largest municipality of the district. The next larger municipalities are Sankt Peter am Kammersberg (2.179) and Neumarkt in Steiermark (1.925). The population densities (EW/km²) are throughout small and lie between 6 and 374 EW/km². The resident population decreased between 1991 and 2001 around altogether 2.4% - and so more strongly than in the trend in Styria. The number of inhabitants of the peripheral municipalities decreased even stronger than in urban areas. The decrease in population in the district is to be due to the negative migration balance (-1.317), the birth balance was positive (+532). 28 of the 35 municipalities exhibited between 1991 and 2001 an excess of births. It is remarkable that in the same period only 6 of the 35 municipalities exhibits a positive migration balance. By migration strongly affected were again the peripheral municipalities of the district. The negative development continued also after 2001. Between 2002 and 2005 the total population in the district Murau decreased further around 2.2% (Styria: +0.6%, Austria: +1.8%). In an Austrian population forecast for the period of the years 2001- 2031 in the district Murau, further decreases in population are prognosticated in the future4 The decrease between 2001 and 2011 is expected with 4,6% ahead- estimated, for Styria altogether a plus of 0,1%. Following the Austrian trend the age structure from the recent age groups will shift to the older age groups in the next years. The rate of the unter-15-years old persons laid 2001 in the district Murau with a percentage of 17.7% over the average of styria that amounted 16.2%. According to prognosis up to the year 2011 the percentage will decrease to 13.8% (Styria 2011: 13.5%). The number of households amounted in 2001 10.868, that was around 11% more than 1991. The number of one-person households increased (+36%), whose percentage with 24% is clearly beneath the reference value of Styria (31%). In contrast to this, a clear reduction of the number of multi-person households (-25%) is registered. The number of the dwellings in the district of Murau amounted in the year 2001 13.138 and was around 17% or 1.906 more highly than 1991. The percentage of dwellings in buildings with 1-2 dwellings laid with 74.3% clearly over the average of Styria (55.4%), the number of these dwellings grew since 1991

4 Ref.: ÖROK Bevölkerungsprognose 2001-2030

> 8 <

around further 13%. The number of the dwellings in buildings with three and more dwellings increased strongly (+29%), which underlines the trend to multi-storey buildings.

3.1.3 Economic background

3.1.3.1 Gross regional product For the region west, a gross regional product per inhabitant of 76% of the Austrian gross regional product is expelled. This is in the midfield of all Austrian regions. The gross regional product in the region increased around approximately 29% since 1995. This increase is lower than the Styrian and the Austrian increase (Styria: +38%, Austria: +36%). With the productivity (gross regional product per employee) a value of 94% in the reference to the Austrian average value is reached.

3.1.3.2 Labour market In the year 2001 for the district Murau of 9,647 jobs were proven, 44.3% of these work places were woman's work places. In relation to the year 1991 the number of the jobs decreased against the Styrian and Austria trend (+3.9% and. +4.0%) around 1.4% 5. The largest job centre of the district is the city Murau with 17,3% of all jobs, followed of Neumarkt in Steiermark (8,3%), Scheifling (8,1%), Stolzalpe (6,6%), Sankt Lambrecht (5,3%) as well as Laßnitz bei Murau with 4,8% and Sankt Peter am Kammersberg with 4,6% of all jobs. The regional distribution remained essentially identical thereby opposite 1991. The job density (number of the jobs per 1.000 inhabitants) was in the district Murau in the year 2001 about 307. The district Murau is characterized by agriculture. Also forestry has a high importance. In the 1990er years the rate of jobs in the land and forestry decreased from 20% to 16% and the rate of the industry and trade jobs from 31% to 28%. In contrast to this, the number of service jobs increased from 49% to 57% and thus to a value, which is still beneath the Austrian average.

Industry The industry centre of the district is the municipality Scheifling with 14% as well as the district capital Murau with a percentage of 12% of all jobs of the industrial sector. The biggest industries in the district are the building industries with over 900 persons employed and the wood industries (over 360 persons employed). From the 133 enterprises (without building industry) 116 enterprises have less than 20 persons employed, 2 enterprises have more than 100 persons employed. Also in the building industry (98 enterprises) most enterprises employ less than 20 persons.

5 Ref.: Statistik Austria

> 9 <

24% of all jobs in the service sector are placed in the district capital Murau. Neumarkt and Stolzalpe reach about 11% of all service jobs in the district. The employee-strongest industry in the tertiary sector is the branch trade and repairs (approximately 1.200 persons employed), followed of health -, veterinarian and social welfare companies (about 980 persons employed) and the tourist sector (approximately 900 persons employed). The majority of the companies employ less than 20 persons. The regional concentration of the jobs on a few working centres leads to important commuter rates within the region. The rate of commuters in the district is throughout higher than 60%.

Tourism The tourism takes a special position within the service industries, the importance of the tourism is very high. 7% of all overnights of Styria are registered in the district of Murau. The number of the overnight accommodation amounted at the beginning of the 1990er years about 600.000, after clear decreases in the middle of the 1990er years, the number of accommodations increased continuously up to 700.000 per year. With approximately 56% only scarcely more than half of the overnights are booked by Austrian guests. The district reached reaches one of the highest foreigner guest rates of all Styrian districts (Germans followed from Hungary, Czech, Slovakia and Poland). The percentage of overnights in summer is barely higher than the overnights in winter (skiing). In the catering and hotel industry 806 persons were employed in 2001, this corresponds to a percentage of 8.4% from all jobs in the district. The largest percentage of employees in this sector with approximately 15% is in the city of Murau.

Agriculture and forestry 2001, 15.5% of all employees were employed in the agriculture and forestry sector. This rate is the highest of all Styrian districts and is obviously higher than the Styrian average that amounts 6.1%. Above all the peripheral areas in the district are characterised by a high agricultural employment rate. In 8 municipalities more the 50% of all employees are employed in the agricultural sector. The total area of agricultural and forest-area amounts to 129.600 hectares (of it 33% grassland and 61% forest surface). The area of farmland amounts approximately 2.600 hectares. In the year 1999 in the district Murau 1.851 farms were existent with a rate of the main occupation farms of 50%. This rate is one of the highest of all Styrian districts and lies clearly over the Styrian average (34%) and the Austrian average of 38%. The average size of the farms amounts to 60.5 hectares (Austria: 30.9 hectares).

> 10 <

3.1.3.3 Income The gross median income in the district Murau reached in the year 2004 with € 1.739, - altogether 88 % of the Austrian reference value and was 1 % higher than in 1999. The income of man amounted € 2.048, - (89% of the Austrian average), the income of women amounted € 1.220, - (79% of the Austrian average). The level of income in the district increased since 1999 at around 12,1% (Styria: 11,5%). The highest incomes are obtained in the industries of the secondary sector and in the credit and insurance sector.

3.1.3.4 Unemployment rate Altogether in 2005 785 persons were unemployed in the district of Murau (woman of 38.6%), that were around 4,4% more than in the year before (Styria: +6,2%). The unemployment rate of women increased at 8,4% more strongly than the rate of unemployed men (+2,0%). The unemployment ratio of 6,6% in the annual average 2005 - the level of unemployment is lower than the Styrian and Austrian average (in each case 7.2%). The structure of unemployment exhibits some special characteristics in the district Murau. The number of unemployed teenagers decreased in the comparison to the year before. This is against the Austrian trend. The number of older unemployed persons - indeed on the basis of a low level – increased stronger than in the national comparison. The portion of the unemployed persons from the range of the seasonal occupations and the portion of the unemployed persons with final master ship examination are higher than in the national comparison. The general trend to a higher education is reflected also in the district results again. Even if the education levels are altogether below average, the number of the persons with university conclusion or with a higher school certificate increased - the Austrian trend following - also in the district of Murau. The ratio of the over-15-years old resident population with university conclusion was about 4.9% in 2001 (Styria: 7.1%, Austria: 8,0%). 7.5% of the over 15-years old resident population had a higher school certificate (Styria: 9.7%, Austria: 10,9%).

3.1.3.5 Education The trend for higher training is to be observed in almost all municipalities. Altogether a higher education level prevails in the working centres. In municipalities with high ratios in the agricultural sector usually the ratio of the persons with apprenticeship conclusion is very high.

3.2 The Energy-Vision of Murau The project “Energievision Murau” was initiated by the Energieagentur Obersteiermark and implemented together with the Wallner & Schauer GmbH.

> 11 <

The goal of the “Energievision Murau” is to establish an energy self sufficient district Murau, to get independent from fossil fuels until 2015. 100 % of energy for room heating and electricity should come from renewable energy sources. The Energievision Murau started an important energy innovation processes in the district of Murau: a social process with the objective of giving the topic energy a basic function for the district, by the participants themselves. The innovation is based on a holistic approach for the project realisation. That means that the high knowledge conditions in technical questions and contents could be connected with a high quality of a social process. The social process means to involve the actors in a participation process, for the development of the goals and the strategy for implementations of investments, and rising the awareness. Before the beginning of the project the region was characterized by the fact that the topic of energy only played a minor role. This was expressed by several individually activities. Technical knowledge, spread on different participants was present in the region, but it was rarely used in cooperation with other participants. The project brought a lot of impulses - the awareness for the chances of a co-operation to reach a common goal and strategy was built. Within the communication of the most important energy-facts (e.g. 53% of the energy consumption from households came from fossil fuels) and the discussion of the available renewable energy sources (especially biomass and solar energy) in the region, the awareness for the meaning of the topic energy increased and changes were recognized. 40 participants from different actors (plumbers, SME’s, housing companies, municipalities, schools, politicians…) have been involved from the beginning. Several regional energy conferences have been organized for the creation of the common goal and a common implementation strategy. The most important goal, decided by the participant is create an energy self sufficient district Murau. The goal is reachable, the potential is available. Several working groups to different topics have been installed, for creating cooperation and investment projects, and also information and awareness creation to different target groups. The project was designed and managed by the energy agency, which also assisted in technical aspects. A professional moderator assisted in setting up the participation process and moderation of the energy conferences. The process was started in 2003 with broad participation of more than 30 important participants from the region. The energy vision with the goal to get independent from fossil fuels until the year 2015 was elaborated. 100 % of energy for room heating and electricity should be produced from renewable energy sources. By a broad awareness-raising process different implementations in the region could be animated and started. The most important point of this first project phase was the participation process, to set up common goals for the district of Murau and to reach high accordance with these goals.

> 12 <

3.2.1 Project - Phases The following phases of the project led to the successful results. The first two points concern the project energy vision in the 1st part – Finding goals and first implement steps; ¾ Interviews to analyse the situation: Collection of projects, ideas, statements for the meaning of the topic energy by interviews with 20 important actors of the region. By using the results of the interviews an actor’s map was drawn up as a basement for a setting up a network and successful co-operation. ¾ First and second Energy-meeting: Agreement of the energy vision Murau about five common guidance objectives and corresponding measures by 30 actors from different sides of the society (plumbers, SME’s, energy suppliers and distributors, municipalities, teachers, caretakers, politicians …), in the context of a moderated process.

The energy objectives of Murau 2015 Murau is an energy autarkic region (100% renewable energy for thermal + electric energy)

Murau has created high awareness for sustainable energy supply

Murau has built a platform for renewable energy.

Murau has created active flourishing small scale/local business circles.

Murau creates high added value by renewable energy in the region

To reach of the common objectives and the highest goal, the energy self sufficiency by 2015, ideas for implementing a strategy were developed: ¾ the improvement of wood chips and firewood-marketing and logistics. ¾ an action scheme for small scale biomass and solar heating. ¾ awareness creation for renewable energies. ¾ providing information and involvement of multiplier. The implementation of different measures has been started in the region with assistance of the energy agency.

> 13 <

3.2.2 Cost efficiency respectively social impacts

¾ Higher added value in the region: By the introduced awareness creation process the use of regional resources such as biomass and the building of bio energy plants (wood chips, pellet heaters...) and solar plants in the region increases. Domestic farmers become energy farmers by the supply from biomass, plant constructors could strengthen themselves by the regional anchorage. Created cross- linking of the participants enables to use the potential of regional raw material, a purchase from the outside becomes not necessary. Thus e.g. plumbers work together with domestic plant constructors and can offer a comprehensive service.

¾ Strengthening of enterprises: By the co-operation of individual enterprises with partners from the region comprehensive service can be offered, so that regular costumers can be bound and new costumers can be won. A common marketing for a common market presence and the use of synergies can essentially lower costs of both partners. Further with the strong vision and the 5 guidance objectives new perspectives and new ideas for individual enterprises appeared which can boost the turnover figures.

¾ Conflation of individual activities: By the conflation of all important participants in the field of energy, existing and new individual activities are brought together to a common whole with a unified future view for the power supply in the district of Murau. The example of the region and the goals in the operational agenda 21 conceived network bio region formulate this conflation as a central task. Also with the activities of the “HOLZWELT” bio energy is a central topic. Murau exhibits enormous potentials of renewable energy sources, in particular biomass, sun and small hydro power.

¾ Fitting in into existing structures: The project energy vision conflates the individual activities in the energy region and co-ordinates this activities for the whole region. Also in the LEADER+ program of the “HOLZWELT” bio energy is a central topic of interest, also this is coordinated by the energy vision. Also the “HOLZWELT” - ambassadors; these are tourist guides who present the region to guests and tourists, will present the topic bio energy. There-fore a new training module was created. Thus the project energy vision affords a central contribution for the advancement of the bio region Murau.

¾ Creation of Identity by participation: The most important result of this project is surely the mobilization of people to a common goal. By the conferences the participants could experience that aspiring goals can be reached if people work together - a very ambitious catalogue of

> 14 <

objectives was developed. These objectives were compiled methodically in such a way that they are carried by all present ones. The participants come from all ranges of the society, so the results are also an expression of their different future conceptions. By the compression of these adjustments to five common guidance objectives the result gets a very high acceptance.

¾ Awareness creation for renewable energies from the region: By the inclusion of the important participants in the field of energy of the region for the development of a common vision and their implementation as well as the communication of the most important energy-facts (e.g. 53% of the energy consumption from households was provided by fossil fuels at the beginning, 2006 it was 44%), the necessity of promoting renewable energy was recognized. Further the promotion of the awareness-creation in the region is an important component of the measures of the project. This is al-ready implemented by public relations, presentations to costumers about heating with wood by integration of local enterprises, information of mayors by conferences and presentations. Further ideas are projects at schools. At the “Steirische Holzstraße” (Styrian wood road, www.holzstrasse.at), this is a theme-road about wood in the district of Murau, energy objects are taken up accordingly, documented and made open to public. The work also becomes positively apparent, since already active interest in excursions in the topics of wood and energy is to be registered.

¾ Increasing the common well being of the municipality: In sum the project contributes in a high dimension to the increase of the public interest (common well-being of a municipality) and the sense of municipality by the pursuit of a common vision and the conversion of common activities in the different fields of the energy. Also regional jobs can be created by using of the regional raw materials, as well as the avoidance of emissions and the saving of CO2 (climatic protection, Kyoto).

3.2.3 Multiplication effect The project has mobilized the most important strength in the region - the self- assertion-strengths that make it possible to implement common aims for the region. The highest guidance objective, reaching the energy autarchy 2015 at thermal and electric energy by 100 % renewable energy has developed a special traction power. The topic energy obtained a high value in the region and the energy future will be characterized by the use of renewable energy. The involved participants show their successes outside of the region. The project energy vision has a big model effect for other regions. There is already supra-regional attendance for the way to energy autarchy by using renewable energy. The region Murau is one of only 3 regions with 100% renewable energy in the province of Styria (the only one as entire district!). At

> 15 <

present the district of Murau is studied by the University of Graz to figure out in which ways the energy self sufficiency can be reached and which effects can be expected by reaching this aim. Therefore the multiplication effect of the project is very high. It is a possible way how regions with high potentials of renewable energy sources can be forced to use their potentials. The concept is developed in a way that methodology and procedure will be transferable to similar regions.

3.3 Involvement of stakeholder and actors

3.3.1 Stakeholder involvement The stakeholders are personally addressed by the project team and integrated into a participation process were they can bring in their personnel objectives into the process. Important key actors and stakeholders are also part of a superior steering committee (see below). Further the project was present at several different events, regional public fairs, congresses and so on. The participation at regional-conferences especial for mayors was another important point to get the mayors of the municipalities of the district involved.

3.3.2 Interviews to identify important stakeholders and potential actors In the first phase of the project interviews with 20 important actors of the region were conducted. The main goal was the collection of projects, ideas and statements for the meaning of the topic (renewable) energy in the district. Second goal was the identification of important stakeholders and actors for the implementation of the process. Everyone was asked, who else is important in the energy field, and what can be an task of this person. This screening process was very successful, to reach all important players at the early beginning of the project. By using the results of the interviews an actor’s map was created as a basement for setting up a network and successful co-operation. These actors were invited to the regional energy conferences during the process.

3.3.3 Energy-conferences, thematic working groups Important for the implementation of the energy-vision were several energy conferences with a participation of more than 40 actors from different sides of the society (plumbers, SME’s, energy suppliers and distributors, municipalities, teachers, caretakers, politicians, responsible persons in chambers …). At these moderated conferences the energy actors decided common objectives, defined implementation steps, created several working groups and a steering committee. In this working groups, the members planned pilot actions and projects, some of them also made investments, so the energy vision became alive. The most important fact is, that actors and stakeholders did the strategic planning by themselves, assisted by the Energy Agency (bottom up approach).

> 16 <

3.3.4 Steering committee A steering committee for imbedding and anchoring the process of the energy vision into the existing structures of the region was established. (e.g. Bioregion, LEADER+-program of the HOLZWELT Murau). The task of the steering committee is also to communicate the energy vision to regional opinion leaders that are not involved into the energy vision so far. Members of the steering committee are: Mayors, speaker of working groups, chambers of commerce and chamber of agriculture.

3.3.5 Citizens Public relations, awareness creation The work on public relation measures was very important to get a large number of citizens of the district Murau informed and involved into the process. A broad discussion of the objectives the energy vision started under citizens. Very helpful for the communication were several awards that we achieved for the project. The presentation of successful implemented projects is an integral element to communicate the energy vision. This increased the identification in a wide range of people with the project. For this involvement, special actions have been prepared: ¾ a solar campaign with special packages, prices and subsidies ¾ Information days at plumbers and in municipalities for biomass heating and solar systems ¾ Workshops for private house owners concerning biomass and solar heating, and thermal insulation and energy efficiency in houses ¾ Energy advisory days in municipalities have been offered by the energy agency

3.3.6 Energy actors Beside the moderated process, a lot of actors started to plan their own investments. The energy agency assisted this actors with there experience and knowledge also in technical questions. Before the beginning of the project the region was characterized by the fact that the topic of energy only played a minor role. This was expressed by many individually activities. Technical knowledge, spread on different participants was present in the region, but it was rarely used in cooperation with other participants. The project brought a lot of impulses - the awareness for the chances of a co-operation to reach a common goal and strategy was built. Within the communication of the most important energy-facts (e.g. 50% of the energy consumption from households made of oil) and the discussion of the available renewable energy sources (especially biomass and solar energy) in the region, the awareness for the meaning of the topic energy increased and changes were recognized.

> 17 <

3.4 Involvement of local municipalities The involvement of local municipalities is an important factor for the success of the strategy and the whole process in the region. The district of Murau consists of 35 municipalities. The municipalities are owner of the energy agency and pay their dues every year. In return the energy agency offers attractive prices for energy consulting for inhabitants of these municipalities. Several activities to involve the municipalities also into the process of the energy vision are additionally organised; Very important activities are conferences with local mayors. At these conferences the mayors are continuously informed about the aims of the energy vision and also about latest news, successes and so on. Further several information events and seminars are organized in the municipalities. The main topics of information events and seminars are among others thermal solar systems, building insulation, Biomass heating etc. The target groups are owner of buildings. The objective is to convince the people to save energy and to use renewable energy resources for heating their houses. Another important point where municipalities are involved and supported are different case studies for example biomass district heating or biogas. The municipalities are often co-owner of district heating solutions and so they bring n important contribution to the aims of the energy vision.

3.5 Involvement of local enterprises Local enterprises are important multipliers for the energy vision of Murau. Among others, plumbers, carpenters, builders and architects are the main multipliers. The larger plumbers of the district are involved into the energy vision in a special theme group called “Naturinstallateure”. These plumbers have built a common marketing pool and have made several commitments concerning their co- operation and philosophy of their enterprises. A very interesting and helpful commitment for the energy vision is the commitment to install no more oil heating in new buildings any more. Another activity to involve the companies is the organisation of seminars in the passive house sector. At these events are invited to inform about passive house technologies and different aspects of these technologies. Also reconstruction and thermal insulation to low energy buildings is a topic. Further the companies are brought together at these events, so they can build networks and work together.

3.6 Communication initiatives The communication of the project within the region is a very important point for the project energy vision, the responsibility for communication activities is overtaken by the energy agency. The anchoring of the energy vision on the one

> 18 <

hand and the awareness creation for renewable energy resources in the other hand are thereby the most important points. A wide range of activities have been realised. Energy conferences for the energy actors and meetings of a steering committee and several theme-groups are organised. To reach the public several communication activities have been realised; ¾ Reports and Announcements in newspapers ¾ Seminars for the owner of buildings (Sanitation; etc.) ¾ Creation of a marketing folder ¾ Creation of different marketing materials ¾ Creation of an “energy landscape” (see Image 1)

Image 1, "energy landscape" district of Murau

3.7 Current main topics of the energy vision Within the energy vision several main focuses were defined. Above all the overall strategy of the energy vision is the increase of renewable energy use and finally the

> 19 <

achievement of the energy self sufficiency that means 100% of the energy for heating and electricity should be produced by renewable energy sources. The main target areas that were defined to reach the goals are biomass heating, solar systems and awareness creation for renewable energy. In the different target areas several theme groups were built that work on the development and implementation of concrete projects;

• Group of plumbers (“Naturinstallateure”) In this group, four local plumbers stuck together and defined a common marketing strategy based on biomass and solar use as well as renewable energy in common. Several activities were realised up to this time, among others a solar campaign was started where the plumbers paid subsidies for thermal solar systems.

• Biomass group The aim of this group is to ensure the security of biomass supply respectively wood chips. Therefore several activities were made. Among others the erection of biomass logistic centres is a main focus of this group. The advancement of biomass logistic is an important success factor for biomass heating systems, because without assured supply with biomass, no new heating will be built.

• Education/Training group This group is working on awareness creation. Therefore different events e.g. energy days in schools, seminars for building owners for the topics building sanitation, energy saving, biomass heating were organised. Further the organisation of excursions in the field of renewable energies especially biomass are organised for schools and other interested persons.

> 20 <

3.8 Contracting models and procedures The most important contracting model within the district of Murau is the contracting model for biomass heating. This contracting model is characterised by the investment and opertation by a group of local farmers. This group builds up the whole heating system and is afterwards responsible for maintenance and service of the system. The customers pay a connecting fee once and the price for the heat energy. The customers have no maintenance or service work with their heating systems. Between the customer and the opertator a contract exists were the terms of heat delivery are defined. The main advantage is that local farmers become suppliers of heat energy and don’t sell only the raw material. Thereby the farmers can utilize wood with insufficient quality and can use this wood for their biomass heating. So they can create additional income by extending the value added chain.

Image 2, Basic scheme of a biomass micro net

Favourable locations for micro nets In accordance to an economical efficiency the distance between heating plant and customers should be as small as possible. Thus centres of municipalities, areas with lots of public buildings, etc. are often good locations for micro nets and small district heating.

> 21 <

3.9 Costs – the way to energy self sufficiency The main objective of the energy vision is to reach energy self sufficiency until the year 2015. In the electricity sector the self sufficiency is already achieved, approximately 20% more electricity is produced in the district of Murau than used. In the heating sector, a percentage of 56% of the overall energy consumption for heating was produced by renewable energy sources in 2006. The whole consumption amounted to approximately 385 Mio. KWh. Thus 170 Mio. KWh are still produced from fossil energy sources. Therefore an estimation was made, how these 170 Mio. KWh can be produced by renewable energy sources. Five fields of action were defined; district heating and micro nets, private biomass heating, thermal solar systems, thermal insulation and large consumers. Based on data of the last years, the expected number of different implementations was estimated.

3.9.1 Biomass district heating and micro nets At this time, an overall power output of all biomass district heating systems of 22 MW is installed. An overall energy production of about 40.000 MWh can be estimated. For reaching the energy self sufficiency, an overall power output of district heating solutions and micro nets of 18 MW should be installed. That means an energy production of approximately 36.000 MWh will be produced additionally. Costs: By calculating an amount of € 750 / kW the overall investment for the biomass district heating and micro nets amounts 13.5 Mio €.

Image 3, specific investment costs for biomass district heating systems [€/kW] 6

6 Ref.: Haas, Kranzl 2002

> 22 <

3.9.2 Private biomass heating systems The number of buildings in the district of Murau amounts about 9000. At this time 3500 of these buildings are still heated by fossil energy sources like oil. That means to substitute all fossil heating systems; about 400 every year. fossil fired boilers have to be replaced by systems using renewable energy.

Costs: The costs per kW for an average power output of about 25 kW amount approximately 500 €/kW. By replacing all 3500 fossil fired boilers by biomass systems an overall investment of about 43 Mio € will be taken.

Image 4, specific investment costs for small biomass boilers (<70kW) [€/kW]7

3.9.3 Thermal solar systems Thermal solar systems bring an important contribution for the aims of the energy vision. The produced energy amounts approximately from 300 up to 450 kWh/m². In the district of Murau 800 m² solar panels have been installed in 2006. By using solar panels for warm water preparation, the efficiency of the boiler can be increased, because the boiler must not work during summer were the boiler has a very low efficiency.

Costs: The costs per m² solar panel can be valued at 600€/m². By installing 800 m² solar panels until 2015 the overall investment amounts almost 4 Mio €.

7 Ref.: Haas, Kranzl 2002

> 23 <

3.9.4 Thermal sanitation In the field of thermal sanitation of buildings a high energy saving potential is achievable. Lots of buildings in the district of Murau were built in the 70s and 80s. These buildings show a low standart in energy efficiency. The energy consumption of these buildings for heating amounts up to 200 kWh/m². By a well made thermal insulation up to 50% of the energy consumption for heating can be saved.

3.9.5 Large consumers (companies) In the district of Murau several large energy consumers are present. Most of these large companies produce their heating energy with oil. Among others a large hospital (oil consumption: 1.000.000 litres), a dynamite producer (oil consumption 600.000 litres) are still oil consumers. At almost all companies vigorous efforts have been made to implement biomass heating solutions for these companies. All in all an overall energy amount of approximately 20.000.000 kWh can be substituted. The overall investment cost amount approximately 5 Mio €.

3.9.6 Overall investments Table 1 gives an overview of the overall investments by reaching the aim of the energy self sufficiency.

Energy Investment [MWh] Mio € District heating / micro nets 36.000 13,5 Private biomass heating systems 87.500 43 Thermal solar systems - 4 Thermal insulation of buildings - - Large energy consumers (companies) 20.000 5 Sum 143.500 65,5 Table 1, Investments for energy self sufficiency – district Murau All in all more than 65 Mio € will be invested until the year 2015!

> 24 <

3.10 Jobs evaluation The determination how many jobs will be created by the investment in renewable energy source bases on different studies that were examined in Austria during the last years. The basis for the calculations was the goal achievement of the energy vision. Approximately 170 Mio kWh are produced by renewable energy resources. These studies came to different results in the number of jobs per produced kWh from biomass. The results differ up to several hundred percent. By using the results of a study of the Austrian economic research institute, 93 new jobs are estimated. This study is very detailed, the calculations include a wide range of economic impact such as national economy aspects and environment aspects. Other studies result in several hundred jobs. Table 2 displays the results of three different studies.

Toronto Austia economic Bioenergy Technology research centre cluster Austria program Energy [TWh] Jobs/TWh Jobs Jobs/TWh Jobs Jobs/TWh Jobs Private Heating - wood chips 0,01725 296 5 730 13 1538 27 Private heating - Pellets 0,04140 1342 56 730 30 1538 64 Private heating - firewood 0,01035 1421 15 730 8 1538 16 Large consumers (companies) 0,02000 296 6 730 15 1538 31 district heating / micro nets 0,03931 296 12 730 29 1538 60 sum 0,12831 93 94 197 Table 2, jobs evaluation district of Murau

All in all it cannot be questioned that there is a positive economic impact of an increased use of renewable energy resources. Above all in structurally weak areas, were the job situation is quite bad, every new job is required. The us eof renewable energy resources is surly a chance for such areas.

> 25 <

3.11 Public support and co-funding of renewable energy investments The province of styria and country of Austria grant different subsidies for energy investments. Private investors get subsidies from the province, commercial Investors receive subsidies from the Austrian public consulting bank which was founded by the Austrian government. Farmers get subsidies from the chamber of agriculture.

3.11.1 Subsidies for direct energy investments

3.11.1.1 Private Investors In accordance to the energy plan of the province, different kinds of investment subsidies have been decided by the government;

¾ Subsidies for Biomass heating systems for private houses: • Max. € 1.100 for the erection of a firewood heating plant • Max. € 1.400 for erection of a pellet heating plant • Max. € 1.800 for erection of a wood chip heating plant

¾ Subsidies for thermal solar collectors: • € 500 plus € 50 per m² solar panels for solar supported heating systems • € 300 plus € 50 per m² solar panels for thermal solar systems without heating support (hot water preparation)

¾ Subsidies for construction of residential buildings • The amount of the subsidy depends on the thermal quality of the building. For better insulated buildings, a higher amount of subsidies is available. • Subsidy surcharges for renewable energy heating systems are available • For buildings with a fossil – fuelled heating system, no subsidies are available.

¾ Subsidies for reconstruction of old residential buildings • For the thermal sanitation and other energy appreciable measures in buildings that are older than 30 years subsidies for interest are granted by the province of styria.

> 26 <

Municipalities in the region grant investment subsidies for solar and biomass heating systems. The amount of the subsidies is different in each municipality. The average sum amounts, ¾ € 30 to € 50 per m² solar panels for thermal solar systems. ¾ € 0 to € 700 for biomass heating plants. Both are in addition to the subsidy of the region!

3.11.1.2 Farmers The chamber of agriculture orients by the amounts of the province of styria for private investors. Further subsidies for the implementing of district heating implementations are available. The percentage of these subsidies amounts up to 40% of the investment.

3.11.1.3 Commercial Investors Commercial investors can get subsidies for energy investments. The amount of the subsidy depends on the amount of the investment. Usually a percentage of 30% of the whole investment is granted. All measures that are funded for private Investors can also be funded for commercial investors.

3.11.2 Funding for regional structure and strategy processes For regional structure processes and regional strategy projects, different funding instruments are available. Costs for the development of regional concepts and guidelines and projects like the energy vision can be funded by different regional development programs like the LEADER program. These development programs are supported by means of structural funds (ERDF). Following thee regional development programs are described; ¾ LEADER+ This program supports the development of rural areas. In this program it is necessary to create leader-regions. The leader regions need to have a unique planning guideline. The maximal density of population of leader regions amounts 120 inhabitants / km². Leader regions are such regions that have unique interests for the future. Following points should be the basis of the regional leader guideline; • Mobilisation of local actors and of the inhabitants • Bottom-up principle • Innovative measures for rural development • Planning for several years

> 27 <

• Co-financing by a combination of national funding and EU-funding

¾ Interreg-program8 Interreg III is a Community initiative which aims to stimulate interregional cooperation in the EU between 2000-06. It is financed under the European Regional Development Fund (ERDF)

The Interreg initiative is designed to strengthen economic and social cohesion throughout the EU, by fostering the balanced development of the continent through cross-border, transnational and interregional cooperation. Special emphasis has been placed on integrating remote regions and those which share external borders with the candidate countries.

8 Ref.: http://ec.europa.eu/regional_policy/interreg3/index_en.htm

> 28 <

3.12 Energy consumption in Austria

The overall energy consumption in Austria increased during the last years constantly. Until the year 1970 the energy consumption increased by 75%. 2004 the overall energy consumption amounted 1395 PJ. Except from coal, the consumption of all energy sources increased (see Table 3). Natural Gas (+306,29) and renewable energy sources (+157) show the highest rates of increase. District heating increased by 996,06% because in the 1970s only very few district heating implementation worked.

1970 – 2004 in % Oil 62,30 Gas 306,29 Coal - 74,05 Renewable Energy 157,00 District heating 996,06 Electricity 179,64 Overall consumption 90,35 Table 3, Percentage change of the overall consumption of energy sources9

9 Ref.: Austrian energy agency

> 29 <

3.13 Prices of energy supplies – Austria During the last years, the income the economic vitality and the demand on products and services permanently increased. Therefore the demand on energy also increased. Image 1 shows this development. The gross domestic product (GDP) is compared with the energy price index. Clearly visible is the connection between the two values.

Image 5, Development energy price index and gross domestic product10

Image 6 shows the development of energy prices for different energy sources. The increase of the oil price is dramatically. This fact surely contributes to the increase of renewable energy use as described in chapter 3.12.

Image 6, Development of prices for different energy sources11

10 Ref.: Austrian energy agency, Statistics Austria 11 Ref.. Austrian energy agency

> 30 <

4 Pilot Projects The following chapter describes concrete developed projects, according to the overall energy strategy of the energy vision. As described in chapter 3.2 the aim of the district of Murau is to get independent from fossil energy sources in the heating and in the electricity sector until 2015. Based on many hydro power plants, the energy self sufficiency in the electricity sector is already reached. In the field of heating, 56% of the overall energy consumption is produced by renewable energy sources in 2006. About 170 Mio kWh are still being produced by fossil energy sources.

4.1 General issues Three different pilot projects were chosen to be described in this document. The first pilot project is a biomass district heating in a municipality with about 1500 inhabitants and a very compact settlement structure of the village. The second project is a quite new implementation called “energy cabin”. This is a self contained heating implementation for larger objects like hotels, municipality centres and so on. In the present case the solution was applied for a hotel with about 50 rooms. The third project is a biogas implementation for an industrial area. The project includes the analysis about the erection of a local biogas micro net.

4.2 The reasons for the selected energy technologies The main reason for the selection of these projects was that these implementations fit perfect into the overall energy strategy of the region. Further the chosen pilot implementations have a very high potential to be multiplied and implemented in other regions but also in the present region. District heating implementations are very suitable for the region. There are a lot of small villages where biomass district heating has good chances to work economical because of small areas with a lot of buildings and so only short pipe length are needed. A further promising sector for heating with wooden biomass, are large buildings like schools and multi storey residential buildings. Therefore the case study for implementing the energy cabin was made. The third case study was made on a biogas implementation. Biogas solutions are rarely developed in the region, only a few biogas plants are in operation, so there is a lot of unexploited potential. The pilot projects deal with raw material that is sufficient available within the region, so the projects provide the aim of strengthening the region and to increase the added value of regional raw material within the region. The raw material wooden biomass has a big tradition in the region. Because of the availability of large wooden areas – about 61% of the whole area of the region is covered by wood – wooden biomass is a traditional raw material for many different applications among other for heating. Another reason for choosing the present projects was that these implementations fit into the funding strategy of the province of styria. Among others the biomass subsidy programs of the province of styria are focused on biomass use for heating to increase the usage of renewable energy solutions.

> 31 <

5 Pilot project I

5.1 Biomass district heating - municipality of St. Marein This municipality has good conditions for the implementation of a local biomass district heating. The central part of the village, where all important municipality buildings (fire department, elementary school, Kindergarten…) are situated, is relatively small. The existing heating systems in the buildings in the village are quite old and will have to be changed during the next years. So there is a need for action for the public buildings. Further several multi occupancy buildings and a joiner are situated in the village and several new bigger houses are planned to be built in the near future. The existent heating of the joinery is quite old and will have to be replaced very soon. The building of the old joinery heating can be adapted for the heating plant of the district heating. Also enough space for the storage building and a good road to the heating plant are already existent. On the basis of these good conditions the idea of implementing a district heating was born. All public buildings should be connected to the heating grid to have a base load for the district heating and to have the required connected power.

5.2 Technical specification

5.3 Heat Power requirement The first step in the development of the district heating was an estimation what kind of power output will be necessary and useful for the biomass boiler of the district heating. Therefore the buildings that should be connected to the grid had to be analysed in terms of head load requirement. Image 7 shows an aerial photo of the buildings to be connected. The magenta coloured houses are the buildings that will be connected in the fist step, the green buildings will be connected in the second step.

Image 7, aerial photo

> 32 <

The power output in the first implementing phase amounts 250 kW the power output at the end of the building phase amounts approximate 500 kW. Following the buildings are described shortly by means of area and head load.

1) Elementary school 125 kW

Area elementary school 445,71 m² 35.700 W Area gym hall 471,85 m² 37.700 W Ventilation 100 people 52.000 W Warm water

Image 8, elementary school and boiler room

2) Teachers house 40 kW

Area 473,26 m² 40.200 W Warm water

Image 9, Teachers house and oil boiler

3) Fire department 42 kW

> 33 <

Area basement 33,41 m² 1.700 W Area ground floor 222,15 m² 18.900 W Area garage 91,47 m² 5.500 W Area First floor 219,53 m² 15.400 W Warm water

Image 10, Fire department

4) Residential house (planned 2007) 52 kW

Area 800 m² 52.000 W

Image 11, place for the planned residential houses

5) Kindergarten 30 kW

Area 351,74 m² 29.900 W The kinderg

> 34 <

Image 12, Kindergarten

6) Residential house 53 kW

Area 750 m² 52.500 W

Image 13, residential house

7) Residential house 170 kW Head load 170.000 W

Image 14, residential houses

> 35 <

5.4 Raw material The required raw material will be delivered by a group of nine local farmers. About 2500 srm of wood chips will be necessary. That means about 600 m³ of wood will be necessary.

5.5 Concept – heating plant

5.5.1 Boiler The heating plant will have a power output of 500 kW. The boiler will deliver heat energy all over the year therefore the power output in summer will be very low and the boiler will have a very bad efficiency during that time. To solve this problem, a large buffer will be installed with a capacity of 5000 litres.

5.5.2 Fuel storage A very important point for saving money for the investors is the right dimensioning of the fuel storage. Because of high erecting costs the storage room should be as small as possible. A principle criterion is that the storage room capacity should be large enough to contain five to seven daily consumptions of the district heating. In case of the present sample, the fuel storage room should have a capacity of maximum 250 m³. This is approximately the consumption during one week in winter. Using this dimensioning principle the storage room has to be filled about 20 times in winter.

5.6 Concept - Heating grid Image 15 shows the planning of the heating grid. An important point to make good economic sense of the district heating is a quite small distance between the heating plant and the connected building. For a rough calculation the relation between pipe length [m] and the required head power [kW] should be maximum 2:1 (Example: a Head Power of 100 kW results in a maximum pipe length of 200 m). The pipe will be carried out as steel pipes with insulation and a leak warning system.

> 36 <

Image 15, planning of the heating grid

5.7 Concept- heat transfer station The heat transfer station is carried out as a heat exchanger. Image 16 shows the basic scheme of the heat transfer station with all mountings and the main components. The ownership border between the customer and the district heating is situated after the heat exchanger. That means, the whole primary side is owned by the district heating, the secondary side is owned by the clients.

Image 16, planning of the heat transfer station

> 37 <

5.8 Economic evaluation – Investment costs The investment cost can be differed into two sections. The first section consists of the costs for heating plant and grid. This section is the investment of the operators of the biomass district heating. The second section includes the connecting costs for the buildings as well as the building alterations like removal of old heating boilers and oil tanks and so on. These costs have to be carried by the building owners that are willing to connect to the district heating.

5.8.1 Investment costs – Heating plant and grid The following investment costs have to be carried by the investors of the biomass district heating. Usually about 25 to 40% of the overall investment costs have to be covered by their equity capital. The remaining amount can be covered by the proceeds of the connecting costs and by subsidies. In the present case study the cost were examined by several offers for the district heating. Additionally the costs were compared to similar projects that were already implemented.

Heating plant The cost for the heating plant were collected by several offers. The cost for heating plant include all cost that appear like building, boiler, chimney, automatic control, all installations as well as storage buildings for the wood chips but not the pipes for the grid. In the present case study, the costs for the heating plant will be quite low because of the following good conditions; • The building for the heating boiler already exists in the joinery and it only has to be adapted. • The road to the heating plant already exists. • There is already enough space for the storage of the wood chips and the wood

The total investment for the heating plant except the grid will be approximately € 316.000,-

Grid The grid length for the district heating in the present case study amounts approximately 1.8 km. The costs for 1 m amount approximately € 200. Therefore the costs for the grid will amount € 360.000.

> 38 <

Heat transfer stations The heat transfer stations that will be installed in the connected buildings are first paid by the investors. The customers have to pay connecting costs that cover the costs for heat transfer stations and other connecting costs like digging the grid etc. The total investment for the heat transfer stations amounts € 100.000.

5.8.2 Investment costs – alteration and connecting of buildings The costs for the alteration and the connecting of the existing buildings have to be carried by the owners of the buildings themselves. The costs can be divided into two sectors; Connecting costs that have to be paid to the district heating and alteration costs that appear for removal of old heating boilers and oil tanks, electrical works and other costs for the alteration. The total connecting costs that have to be paid amount approximately € 222.000. The total amount of the investment for alteration of the buildings could only be roughly estimated and will amount about € 200.000.

5.8.3 Overall Investment The overall investment for the investors and the shares of the different proceeds and equity capital are shown in € % Heating plant 316.000 Investment grid 360.000 100% heat transfer stations 100.000 fundings 202.800 30% Proceeds connecting costs 222.000 29% → equity capital 251.200 41% Table 4. The overall costs for the investment of heating plant and grid amount € 776.000. The investors grant money by funding (€ 202.800 - see chapter 5.8.4.1) and by connecting costs (€ 222.000). The remaining amount of € 251.200 has to be financed by the investors.

€ % Heating plant 316.000 Investment grid 360.000 100% heat transfer stations 100.000 fundings 202.800 30% Proceeds connecting costs 222.000 29% → equity capital 251.200 41%

> 39 <

Table 4, Overall investment

5.8.4 Funding for the investment

5.8.4.1 Investors The investors of a biomass district heating can receive funding amounting approximately 30% of the total investment. In the present case study the overall investment will amount approximately € 776.000. So the amount of funding will be about € 202.000,-.

5.8.4.2 Clients respectively owners of buildings Owner of the buildings that will be connected to the district heating can get subsidies from the province of styria for the costs of the connection and the necessary alteration works in the building. These subsidies are paid in the framework of the “Althaussanierung” that wants to promote the thermal sanitation of buildings as well as other improvement of buildings in the sense of energy saving and efficient energy use. The subsidies consist of non refundable grants to the interest of a credit. According to the implemented measures the maximum amount of money that can be funded amounts up to € 50.000 for each building. If the only measure is the connection to the district heating, the maximum amount of money that is funded amounts € 30.000.12

5.9 Customer contracts For the connection to a district heating, several different costs fort he customers appear. The cost model consists of three main costs; • a connecting fee that is used to cover the investment costs (paid only once) • a base price that covers the fixed costs. • a price for the heat energy that depends on the real consumption of the customer Further measurement costs are to pay for installation and maintenance of the counter that counts the heat energy.

12 Ref.: Land Steiermark – Wohnbauförderung June 2006 www.wohnbau.steiermark.at

> 40 <

5.9.1 Consumer prices The definition of costs for clients is a very important point for implementing the case study. Basically the costs consist of connecting costs, base price for heat per kW and year, working price per kWh and measurement price. Following costs are proposed within this case study; ¾ Connecting costs € 120 to 150,-, - per kW ¾ Base price for heat € 16,- per kW and year ¾ Working price € 0.055 per kWh ¾ Measurement price € 125,- per year

Thus an overall price for heat from about € 58, - to 70,- is reached (all prices excluding tax. Value added tax of 20 % will be charged additionally).

5.9.2 Price index The prices are value guaranteed by using the consumers’ price index for energy and heat. This index is officially published by the national statistical department. The costs for both contractual parties are lasting and calculable.

5.9.3 Contracts The definition of well formulated contracts is very important for a successful implementation of a district heating. The most important points are; • Prices • Head power requirement and guarantees • Maintenance and service • Contract duration • Price adaptation

An example of a contract between the operator of the district heating and a customer is attached to this document in Annex 1).

5.10 Current status (summer 2007) With the current case study the municipality was convinced, that a biomass district heating makes sense from an ecological and an economical point of view. After that, the municipality searched for an operator e.g. an operators consortium. In this municipality two operator consortiums wanted to implement and operate the

> 41 <

district heating. So there were two offers that had to be compared to find out the best offer. After several negotiations and finally accepting the bid of one operators consortium the planning could start. The operators are currently fixing contracts with their clients and have already started to install the pipes. The biomass district heating will start operation in autumn 2007.

> 42 <

6 Pilot project II

6.1 “Energy Cabin” Energy Cabins are self contained heating systems that combine solar energy and wood pellets or wood chips technology for central heating for any building or couple of buildings. They can be easily connected to any existing or new heating systems (e.g. radiators, underfloor heating etc.) instead of traditional boilers. Each cabin is fitted with a solar thermal system for hot water preparation. Inside of the cabin there is an automatic pellets or wood chip boiler and a heat storage tank and the fittings for the conection to the central heating of the house. Inside there is also a pellets or wood chip storage room which allows automatic feeding of pellets to the boiler. Image 17 shows an energy cabin with all installed components. Energy Cabins have all relevant testing certificates including the CE.

Image 17, Energy cabin

The key features of Energy Cabins are the fact that they combine free energy from the sun with renewable wood pellets or wood chips. Further energy cabins are perfect suitable for older larger buildings that are heated with fossil energy resources like gas or oil. They also can be used in buildings, where there is not enough space for biomass boilers or storage rooms.

> 43 <

Image 18, Energy cabin

6.2 General issues In the present case, different investment models for the implementation of an energy cabin for building (hotel) were developed. A contracting model, a leasing model and self investment were investigated regarding costs and advantages and disadvantages of the different implementation models. This case study will have a big multiplication effect. In the region of upper Styria lots of larger buildings like hotels, restaurants, dwellings, schools and municipality buildings are previously heated with fossil fuels. In former times heating with renewable energy resources wasn’t developed for such large energy requirements, except in district heating areas. Heating oil and gas heating was the most common solution for the addressed buildings. The hotel that is discussed in the present case study was previously heated by a heating oil boiler. This boiler is quite old (about 25 years) and will have to be replaced. There is a need to replace the boiler for the owner of the building. The standard practice is to change the old boiler against a new oil or gas boiler; with the effect of raising the efficiency (connection to the gas grid would be possible). This solution is also the cheapest one from the point of the investment, without thinking to the energy costs and CO2 emissions over the lifetime of the new boiler. The indention of EAJ in SEIPLED project was to show up alternative ways to implement renewable energy technologies and innovative financing models related to structural funds and public subsidies. The goal is to show up possibilities for the implementation on better technologies and higher investment, with the advantage on lower fuel or operational costs. This building was selected, because it has a real chance to be established in 2007 as a pilot case in the region (until now there is no energy cabin working in the region), and – which is very important – the size of this building is in average; so the replication potential is very high. This means there can be a significant impact in changing the regional energy system on this technology.

6.3 Technical specification For developing the different investment models, a complete calculation of the technical requirements was necessary. The most important figure is the required

> 44 <

head load of the building. The head load was calculated based on the oil consumption over the last 3 years, additionally a calculation regarding the thermal quality of the building was made. The building used 30.000 l of heating oil per year. Therefore the calculated head load of the building amounts 108 kW. The old boiler is dramatically oversized; it is designed for 320 kW! The recommendation is to use a boiler with approximately 100 kW.

6.4 Investment models

6.4.1 Self investment Self investment is the most simple investment model. The transaction is easy and quick to handle, the customer can order the cabin at an authorised dealer. Another advantage of a self investment is, that the investor has the owner rights and can do with the energy cabin whatever he wants. Also some disadvantages are to mention. The biggest disadvantage is the investment risk for the owner. Further the owner gets a high self reliance. All maintenance and service works have to be managed himself and of course the costs for maintenance and service occur.

Advantages Disadvantages

Easy and quick Investment risk No finance costs, except interests High self reliance Owner rights Maintenance and service costs debts Table 5, advantages and disadvantages - self investment

6.4.2 Contracting model Contracting is an investment model whereby the investments lead to savings at energy and maintenance costs. The contractor makes the investment, and gets the same amount of money for heating energy that the customer paid before. The difference between real energy costs and the amount of former energy costs is used to finance the heating and cover the service and maintenance costs. The energy costs are lower than before, because pellets or wood chips are cheaper than heating oil, compared at the same energy amount, and energy will be saved in raising the efficiency of the new system. After the end of the contract, the heating is owned by the customer and the customer benefits of the lower energy consumption for several years.

Advantages

> 45 <

The contractor guarantees and is liable for an defined energy saving and limited maximum costs for the customer. Also the costs for maintenance and service and the whole quality of the measures are fixed. So the risk and the responsibility of the customer are very low.

Disadvantages Very important for a successful contracting is the definition of a high quality contract. The before mentioned points like overall costs, maintenance, etc. have to be included but also guarantees regarding the compliance of the fixed points.

Advantages Disadvantages

Outsourcing of investment No owner rights Outsourcing of maintenance and Extra finance costs service The investment will not increase the indebtedness of the investor Tax advantages in special cases Definition of a suitable contract necessary Liability guaranteed, guaranteed Previous energy costs must be limits of energy costs are possible known Table 6, advantages and disadvantages - contracting

Terms of contract As mentioned before, the basis for a successful implementation of a contacting model is a high quality all embracing contract. In this contract, all important points regarding the sectors planning, financing, maintenance and service, etc. should be mentioned. Further all promised guarantee declarations should all be written down. The most important guarantee declarations are; • Contracting period • Energy costs • Standards regarding heating comfort etc. • Quality of all measures • Amount of investment capital • Investment structure over the duration of the contract • Definition of the state of the system at the end of the contract

> 46 <

6.4.3 Leasing model Leasing is a financing model. Thereby the client gets an energy cabin for heating his building. The priority of a leasing model is the usage of an energy cabin and not the ownership. Lots of different leasing models are available on the market. The models differentiate according to several points like duration, Usage of the object after contract end, etc. Some leasing providers offer additional services like planning, installation and so on. This has to be checked individually for each implementation.

Advantages Disadvantages

Outsourcing of investment Finance costs Owner rights Definition of a suitable contract necessary The investment will not increase the indebtedness of the investor Tax advantages Table 7, advantages and disadvantages - leasing

> 47 <

6.5 Economic evaluation, cost calculations

6.5.1 Investment costs for self investment The investment cost for the possibility self investment are shown in Table 8. The total investment amounts approximately € 70.300 (including funding of € 20.000.- ). Therefore the whole operating costs amount € 1.430,- per month that means the implementation of an energy cabin by a self investment will cause costs of approximately € 17.155,- per year.

Project Energy cabin - self investment

Invetsment costs energycabin Emax L150 € 70.171,60 removal of old boiler etc. € 2.137,36 structural measures € 7.200,68 connecting energy cabin € 4.504,83 connectiion to existing heating € 4.955,27 Changing of pumps € 1.286,75 funding €- 20.000,00 Total investment - 70.256,49

fuel price and energy price electric energy 0,12 €/kWh price pellets 0,17 €/kg

Amount of pellets heating energy 211.875 kWh efficiency 80% fuel 264.843,75 kWh fuel value 4,90 kWh/kg Amount of pellets 54.049,74 kg

Yearly costs monthly cosots operation costs €/a€/mo fuel € 9.188,46 765,70 electric energy € 150,00 12,50 chimney sweeper € 505,00 42,08 service € 80,00 6,67 maintenance € 400,00 33,33 amount of anuity € € 6.831,50 569,29 total costs € 17.154,95 1.429,58 Table 8, Investment and operating costs - self investment

> 48 <

6.5.2 Calculation of the contracting model Table 9 shows the calculation and the calculated yearly costs for implementing an energy cabin by a contracting solution. The price for the customer amounts € 876,41 per month and € 10.516,91 per year. That price includes all costs including maintenance, service, fuel,… Additionally the energy cabin is owned by the customer after ten years. Contracting Energy cabin

Fuel

energy requirement 211.875 kWh efficiency 80% fuel requirement 264.844 kWh heat value 4,9 pellets consumption 54.050 kg price pellets 0,17 €/kg fuel costs 9.188 €/a

specific energy costs 0,0434 €/kWh

heat price

additional charge 11% base price per year € 10.516,91 base price per month€ 876,41

spec. Heat price€ 0,048 heat price total per year€ 10.199,19

overall costs energy cabin 150 per year€ 20.716,10

Table 9, contracting yearly costs

6.5.3 Calculation of the leasing model The leasing model was not calculated in detail, because the prices per year for leasing depend strongly on various factors. A leasing model has not the priority of owning an energy cabin therefore a leasing model was not suitable for the present case study. A general description of a leasing solution is to be found in chapter 6.4.3.

> 49 <

6.6 Funding aspects All three investment models have been discussed with the responsible funding organisation (Kommunalkredit Public Consulting). The result was, that the amount of funding for an energy cabin does not depend on the investment model. The funding for the plant amounts up to 30% of the total energy related investment (see chapter 2.3.1). The only point that is to consider is that the owner of the cabin has to apply for funding. That means when implementing a leasing solution, the leasing company has to apply for funding, because they will be the owner over the leasing period, the building owner is just the customer who is allowed to use the energy cabin by the leasing contract. After the leasing period, the energy cabin will change the ownership to the building owner. This is also part of the contract. In case of the contracting model the funding case is very similar. Only in case of self investment, the building owner will apply for the contract. This aspects are very positive, because it allows a flexibility in different investment models, without disadvantages in funding.

6.7 Résumé All different financing models have advantages and disadvantages. The selection of the most suitable model has to be investigated for each single case itself, regarding to the requirements of the customer. There is not one “best” financing model. Table 10 gives an overview of the different financing models.

Self investment contracting leasing Guaranteed overall No Yes possible investment costs Guaranteed No Yes No operation costs Owner rights Yes No Yes Self reliance No No partly Size of the small big big cabin Financing costs No Yes Yes Contract No Yes Yes definition Tax No Yes Yes advantages*) Table 10, Overview - financing models

> 50 <

*) tax advantages are possible for public customers under special circumstances. Special in tourism sector the stockholders equity of the companies is quite low. For these customers it is very hard to get loans for self investments from the banks. Self investment will also rise up the indebtedness of the customer in the balance sheets. The customer can decide between leasing and contracting with the advantages described above. Without these innovative financing models the customer would replace an old fossil system by a newer one and would not have the solution to use renewable energy sources for their buildings.

> 51 <

7 Pilot Project III

7.1 Biogas facility – industrial area The case study should discuss the feasibility of the implementation of a biogas plant in an industrial area near a Styrian city. The main focus of this case study lays on the raw material potential for the biogas plant. For the usage of the biogas on the one hand in a CHP or on the other hand in a local biogas micro net only principal considerations were made how the different solutions could be implemented. The final aim is to be able to offer a complete infrastructure package to interested companies that includes for example heating energy with stable prices via a local district heating. Because of increasing energy prices, the offer of a stable price is an important argument for the decision of an applicable production site for companies.

7.2 Location

7.2.1 Regional structure The city of Judenburg is situated on the western border of the Aichfeld-basin. The Aichfelder-basin is surrounded by middle high and high mountain ranges. The regional economic structure is characterised by a high rate of the industrial sector. Above all metal industries and wooden industries are the most important sectors. The tertiary sector is characterised by trading. The tourist sector is characterised by several unique events like the Airpower or concerts etc. In the bordering Mountains wonderful hiking and skiing areas are existing. The agriculture sector is characterized by a few medium scale farms and a large number of small scale farms and part-time-farmers. Also some mountain farmers with difficult working conditions are present. Most areas are used for agriculture and dairy farming. Partly the farmers have large areas of wood. The main focus of the farms lies on agriculture and dairy farming. Dairy farming occupies the main part of the agricultural areas.

Image 19, general plan of the biogas location

> 52 <

7.2.2 Biogas location The plant will be situated in the north of the city of Judenburg, where an industrial area already exists. At this time, several companies are already resided in this area. In the north of the existing companies, more than 100.000 m² of industrial area are still available for new companies. Negotiations with several companies are in progress a big zinc coating line is already in construction and will be in operation in 2008. This company has high energy consumption and could be a good basis for a biogas micro net but even for a district heating in the industrial area. In the North and in the West of the industrial area, several agriculture areas are situated. In the East about 800 m away from the biogas location a residential area exists. The biogas plant will be situated in the North-West of the industrial area. The current owner of the area is very interested to be in an operator consortium of a biogas plant. The location will not cause troubles with residents, because the distance of the location to the nearest residential homes averages about 800 meters. The wind blows mainly from West to East.

Image 20, area zoning plan

> 53 <

7.3 Raw Material potentials (Input)

7.3.1 Agricultural raw materials (energy crops) and liquid manure Grass The agricultural use in the municipality of Judenburg can be divided into two different ranges; in the Aichfeld, agriculture is the dominating sector, and in the Mur and the Pölstal, where the dairy farming is more important. Dairy farming needs large areas, so only few hectares of unused grass areas are available or the usage in a biogas plant at present.

Liquid manure A lot of farmers have enhanced their farms, therefore a lot of liquid manure is available. Further a bottleneck in storage capacity for liquid manure was created with the enhancing of the farms. There is already a demand for a central storage place for liquid manure. The planned biogas plant can incur the function of a central storage. So the existing bottleneck can be opened by implementing a biogas plant and the liquid manure can be made available for the biogas fermentation. The transport distance for liquid manure should not be too long because the volumes are quite big; the maximum distance should not be more than 10 km. In this distance from the planned biogas plant about 10 larger farms are situated and liquid manure from about 500 cows is available. Further a lot of small scale farmers are situated in this ambit. The farmers have already built up different cooperation for using machines for transport and output of the liquid manure. These machines could be used for transporting liquid manure to the biogas plant. So the utilization of liquid manure for the fermentation in the biogas plant is interesting for the farmers, because a bottleneck in storage capacity is present.

Farmland / Maize silage In the ambit of about 15 km from the biogas plant, about 30 ha of unused farmland is available. These 30 hectares can be used to produce energy crops for the fermentation in a biogas plant. Further it can be assumed that about 100 ha of area are available for cultivation of maize to be fermented in the biogas plant. In the region 2000 hectares are used to cultivate seeds. The income in this case is quite low; therefore farmers are searching for alternatives. The cultivation of maize could be an alternative for these farmers. For the usage of silage it is to be considered that silage plants have to be built to guarantee a constant filling of the biogas plant. These silage plants should be built next to the biogas plant. The transport distance should not be bigger than 15 kilometres because otherwise the transport costs become too high.

> 54 <

The calculation of the raw material potential of maize silage, bases on the assumption that 50 tons per hectare of raw material can be harvested. 130 hectares are surely available. Further it can be expected that an area of 70 ha can be achieved additional from small scale farms. The whole area amounts about 200 ha. This area is necessary to operate a plant with an electrical power output of 500 kW. Unused areas can be used completely for cultivation of energy crops.

7.3.2 Biological waste from municipalities and industry Biological waste In the district of Judenburg a composting plant for the biological waste already exists. This biological waste could be used in the biogas plant. Principle interest for cooperation with the biogas plant is existent. Further there is biological waste in the near municipalities Knittelfeld, Zeltweg and Fohnsdorf, that cannot be reached at this time because different contracts with other wate management companies exist. The examination showed that there is not enough biological waste for the operation of a biogas plant only with biological waste. It is to examine, if biological waste can be used together with energy crops. This will cause higher investment costs, because a suitable technique for these raw materials has to be installed.

Leftovers from large kitchens In the region different big kitchens exist (i.e. Hospital Knittelfeld). In a large kitchen in Zeltweg every year 12 tons of leftovers and 11 tons of biological waste are produced. These leftovers are very interesting for a biogas plant. A large waste disposal company indicates that 25 tons of leftovers in the region will be available

Potato peelings and waste of potato manufacture A potato manufacture in the region produces several tons of potato peeling and other potato waste every day. At this time this waste is sold to another biogas plant outside the region. This causes high transport costs. To avoid this transport cost it would be better to use this potato waste in the new local biogas plant.

> 55 <

7.4 Utilization of the fermentation residuals (OUTPUT)

7.4.1 Use of fermentation residuals on agricultural fields In the area Judenburg the relation between live stock and agricultural areas is about 1 to 1.5 GVE/ha. That means it is necessary to buy nitrogen fertilization. In addition to this industrial fertilization sludge from defecators is used. There are sufficient areas for the output of the fermentation residuals and the willingness of the farmers to use the fermentation residuals exists. How to handle the fertilization of agricultural areas depends on the quality and the source of the used materials. Therefore this topic has to be seen as follows; Only agricultural raw materials are used; The fertilization of agricultural areas with liquid manure from the biogas plant causes no problems if only agricultural raw materials are used in the biogas plant. Farmers that have no live stock need this valuable fertilization. There are some areas from organic-farmers where it is not allowed to use fertilization from outside the farm, so there the fertilization from the biogas plant cannot be used. Biological waste from industry (in combination with agricultural raw materials) is used; In principle the fertilization with these residuals is possible. It is necessary to pay attention to the relevant laws and guidelines (nitrate guideline, etc.).

7.4.2 Production of drying fertilizer Another possible usage of the fermentation residuals is the production of drying fertilizer. Therefore a separator separates firm of fibrous materials from the fermentation residuals and a press produces Pellets-fertilizer. This fertilizer can be used even to fertilize agricultural areas as well as plants in market gardens and so on. Different investigations have shown that this material is well suitable for the fertilization of flowers and other garden plants. Especially if only agricultural raw material is used in the biogas plant, the fermentation residuals are perfect suitable to be used as a fertilizer for flowers.

> 56 <

7.5 Usage of energy A detailed declaration of the necessary heating power is not possible at the moment because it is not known what companies will be built and how much heating energy this companies require. Basically there are several possibilities to use the biogas. The gas can be converted into heat, electricity, fuel and it can be fed in into the public gas grid. So far the most common use for biogas is the production of electricity in a CHP (combined heat and power). The reachable efficiency in most CHP’s is quite low, because of missing consumers for the produced heat. In this case more than 60 % of the produced energy gets lost. Therefore the selling of the heat is required to reach a higher efficiency. A more efficient way is to feed-in of the biogas in the public grid or in a local biogas net. The general framework for feeding in biogas in the public grid is not very good at this time. Following the different possibilities are described.

7.5.1 Combined heat and power station (CHP) CHP plants provide the consumer with the two most important types of energy, namely with electrical power and heat. The heat obtained during power generation is used for supplying heating water, steam or drying heat. By utilizing this waste heat, losses can be kept low and therefore consumption of primary energy can be reduced. Design options Heat-oriented design and operation mode In the heat-operated application of a CHP plant the heat requirements are determined and the whole plant is aligned with them. The surplus power produced will be injected into the public power grid.

Power-oriented design and operation mode In the power-operated application of a CHP plant the focus is on the power requirements. The utilized heat will vary depending on the power production.

Cost-oriented design and operation mode The lowest operating costs of a CHP plant are achieved using the cost operated design and operation mode. The annual total costs (investment costs and running costs) are calculated for different design variants; later the design with the lowest total costs will be implemented. Possible surplus or underproduction of power and heat can be evened out with the help of the public power and heat network. Yet it is of great importance that the plant is run at full load. Therefore most plants are dimensioned to cover the basic load. To cover peak heat demand usually a peak boiler providing the necessary heat is used. Another possibility is

> 57 <

to cover the demand by connecting to the public network. Incidental peak loads regarding power requirements can then for example be covered by the public grid. The extra costs resulting from this have to be taken into account in the evaluation of economic efficiency. Another possibility would be to use the plant only for peak load coverage. As peak loads are particularly expensive, this possibility represents a good option to the above mentioned CHP plants are of great significance to power and heat generating enterprises (higher output) because of the primary energy savings. They also offer attractive options for providing smaller outputs of power and heat like they are needed in industrial companies, laundries, housing estates etc.

7.5.2 Feed in the biogas in the public gas grid In Austria it is possible to feed in biogas in the public gas grid. The requirements on the gas quality have to be fulfilled, that means that the biogas has to have the same quality as natural gas. Near the location of the planned biogas plant a gas reduction station is placed. A high pressure gas pipe is passing near the biogas plant, for the gas supply of a large paper manufacture in Pöls. The feed in of biogas in the low-pressure gas system is problematic. The conditioning of the biogas up to the quality of natural gas would be very expensive and the thinning of the biogas cannot be guaranteed because the gas consumption in Judenburg during the summer is very low The feeding of the biogas in the high pressure gas system is also not economic, because therefore the biogas would have to be highly compressed and the feeding in will be depending on the operational mode from a single plant (Pöls), so permanent gas consumption is not guaranteed. Further the general framework (feed in tariffs, etc.) is at the moment not really good in Austria Therefore the feeding in into the public grid will not be persecuted at this time.

7.5.3 Biogas micro net An economical alternative to the feed in into the public grid could be the construction of a local biogas micro net. This alternative could be a god solution for the industrial area, because the framework there fit well for a biogas micro net. The operator can sell the produced gas to customers. The biogas will be served as a base load, the peak load will be provided by a backup of the gas grid. The investment cost for the gas grid will be significantly lower than the costs for a district heating grid in case of implementing a CHP.

> 58 <

7.6 Economic evaluation of the biogas system

7.6.1 Investment costs The investment cost of this biogas system including CHP (500 kWel) can be estimated to M€2.0.-. The amount of the investment depends on what kind of biogas solution will be finally implemented. If there will be a local biogas micro-net, the cost will be higher than if there will be just a typical (standard) biogas plant with a CHP solution. Otherwise the erecting of a local biogas micro-net is a very innovative and new solution and has not been implemented in Austria so far. Therefore the funding could be much higher because also funding of different technical research can be granted.

7.6.2 Heat delivery contracts If a “standard” biogas facility is implemented with a local district heating, the contract to the customers are similar to the contract described in chapter Fehler! Verweisquelle konnte nicht gefunden werden.. For the connection to a district heating, several different costs fort he customers appear. The cost model consists of three main costs; • a connecting fee that is used to cover the investment costs (paid only once) • a base price that covers the fixed costs. • a price for the heat energy that depends on the real consumption of the customer Further measurement costs are to pay for installation and maintenance of the counter that counts the heat energy.

If the development and the implementation of a local biogas micro net obtains priority, the cost of the gas as well as the design of the contract to the customers is an own research field that should be investigated during such a project.

> 59 <

7.6.3 Feed in of the green electricity to the power grid The feed in tariffs in Austria in 2007 are shown in Table 11. These feed in tariffs are granted for 10 years after these 10 years, a reduced feed in tariff is granted.

Maximum Power output Feed in tariff [€-cent/kWh] < 100 kW 16,95 100 to 500 kW 15,15 500 to 1000 kW 14,00 > 1000 kW 12,40 Table 11, feed in tariffs in Austria 200713 A biogas plant with a maximum power output of 500 kW will produce about 4.000.000 kWh of electric energy per year. 100 % of this green electricity can be sold with an amount of 15.15 cent/kWh (see table . That means the income for the electricity amounts approximately € 606.000,-.The own usage of electricity amounts approximately 15% of the overall production (600.000 kWh), which is buy on the market.

7.6.4 Public funding In Austria the implementation of a biogas facility can be funded with an amount of 30% of innovative parts of the investment. The standard part of the biogas system has to be financed according to the law of green electricity. In Austria the funding of innovative and environmental parts are granted by the Kommunalkredit Public Consulting AG. If several criteria (location, branch…) are fulfilled, there can be a contribution to the funding by structural funds of approximately 5% of the overall investment (see Chapter 2.3.1).

7.7 Recommendations A detailed declaration of the necessary heating power is not possible at the moment because it is not known what companies will be built and how much heating energy this companies require. The erection of a biomass district heating would be a good solution for the industrial area, but this was not the object of the present case study. Basically the installation of a combined heat and power station will be a good solution for the industrial area but it would only make sense in combination with a

13 Ref.: www.e-control.at

> 60 <

district heating for the industrial area. The efficiency of the CHP could be increased because of the high energy demand of the zinc coating line that is stable the whole year. The feeding in of the biogas into the public gas grid does not make sense at this time because of bad legal requirements in Austria. The heating supply plant should be constructed in modules so the power of the plant is various and it is possible to increase the power if necessary. The capacity of the heating plant will be about several megawatts. Heating power will also be required during the summer, so the conditions to feed in thermal energy from the biogas plant are very good. The thermal energy from the biogas plant will cover the base load of the heating system. A biogas plant with an electric power output of 500 kilowatts should be built. Agricultural materials should be used as raw material for the biogas plant. The usage of leftovers from large kitchens and biological industrial waste has to be checked in the view of economic criteria. CHP plants basically have a higher capital expenditure than heat or power plants. Yet they require less primary energy. Economic efficiency of the CHP plant is reached if energy cost reduction balances additional investment costs within an acceptable time. The price level of fuel and electricity are of vital importance for energy cost reduction. Therefore the expected energy price development has to be taken into account in the calculations.

> 61 <

8 Conclusion / Perspective

By reaching the aims of the energy vision of Murau – the creation of a self sufficient district by 2015 - the region can benefit in several ways. The region is strengthened in various ways. First of all, the production of energy by local energy resources ensures that a lot of money remains in the region. Small business cycles are created from what a lot of people in the region can benefit. At least the employment creation is of course the main focus of all activities. As showed in the present case study, an absolutely considerable number of jobs will be created directly by reaching the energy self sufficiency. The region of Murau is already called “Holzwelt Murau” (world of wood) that means that the main focus in regional development relates to cooperations and value added chains from the forest, the saw industry to wooden products and energy from biomass. This strategy is decided in different guidelines within the region. An energy self sufficient region that produces its energy out of renewable energy sources like biomass fits perfect into the strategy and the aims of the whole region. These aspects also play an important part in the tourist sector. Renewable energy facilities can also be added to the “Styrian Wood Road”, which is established since 1989 in the district of Murau and shows timber construction and objects like bridges and architecture from the past to the future, and link this topic to the touristy sector, which assists very good in awareness creation. The realised pilot case studies show good results, any of this has a high potential for replication inside the region, and in other countries. This replication potential was one of the main reasons for carrying out these case studies. So the whole project and the overall process support the aims of structural funds – the strengthening of disadvantaged regions and the decrease of imbalances between regions of the European Union. By deciding the Energy Vision officially in several guiding principles of the region the energy vision became a strong guideline and an official steering instrument for investments and for structural funds to decide which projects should be funded.

> 62 <

9 List of figures

IMAGE 1, "ENERGY LANDSCAPE" DISTRICT OF MURAU...... 19

IMAGE 2, BASIC SCHEME OF A BIOMASS MICRO NET...... 21

IMAGE 3, SPECIFIC INVESTMENT COSTS FOR BIOMASS DISTRICT HEATING SYSTEMS

[€/KW] ...... 22

IMAGE 4, SPECIFIC INVESTMENT COSTS FOR SMALL BIOMASS BOILERS (<70KW) [€/KW]23

IMAGE 5, DEVELOPMENT ENERGY PRICE INDEX AND GROSS DOMESTIC PRODUCT...... 30

IMAGE 6, DEVELOPMENT OF PRICES FOR DIFFERENT ENERGY SOURCES ...... 30

IMAGE 7, AERIAL PHOTO ...... 32

IMAGE 8, ELEMENTARY SCHOOL AND BOILER ROOM...... 33

IMAGE 9, TEACHERS HOUSE AND OIL BOILER ...... 33

IMAGE 10, FIRE DEPARTMENT...... 34

IMAGE 11, PLACE FOR THE PLANNED RESIDENTIAL HOUSES ...... 34

IMAGE 12, KINDERGARTEN ...... 35

IMAGE 13, RESIDENTIAL HOUSE ...... 35

IMAGE 14, RESIDENTIAL HOUSES ...... 35

IMAGE 15, PLANNING OF THE HEATING GRID...... 37

IMAGE 16, PLANNING OF THE HEAT TRANSFER STATION ...... 37

IMAGE 17, ENERGY CABIN ...... 43

IMAGE 18, ENERGY CABIN ...... 44

IMAGE 19, GENERAL PLAN OF THE BIOGAS LOCATION ...... 52

IMAGE 20, AREA ZONING PLAN ...... 53

> 63 <

10 List of tables

TABLE 1, INVESTMENTS FOR ENERGY SELF SUFFICIENCY – DISTRICT MURAU ...... 24

TABLE 2, JOBS EVALUATION DISTRICT OF MURAU...... 25

TABLE 3, PERCENTAGE CHANGE OF THE OVERALL CONSUMPTION OF ENERGY SOURCES ...... 29

TABLE 4, SPECIFIC INVESTMENT COSTS [€/KW] OF THE HEATING PLANT...... FEHLER!

TEXTMARKE NICHT DEFINIERT.

TABLE 5, SPECIFIC INVESTMENT COST FOR THE HEATING GRID...... FEHLER! TEXTMARKE

NICHT DEFINIERT.

TABLE 6, INVESTMENT COSTS ST. MAREIN I...... FEHLER! TEXTMARKE NICHT DEFINIERT.

TABLE 7, INVESTMENT COSTS ST. MAREIN II ...... FEHLER! TEXTMARKE NICHT DEFINIERT.

TABLE 8, OVERALL INVESTMENT ...... 39

TABLE 8, ADVANTAGES AND DISADVANTAGES - SELF INVESTMENT ...... 45

TABLE 9, ADVANTAGES AND DISADVANTAGES - CONTRACTING ...... 46

TABLE 10, ADVANTAGES AND DISADVANTAGES - LEASING ...... 47

TABLE 11, INVESTMENT AND OPERATING COSTS - SELF INVESTMENT...... 48

TABLE 12, CONTRACTING YEARLY COSTS ...... 49

TABLE 13, OVERVIEW - FINANCING MODELS...... 50

TABLE 14, FEED IN TARIFFS IN AUSTRIA 2007...... 60

> 64 <

11 List of literature

¾ Jonas 2002, “Verfügbare Biomasse – Potentialabschätzungen – Waldhackgut – Energieholz aus forstwirtschaftlicher Nutzung und Grundlage der Forst und Holzwirtschaft

¾ Haas, Biermayr, Kranzl 2006, “Technologien zur Nutzung Erneuerbarer Energieträger -wirtschaftliche Bedeutung für Österreich“

¾ Clement, Schröck, Farar, Maurer, Preissl, Roediger-Schluga, Seubert 1998, “Bioenergie-Cluster Österreich”

¾ Österreichisches Institut für Wirtschaftsforschung, Wegener Zentrum für Klima und Globalen Wandel, Karl-Franzens-Universität Graz, Institut für Wärmetechnik, Technische Universität Graz, KWI Management Consultants & Auditors GmbH Innovation & Klima 2007, “Innovative Klimastrategien für die österreichische Wirtschaft”

¾ Faninger 2006,“Erneuerbare Energieträger in Österreich:Marktsituation 2005”

¾ Aste2006, „Energieholz – Energie für die Zukunft - Bereitstellungsketten für Energieholz in Kärnten”

¾ Regionalenergie Steiermark, Informationsbroschüre „Der Landwirt als Wärmeverkäufer – Micronetz und OBJEKTVERSORGUNG AUF Basis Waldhackgut“

¾ Energieverwertungsagentur – E.V.A „Holzheizungen in großen Gebäuden – Basisinformation für die technische Planung“ Wien, 2003

¾ Good et al 2004 „QM – Holzheizwerke Planungshandbuch“

¾ Landesenergieverein Steiermark 2005, “Biogas – Biogaspotentiale Steiermark”

¾ Theißing 2006, “Biogas - Einspeisung und Systemintegration in bestehende Gasnetze”

¾ Binder-Krieglstein 2006, “Energieautonome Obersteiermark”

> 65 <

¾ Späth 2006, “Energy Regions in Austria – Conceptual building blocks for the analysis of regional actor networks which aim to realise sustainable energy systems”!

¾ Land Steiermark 2005; “Energieplan 2005 – 2015 des Landes Steiermark

¾ Haas, Kranzl 2002, “Bioenergie und Gesamtwirtschaft”

Internet:

¾ www.eao.st

¾ www.holzwelt.at

¾ www.biomasseverband.at

¾ www.biogas

¾ www.energytech.at

¾ www.energieklima.at

¾ www.klimabuendnis.at

¾ www.energyagency.at

¾ www.iea.org

¾ www.sustenergy.org

¾ www.lev.at

¾ www.publicconsulting.at

¾ www.leader-austria.at

¾ www.rm-austria.at

> 66 <

12 Annex

1) Contract heat delivery district heating

2) Acquisition of data for a biogas plant

3) Cost comparison – municipality buildings St. Marein/Stmk.

4) Energy cabin –contracting contract

> 67 <

MUSTER

W Ä R M E L I E F E R U N G S -und- B E Z U G S V E R T R A G

Abgeschlossen zwischen für Objekt: Name:

Adresse: Adresse:

Parz. Nr.

im folgenden "Wärmeabnehmer" genannt, und

im folgenden „WVU“ (Wärmeversorgungsunternehmen) genannt.

I.

WVU ist Eigentümer und Betreiber einer Biomasse-Nahwärmeversorgungsanlage, bestehend aus Biomasse-Heizwerk, Rohrleitungsnetz und Wärmeübergabestationen und liefert daraus Niedertemperaturwärme bis max. 90° C. Als Wärmeüberträger dient Wasser, zur Wärmeerzeugung werden biogene Brennstoffe (Hackgut etc.) eingesetzt. Die Wärmelieferung erfolgt nur während der Heizperiode / ganzjährig (Nichtzutreffendes streichen !)

Beginn der Wärmelieferung: Heizperiode ...... Die Heizperiode beginnt, wenn die mittlere Tagestemperatur von 13° C an 3 aufeinanderfolgenden Tagen unterschritten wird, und endet bei Überschreitung dieses Tagesmittels an 3 aufeinanderfolgenden Tagen. ANNEX 1 > I <

II.

Die Heizanlage des Wärmeabnehmers ist mit dem Rohrleitungsnetz über eine Anschlussanlage verbunden, welche aus Anschlussleitungen und Wärmeübergabestation besteht und von WVU geliefert, montiert und betrieben wird. Eigentumsgrenze und Wärmeübergabestelle sind die abnehmerseitigen Verschraubungen der Wärmeübergabestation.

Die sekundärseitige Heizanlage des Abnehmers ist nach den "Technischen Richtlinien" des WVU auszuführen. Das WVU trägt die Kosten für allfällige Instandhaltungsarbeiten an der Anschlussanlage bis zur Eigentumsgrenze und für den Wärmemengenzähler. WVU nimmt die Wärmeübergabestation im Beisein des Wärmeabnehmers und des ausführenden Installationsunternehmens in Betrieb, wobei ein Inbetriebnahmeprotokoll erstellt wird.

III.

Der Verrechnungsanschlusswert (VAW) des Wärmeabnehmers beträgt ...... kW und entspricht der bereitzustellenden Wärmeleistung, welche mittels Durchflussmengenbegrenzer eingestellt wird.

Die vom Wärmeabnehmer einmalig zu entrichtenden Anschlusskosten betragen € ...... / kW (exkl. MWSt.) Anschlussleistung, das ergibt bei einem Verrechnungsanschlusswert von ...... kW einen

Anschlusskostenbeitrag von € ...... zuzüglich Kosten für überlange Anschlussleitung € ...... Zuzüglich ...... % MWSt. € ...... Anschlusskostenbeitrag inkl. MWSt. € ...... abzüglich Förderung € ...... fälliger Anschlusskostenbeitrag inkl. MWSt. € ......

Inbegriffen sind die Kosten für die Zuleitungen und die Wärmeübergabestation, deren abnehmerseitige Verschraubungen die Finanzierungsgrenze bilden.

ANNEX 1 > II <

Der Anschlusskostenbeitrag ist das Entgelt für die Einräumung des Rechtes des Wärmeabnehmers, vom WVU während der Vertragsdauer gemäß Punkt V. dieses Vertrages Wärme zu beziehen.

Der Anschlusskostenbeitrag ist in folgenden Teilen fällig:

50 % bei Fertigstellung der Anschlussleitung 50 % bei Beginn der Wärmelieferung

IV.

Der Wärmepreis setzt sich wie folgt zusammen:

Grundpreis: € ...... / kW und Jahr (exkl. MWSt.) Arbeitspreis: € ...... / MWh (exkl. MWSt.) Meßpreis: € ...... / Monat und (exkl. MWSt.)

Grund- Arbeits- und Messpreis sind durch Bindung an den Verbraucherpreisindex, Verbrauchsgruppe IV (Beleuchtung und Beheizung) wertgesichert. Dieser Index wird vom Statistischen Zentralamt monatlich ermittelt und ist u.a. bei der Wirtschaftskammer in Graz zu erfragen. Preisanpassungen erfolgen im gleichen, prozentuellen Ausmaß wie die prozentuelle Differenz der Jahresdurchschnittsindexziffern der beiden vorhergehenden Jahre. Basisjahr ist das Jahr 2005, die erste Preisanpassung kann im 3.darauffolgenden Jahr erfolgen. Preisänderungen werden erst ab einer Höhe von 3 % wirksam und gelten für das ganze Jahr. Liegt die prozentuelle Differenz der Jahresdurchschnittsindexziffern unter 3 % ,werden die folgenden Differenzen hinzugezählt und die Preisanpassung erfolgt dann bei Überschreitung der 3 % - Grenze. Abrechnungsgrundlage für den Arbeitspreis ist die am Zähler abgelesene Wärmemenge in kWh, der Zähler ist an der Wärmeübergabestation montiert.

Das Verrechnungsjahr für die Wärmelieferung beginnt am 1.Jänner und dauert bis zum 31. Dezember. Die Bezahlung der gelieferten Wärme erfolgt durch den Wärmeabnehmer in monatlichen Teilzahlungen auf ein Konto des WVU's. Verrechnungsbeginn ist der Beginn der Wärmelieferung nach Abschluss des Probebetriebes. Die Abrechnung erfolgt am Ende des Verrechnungsjahres, ein allfälliges Guthaben wird auf das neue Verrechnungsjahr gutgeschrieben, allfällige Nachzahlungen sind innerhalb von 30 Tagen nach Bekanntgabe vorzunehmen. Die monatlichen Teilzahlungen werden aufgrund der Jahresabrechnung festgelegt. Bei Zahlungsverzug werden die banküblichen Verzugszinsen verrechnet. Bei Zahlungsverzug des Wärmeabnehmers von mehr als 3 Monaten wird die Wärmelieferung eingestellt bzw. unterbrochen (Plombieren der Absperrorgane). Dem WVU steht das Recht zu, den Raum mit der Wärmeübergabestation zur Vornahme dieser Unterbrechung jederzeit zu betreten.

ANNEX 1 > III <

V.

Dieser Vertrag tritt mit der rechtsgültigen Unterzeichnung beider Vertragspartner in Kraft. Die Vertragslaufzeit beträgt 15 Jahre.

Die Vertragspartner verpflichten sich überdies, im Falle einer Veräußerung, Vermietung oder Verpachtung der vertragsgegenständlichen Liegenschaft bzw. von Liegenschaftsanteilen die Rechte und Pflichten aus dieser Vereinbarung auf den künftigen Eigentümer, Mieter oder Pächter zu überbinden.

VI.

Alle auf dem Grundstück des Wärmeabnehmers befindlichen Einrichtungen für die Fernwärmeversorgung bleiben bis zur Eigentumsgrenze im Eigentum des WVU's. Der Grundeigentümer und dessen Rechtsnachfolger gestatten dem WVU das jederzeitige Betreten des Grundstückes zum Zweck von Reparaturen und Erneuerungen an den Anlagenteilen, die für einen ordnungsgemäßen Betrieb der Nahwärmeversorgung nötig sind nach Voranmeldung, ausgenommen bei Gefahr in Verzug.

Der Wärmeabnehmer bzw. Grundstückseigentümer erklärt sich hiermit mit der Verlegung der Hausanschlussleitungen auf vorgenanntem Grundstück einverstanden.

ANNEX 1 > IV <

VII.

Änderungen und zusätzliche Vereinbarungen bei diesem Vertrag gelten nur mit gegenseitiger schriftlicher Bestätigung.

Als Gerichtsstand für alle aus dem gegenständlichen Rechtsgeschäft entstehenden Streitigkeiten gilt das zuständige Gericht in ......

Wenn nicht anders vereinbart, gelten die Allgemeinen Bedingungen für die Versorgung mit Wärme aus dem Netz des Wärmeversorgungsunternehmens, herausgegeben von der Bundeskammer der Gewerblichen Wirtschaft, Sektion Industrie, in der jeweils gültigen Ausgabe, welche einen integrierenden Bestandteil dieses Vertrages bilden.

Die Rechtswirksamkeit dieses Vertrages erlischt, wenn das Objekt des Abnehmers aus rechtlichen, technischen oder anderen Gründen nicht an die Nahwärmeversorgungsanlage angeschlossen werden kann.

Ort, Datum rechtsgültige Unterschrift des Wärmeabnehmers

Ort, Datum rechtsgültige Unterschrift des WVU`s

ANNEX 1 > V <

Erfassungsbogen Biogasanlage zur Berechnung einer Wirtschaftlichkeitsabschätzung

Auf der Grundlage der von Ihnen gemachten Angaben können wir eine überschlägige Ertragsberechnung ohne vorherige Betriebsbesichtigung durchführen. Die Aussagekraft der Wirtschaftlichkeitsabschätzung ist von der Genauigkeit der von Ihnen gemachten Angaben abhängig. Die Daten werden streng vertraulich behandelt. Bitte gut leserlich ausfüllen!

Name: Vorname:

Strasse: Telefon:

PLZ Ort: Telefax:

Email:

Betriebsgröß Nich ha landwirtsch. ha bearbeitete ha Grünland e: t Nutzfläche Fläche relev ant Es stehen ca. 130 ha für den Maisanbau gesichert zur Verfügung, weitere Flächen können aktiviert werden, um eine Biogasanlage mit 500 kW elektrisch zu betreiben. Die Frischmasseerträge in der Region liegen bei ca. 50 t/ha.

Tierische Produktion

Tierart Kategorie Anzahl Stallhaltun Jährliche Produktion g Gülle Mist Rinder Milchkühe Zuchtkühe Kälber Schweine Zuchtschweine Zucht- /Mastschweine Mastschweine Mastschweine Geflügel Masthennen

ANNEX 2 > I < I

Legehennen Hühnergüll e Im Radius von 10 km vom Standort steht Gülle und strohhaltiger Festmist von ca. 500 GVE aus 10 Betrieben zur Verfügung. (es sind noch viele kleinere Betriebe vorhanden, die dabei noch unberücksichtigt sind).

Weidegang: Nein X Ja Wenn Monate ja: Weidegang/Jahr

Lagerung der festen Gülle:

Lagerung unter Die Zwischenlagerung erfolgt am Hof, von dort wird die Gülle in dem Stall und Fässern zur Biogasanlage transportiert werden. Ein Endlager soll Lagerung am bei der Biogasanlage errichtet werden, und von dort wird das Feld Substrat direkt auf die Flächen ausgebracht. Düngestätte Jauchegrube Volumen Lagerdauer Inhalt Lagerdauer Überdachte Düngestätte Nicht überdachte Düngestätte

Lagerung der flüssigen Gülle

Art der Abmessungen ∅ x H Inhalt [m3] Beton / Stahl Bemerkunge Lagerung [m] n Unterm Stall Vorgrube Nicht überdachte Außengrube Überdachte Außengrube

ANNEX 2 > II < II

Standort der Anlage Individuelles Projekt direkt vor Ort oder anderweitig: Angrenzend an ein Industriegebiet, nicht am Hof Kollektives Projekt: ja Partner werden eingebunden

Soll die Biogasanlage an der Hofstelle errichtet Ja X Nein werden:

Entfernung zur nächsten m, zu den <10 km m Wohnbebauung: Stallungen:

Vorhandene Anschlüsse am Standort: wird Telefon Wasser Gas aufgeschlossen

Kofermentation mit nachwachsenden Rohstoffen (NawaRo’s)

Eine Biogasanlage produziert erheblich mehr Gas, wenn außer der betrieblichen Gülle noch weitere Substrate, wie z.B. nachwachsende Rohstoffe eingesetzt werden.

NawaRo gepl. Erntemenge Anbaukosten Bemerkungen Anbaufläche [to/Jahr] [Euro/ha] [ha] Maissilage / CCM Grassilage GPS Anderes Es stehen ca. 130 ha für den Maisanbau gesichert zur Verfügung, weitere Flächen können aktiviert werden, um eine Biogasanlage mit 500 kW elektrisch zu betreiben. Die Frischmasseerträge in der Region liegen bei ca. 50 t/ha.

Fahrsiloflächen Stehen Fahrsiloflächen zur Lagerung der NawaRo’s zur Verfügung? X Nein Ja Wenn ja: m3, davon frei für m3 Gesamtfläche: NawaRo’s:

Kofermentation mit sonstigen Kofermenten Sollen weitere Stoffe mitvergoren werden? Nein Ja Wenn ja, feste Stoffströme vorhanden?

ANNEX 2 > III < III

Art: Menge: m3/Jahr, TS-Gehalt: % Art: Menge: m3/Jahr, TS-Gehalt: %

Energieverbrauch Strom – Wärme

Soll der erzeugte Strom im eigenen Betrieb genutzt Ja X Nein werden:

Bisheriger kWh/Jahr, Stromkosten Euro/Jahr Stromverbrauch: (ca.):

Größe des kW Stromanschlusses: Trafostation wird am Industriegebiet errichtet, dort kann der Ökostrom eingespeist werden. Kontakt mit dem EVU besteht bereits.

Andere Energieformen, die in Ihrem Betrieb verwendet werden, die durch Abwärmenutzung der Blockheizkraftwerke ersetzt werden können: Heizöl: l/Jahr Kosten (ca.): Euro/Jahr Gas: m3/Jahr Kosten (ca.): Euro/Jahr Art /Jahr Kosten (ca.): Euro/Jahr :

Befinden sich in der näheren Umgebung (bis 500 m) potentielle Wärmeabnehmer (Ställe, Gewächshäuser, kollektive Gebäude, Industrie):

Nein X Ja Wenn ja, Jahresverbrau kWh Art: ch:

ANNEX 2 > IV < IV

Mögliche Förderungen:

Haben Sie ggf. Anspruch auf Förderung der Biogasanlage? Nein Ja Wenn ja, mi % oder Euro welche? t Fixbetrag

Kredite mit begünstigtem Zinssatz: ja oder nein

Andere Kommentare:

ANNEX 2 > V < V

Cost comparison – St. Marein municipality centre

Kostenvergleich Gemeindeamt St. Marein bei Einbau einer Biomasse - Fernwärmeversorgung Heizlast 20 kW Volllaststunden 1300 Nutzenergie 26.000 kWh

Gaszentralheizung Kessel, Anschluss, Umbau, Kaminsanierung und Einbindung € 7.000.-

Betriebskosten Jahresnutzungsgrad 1 80% 32.500 kWh 4,578 Cent/kWh € 1.488.- Zählergebühr € 0,91 pro Monat € 11.- Grundpreis € 51,10 pro Monat € 51.- Rauchfangkehrerkosten € 150.- Service 1 x jährlich € 250.- Summe: Stromkosten jährlich € 100.- 2.050.- AfA (Kessel u. Einbindung) € 4.000.- auf 20 Jahre € 200.- AfA Anschluss € 2.000.- auf 30 Jahre € 67.- AfA Bau € 0.- auf 50 Jahre € 0.- AfA Kamin € 1.000.- auf 10 Jahre € 100.- Instandhaltung (Kessel 1%; Bau 0,5%; Kamin 0,5%) jährlich € 45.-

Summe Jährliche Kosten € 2.461.- Betriebskosten inkl. AfA pro MWh € 94,67

Nahwärme Anschlussgebühr 20 kW à € 185.- € 3.704.- Übergabestation mit Einbindung € 4.008.- Summe € 7.712.-

Betriebskosten Jahresnutzungsgrad 99% Arbeitspreis 26,263 MWh à € 55,00 € 1.444.- Messpreis € 125,00 pro Jahr € 125.- Grundpreis € 16,00 pro kW und Jah € 320.- Abschreibung für Gratis Heizjahr auf 15 Jahre € -126.- Summe: Stromkosten / Service jährlich € 10.- 1.774.- AfA Übergabestation € 4.008.- auf 30 Jahre € 134.- AfA Anschluss € 3.704.- auf 30 Jahre € 123.- AfA Bau € 0.- auf 50 Jahre € 0.- Instandhaltung Übergabestation 2% € 80.- Summe Jährliche Betriebskosten € 2.111.- Betriebskosten inkl. AfA pro MWh € 81,18

ANNEX 3 > I < I

Cost comparison – St. Marein elementary school

Kostenvergleich Volksschule St. Marein bei Einbau einer Biomasse - Fernwärmeversorgung Heizlast 90 kW Volllaststunden 1200 Nutzenergie 108.000 kWh

Gaszentralheizung Kessel, Anschluss, Umbau, Kaminsanierung und Einbindung € 19.500.-

Betriebskosten Jahresnutzungsgrad 1 80% 135.000 kWh 4,274 Cent/kWh € 5.769.- Zählergebühr € 3,33 pro Monat € 40.- Grundpreis € 253,80 pro Monat € 254.- Rauchfangkehrerkosten € 200.- Service 1 x jährlich € 300.- Summe: Stromkosten jährlich € 150.- 6.713.- AfA (Kessel u. Einbindung) € 12.000.- auf 20 Jahre € 600.- AfA Anschluss € 3.500.- auf 30 Jahre € 117.- AfA Bau € 0.- auf 50 Jahre € 0.- AfA Kamin € 4.000.- auf 10 Jahre € 400.- Instandhaltung (Kessel 1%; Bau 0,5%; Kamin 0,5%) jährlich € 140.-

Summe Jährliche Kosten € 7.970.- Betriebskosten inkl. AfA pro MWh € 73,80

Nahwärme Anschlussgebühr 90 kW à € 225.- € 20.246.- Übergabestation mit Einbindung € 6.095.- Summe € 26.341.-

Betriebskosten Jahresnutzungsgrad 99% Arbeitspreis 109,091 MWh à € 55,00 € 6.000.- Messpreis € 125,00 pro jahr € 125.- Grundpreis € 16,00 pro kW und Jah € 1.440.- Abschreibung für Gratis Heizjahr auf 15 Jahre € -504.- Summe: Stromkosten / Service jährlich € 10.- 7.071.- AfA Übergabestation € 6.095.- auf 30 Jahre € 203.- AfA Anschluss € 20.246.- auf 30 Jahre € 675.- AfA Bau € 0.- auf 50 Jahre € 0.- Instandhaltung Übergabestation 2% € 122.- Summe Jährliche Betriebskosten € 8.071.- Betriebskosten inkl. AfA pro MWh € 74,73

ANNEX 3 > II < II

Cost comparison – St. Marein Kindergarten

Kostenvergleich Kindergarten St. Marein bei Einbau einer Biomasse - Fernwärmeversorgung Heizlast 35 kW Volllaststunden 1200 Nutzenergie 42.000 kWh

Gaszentralheizung Kessel, Anschluss, Umbau, Kaminsanierung und Einbindung € 8.500.-

Betriebskosten Jahresnutzungsgrad 1 80% 52.500 kWh 4,476 Cent/kWh 5 € 2.350.- Zählergebühr € 0,97 pro Monat € 12.- Grundpreis € 91,80 pro Monat € 92.- Rauchfangkehrerkosten € 150.- Service 1 x jährlich € 250.- Summe: Stromkosten € 100.- 2.953.- AfA (Kessel u. Einbindung) € 5.000.- auf 20 Jahre € 250.- AfA Anschluss € 2.000.- auf 30 Jahre € 67.- AfA Bau € 0.- auf 50 Jahre € 0.- AfA Kamin € 1.500.- auf 10 Jahre € 150.- Instandhaltung (Kessel 1%; Bau 0,5%; Kamin 0,5%) jährlich € 150.-

Summe Jährliche Kosten € 3.570.- Betriebskosten inkl. AfA pro MWh € 85,00

Nahwärme Anschlussgebühr 35 kW à € 0.- € 0.- Übergabestation mit Einbindung € 0.- Summe €0.-

Betriebskosten Jahresnutzungsgrad 99% Arbeitspreis 42,424 MWh à € 55,00 € 2.333.- Messpreis € 125,00 pro Jahr € 125.- Grundpreis € 16,00 pro kW und Jah € 560.- Abschreibung für Gratis Heizjahr auf 15 Jahre € -201.- Summe: Stromkosten / Service € 10.- 2.827.- AfA Übergabestation € 0.- auf 30 Jahre € 0.- AfA Anschluss € 0.- auf 30 Jahre € 0.- AfA Bau € 0.- auf 50 Jahre € 0.- Instandhaltung Übergabestation 2% € 80.- Summe Jährliche Betriebskosten € 2.907.- Betriebskosten inkl. AfA pro MWh € 69,22

ANNEX 3 > III < III

Cost comparison – St. Marein fire department

Kostenvergleich Rüsthaus St. Marein bei Einbau einer Biomasse - Fernwärmeversorgung Heizlast 43 kW Volllaststunden 1000 Nutzenergie 43.000 kWh

Gaszentralheizung Kessel, Anschluss, Umbau, Kaminsanierung und Einbindung € 11.000.-

Betriebskosten Jahresnutzungsgrad 1 80% 53.750 kWh 4,476 Cent/kWh 5 € 2.406.- Zählergebühr € 0,97 pro Monat € 12.- Grundpreis € 91,80 pro Monat € 92.- Rauchfangkehrerkosten € 150.- Service 1 x jährlich € 250.- Summe: Stromkosten € 100.- 3.009.- AfA (Kessel u. Einbindung) € 7.000.- auf 20 Jahre € 350.- AfA Anschluss € 2.500.- auf 30 Jahre € 83.- AfA Bau € 0.- auf 50 Jahre € 0.- AfA Kamin € 1.500.- auf 10 Jahre € 150.- Instandhaltung (Kessel 1%; Bau 0,5%; Kamin 0,5%) jährlich € 78.-

Summe Jährliche Kosten € 3.670.- Betriebskosten inkl. AfA pro MWh € 85,35

Nahwärme Anschlussgebühr 43 kW à € 217.- € 9.334.- Übergabestation mit Einbindung € 4.353.- Summe € 13.687.-

Betriebskosten Jahresnutzungsgrad 100% Arbeitspreis 43,000 MWh à € 55,00 € 2.365.- Messpreis € 125,00 pro Jahr € 125.- Grundpreis € 16,00 pro kW und Jah € 688.- Abschreibung für Gratis Heizjahr auf 15 Jahre € -212.- Summe: Stromkosten / Service € 10.- 2.976.- AfA Übergabestation € 4.353.- auf 30 Jahre € 145.- AfA Anschluss € 9.334.- auf 30 Jahre € 311.- AfA Bau € 0.- auf 50 Jahre € 0.- Instandhaltung Übergabestation 2% € 87.- Summe Jährliche Betriebskosten € 3.519.- Betriebskosten inkl. AfA pro MWh € 81,85

ANNEX 3 > IV < IV

Cost comparison – St-Marein teachers house

Kostenvergleich Lehrerwohnhaus St. Marein bei Einbau einer Biomasse - Fernwärmeversorgung Heizlast 37 kW Volllaststunden 1600 Nutzenergie 59.200 kWh

Gaszentralheizung Kessel, Anschluss, Umbau, Kaminsanierung und Einbindung € 11.000.-

Betriebskosten Jahresnutzungsgrad 1 80% 74.000 kWh 4,476 Cent/kWh 5 € 3.312.- Zählergebühr € 0,97 pro Monat € 12.- Grundpreis € 91,80 pro Monat € 92.- Rauchfangkehrerkosten € 150.- Service 1 x jährlich € 250.- Summe: Stromkosten € 100.- 3.916.- AfA (Kessel u. Einbindung) € 7.000.- auf 20 Jahre € 350.- AfA Anschluss € 2.500.- auf 30 Jahre € 83.- AfA Bau € 0.- auf 50 Jahre € 0.- AfA Kamin € 1.500.- auf 10 Jahre € 150.- Instandhaltung (Kessel 1%; Bau 0,5%; Kamin 0,5%) jährlich € 78.-

Summe Jährliche Kosten € 4.577.- Betriebskosten inkl. AfA pro MWh € 77,31

Nahwärme Anschlussgebühr 37 kW à € 259.- € 9.576.- Übergabestation mit Einbindung € 4.102.- Summe € 13.678.-

Betriebskosten Jahresnutzungsgrad 99% Arbeitspreis 59,798 MWh à € 55,00 € 3.289.- Messpreis € 125,00 pro Jahr € 125.- Grundpreis € 16,00 pro kW und Jah € 592.- Summe: Stromkosten / Service € 10.- 4.016.- AfA Übergabestation € 4.102.- auf 30 Jahre € 137.- AfA Anschluss € 9.576.- auf 30 Jahre € 319.- AfA Bau € 0.- auf 50 Jahre € 0.- Instandhaltung Übergabestation 2% € 82.- Summe Jährliche Kosten € 4.554.- Betriebskosten inkl. AfA pro MWh € 76,92

ANNEX 3 > V < V

Wärmelieferungsvertrag für ein Contractingmodell betreffen einer Energy - Cabin zur Wärmelieferung

Zwischen im Folgenden kurz „Kunde“ genannt, und

CONTRACTOR im Folgenden kurz „CONTRACTOR“ genannt

für die Liegenschaft, XXX

ANNEX 5 > I < I

1. Ort, Zweck und Umfang der Wärmelieferung

CONTRACTOR übernimmt ab ______die Belieferung der Liegenschaft, ______, Grundstücksnummer ______, mit Wärme aus der von CONTRACTOR zu errichtenden und im Eigentum von CONTRACTOR befindlichen Heizanlage. Die Lieferung der Wärme dient dem Zweck der Raumheizung und Warmwasserbereitung.

Zur Erfüllung der von CONTRACTOR im Lieferübereinkommen übernommenen Verpflichtungen, gestattet der Kunde der Firma CONTRACTOR und deren Beauftragten den uneingeschränkten Zutritt zu allen für den Anlagenbetrieb notwendigen Räumen.

Die Planung, Dimensionierung und Installation der Heizzentrale erfolgt zu Lasten von CONTRACTOR.

CONTRACTOR verpflichtet sich über die Vertragslaufzeit erneuerbare Energieträger als Brennstoff einzusetzen.

2. Lieferpflicht

Die Heizleistung wird dem Wärmebedarf entsprechend zwischen dem Kunden und CONTRACTOR abgestimmt. Die vereinbarte bereit zu stellende maximale Heizleistung (Vertragsleistung) beträgt ____ kW. Der Jahresenergiebedarf wird mit ______kWh festgelegt und ist Basis für die Kalkulation.

Die vereinbarte Heizleistung wird nach der Inbetriebnahme bereitgestellt. Eine Änderung der Leistungsanforderungen bedarf einer gesonderten Vereinbarung. Die Verpflichtung, die vereinbarte Heizleistung bereit zu stellen, entfällt, soweit und solange CONTRACTOR an der Erzeugung, dem Bezug oder der Fortleitung des Wärmeträgers durch höhere Gewalt oder sonstige Umstände, deren Beseitigung ihm wirtschaftlich nicht zugemutet werden kann, gehindert ist.

Die Versorgung kann unterbrochen werden, soweit dies zur Vornahme betriebsnotwendiger Arbeiten erforderlich ist.

Über alle bevorstehenden Lieferunterbrechungen von nicht nur kurzer Dauer setzt der CONTRACTOR den Kunden umgehend in Kenntnis.

Werden dem Kunden die Wärmeversorgungsanlagen betreffende Unregelmäßigkeiten bekannt, so hat er CONTRACTOR davon unverzüglich in Kenntnis zu setzen.

Die Wärme wird dem Kunden am Ausgang des Wärmemengenzählers übergeben.

CONTRACTOR übernimmt auf eigene Gefahr den Betrieb der Heiz- und Warmwasserbereitungsanlage unter Einhaltung der einschlägigen gesetzlichen und behördlichen Bestimmungen. CONTRACTOR übernimmt de Kosten für:

ANNEX 5 > II < II

2.1 den erforderlichen Energieträger (Pellets)

2.2 die regelmäßige Wartung und Instandhaltung der Heiz- und Warmwasserbereitungsanlage, einschließlich Reinigung der Heizkessel, Übernahme der Kosten für die Rauchfangkehrerarbeiten, Wartung und Instandsetzung sämtlicher mechanischer und elektrischer Anlagenteile der Heiz- und Warmwasserbereitungsanlage.

2.3 die Störungsbehebung bei Ausfall der Anlage

2.4 Bereitstellung des erforderlichen fachlich geschulten Bedienungspersonal

2.5 die Durchführung allfälliger Reparaturen und erforderlicher Umbauarbeiten sowie die rechtzeitige Erneuerung nicht wirtschaftlich arbeitender Anlagenteile der Heiz- und Warmwasserbereitungsanlage wie z.B. Heizkessel, Verteiler, Warmwasserbereiter, Pumpen, Regeleinrichtungen.

2.6 die individuelle Abrechnung der gelieferten Wärme- und Warmwassermenge

2.7. die Beistellung, Montage, Eichung, Wartung und Erhaltung der/des Wärmemengen- und Warmwasserzähler

2.8 die Ablesung der einzelnen Wärmemengen- und Warmwasserzähler

2.9 das Inkasso

Die in Punkt 2.1 – 2.9 beschriebenen Leistungen werden für alle Teile der Heiz- und Warmwasserbereitungsanlage, welche sich im Betreuungsbereich von CONTRACTOR befinden erbracht. Der Betreuungsbereich umfasst die gesamte Heiz- und Warmwasserbereitungsanlage (Systemgrenze letztes Absperrventil der EnergyCabin®) sowie die im Eigentum von CONTRACTOR befindlichen Wärmemengen- und Warmwasserzähler.

Die Instandhaltung und Wartung aller Anlagenteile außerhalb des Betreuungsbereiches (z.B. Entlüftung von Heizkörpern, Behebung von Undichtheiten und Störungen im Sekundärbereich) sowie bauliche Maßnahmen obliegen dem Kunden und sind nicht Gegenstand dieses Lieferübereinkommens.

Bei Aufnahme des Betriebes durch CONTRACTOR wird davon ausgegangen dass die Wärmeabnahmeanlagen des Kunden richtig bemessen und sachgerecht ausgeführt sind, sowie einwandfrei funktionieren. (z.B. Leitungsspülung des Sekundärkreises).

Alle Anlagenteile innerhalb des Betreuungsumfanges befinden sich im Eigentum von CONTRACTOR.

Das für den Anlagenbetrieb notwendige, aufbereitete Wasser wird vom Kunden für CONTRACTOR kostenlos beigestellt. Die Kosten für die erforderliche elektrische Energie trägt CONTRACTOR.

ANNEX 5 > III < III

3. Art der Wärme- und Warmwasserlieferung, Messeinrichtung und Übergabestelle

Die Lieferung von Wärme erfolgt mittels Heizwasser.

Die Heizperiode ist, sofern nicht außergewöhnliche Witterungsverhältnisse herrschen, der Zeitraum von 15.9. eines Jahres bis zum 15.5. des Folgejahres.

Für die Warmwasserbereitung wird Heizwasser ganzjährig zur Verfügung gestellt. Dabei wird die Vorlauftemperatur so gewählt, dass die Temperatur des Warmwassers beim Austritt aus dem Warmwasserbereiter mindestens 55°C beträgt.

Ungemessene Wärme- und Warmwasserabgabestelen zwischen der Übergabestelle und den einzelnen Kundenanlagen (z.B. für die Beheizung und Warmwasserversorgung von Gemeinschaftsräumen, Stiegenhäusern usw.) sind nicht zulässig.

Für die Inbetriebnahme und laufende Inbetriebhaltung der außerhalb des Betreuungsbereiches von CONTRACTOR befindlichen Anlagenteile hat der Kunde zu seinen Lasten Sorge zu trage.

Das von CONTRACTOR gelieferte Warmwasser entspricht in seiner Qualität und Zusammensetzung dem vom Kunden zur Verfügung gestellten Kaltwassers. Deshalb wird der Kunde CONTRACTOR bezüglich eventueller Ansprüche von Dritten, die aus mangelnder Qualität oder Zusammensetzung des Kaltwassers resultieren, schad- und klaglos halten.

CONTRACTOR nimmt die Wärmeversorgungsanlage im Beisein des Kunden und des ausführenden Installationsunternehmens in Betrieb, wobei ein Inbetriebnahmeprotokoll erstellt wird.

CONTRACTOR ist berechtigt, die Kundenanlage jederzeit zu überprüfen. Der Lieferant hat den Kunden auf erkannte Sicherheits- und Funktionsmängel aufmerksam zu machen. Er kann deren Beseitigung verlangen.

Werden Mängel festgestellt, welche die Sicherheit gefährden oder erhebliche Störungen erwarten lassen, so ist CONTRACTOR berechtigt, den Anschluss oder die Versorgung zu verweigern oder auf Kosten des Kunden die Ersatzvornahme zu veranlassen oder durchzuführen.

Durch die Vornahme der Überprüfung der Kundenanlage oder deren Unterlassung übernimmt CONTRACTOR keine Haftung für die Mängelfreiheit der Kundenanlage.

4. Vergütung

Die Abrechnung der gelieferten Wärmemenge erfolgt jeweils zum 1.Juli. Teilbeträge in Höhe von 1/12 (einem Zwölftel) der voraussichtlichen Jahreskosten für die verbrauchte Wärme, deren Bereitstellung und Messung sind als Abschlagzahlung im Voraus am Ersten eines jeden Kalendermonats zu entrichten.

ANNEX 5 > IV < IV

Sollte eine Änderung der Jahresarbeitskosten von 30 % zu erwarten sein, so kann der Lieferant oder der Kunde eine angemessene Anpassung der Abschlagzahlungen verlangen.

Die Rechnungsbeträge der Jahresabrechnung sind binnen zwei Wochen nach Zugang der Jahresabrechnung auf das Bankkonto des Lieferanten Bank, BLZ xxx, Kto.Nr. xxx zu überweisen. Zuviel geleistete Teilzahlungen werden nach jährlicher Gesamtabrechnung auf die nächstfolgende Teilzahlung gutgeschrieben.

Bei Zahlungsverzug ist der Vertragspartner, der Zahlung verlangen kann, berechtigt, unbeschadet weiter gehender Ansprüche, Verzugszinsen in Höhe von 8 % über dem jeweiligen Diskontsatz der Europäischen Zentralbank zu verlangen.

5. Laufzeit des Lieferübereinkommens

Die Laufzeit des Vertrages beträgt 15 Jahre, der Vertrag beginnt am ______und endet nach 15 Jahren am Monatsletzten des Monats der Vertragsunterzeichnung.

Für beide Vertragspartner besteht nach zwanzigjähriger Vertragslaufzeit die Möglichkeit, diesen Vertrag unter Einhaltung einer einjährigen Kündigungsfrist schriftlich zum Monatsletzten des Monats der Vertragsunterzeichnung zu kündigen.

6. Versicherung

CONTRACTOR versichert die Wärmeversorgungsanlage gegen Verlust oder Beschädigung durch Feuer, Überschwemmung oder andere Naturereignisse und ist berechtigt, die dafür anfallende Versicherungsprämie bei der Berechnung des Grundpreises zu berücksichtigen. Der Kunde teilt seiner Gebäudeversicherung zur Vermeidung einer Doppelversicherung mit, dass die Wärmeversorgungsanlage bis zur Beendigung dieses Vertrages nunmehr durch CONTRACTOR versichert ist.

ANNEX 5 > V < V

7. Wärmepreis

Abgerechnet werden die Kosten für die Bereitstellung der Wärmeversorgungsanlage, die gelieferte Wärmemenge und die (Messung) der Wärmemenge.

7.1 Der Jahresgrundpreis für die Bereitstellung der Wärmeversorgungsanlage (beinhaltet Service, Wartung, Abrechnung etc.) beträgt € ______zuzüglich der jeweils geltenden gesetzlichen Mehrwertsteuer und allfällig erhobener Energiesteuern für die gesamte Wohnhausanlage

7.2 Der Arbeitspreis für die gelieferte Wärmemenge beträgt _____/kWh zuzüglich der jeweils geltenden gesetzlichen Mehrwertsteuer und allfällig erhobener Energiesteuern.

Abrechnungsgrundlage für den Arbeitspreis ist die am Zähler in der EnergyCabin® abgelesene Wärmemenge in kWh.

8. Preisänderungsklausel

8.1 Jahresgrundpreis wird durch den Baukostenindex (Stand Juni 2006 als Basis) wertgesichert. Der Baukostenindex wird vom Österreichischen Statistischen Zentralamt monatlich ermittelt. Als Indexgrundzahl wird der Index vom Juni 2006 angenommen.

Preisanpassungen erfolgen im gleichen, prozentuellen Ausmaß wie die prozentuelle Differenz der Jahresdurchschnittsindexziffern der beiden vorhergehenden Jahre. Basisjahr ist das Jahr 2006. Die erste Preisanpassung kann im 3. darauf folgenden Jahr erfolgen.

Preisänderungen werden erst ab einer Höhe von 3% wirksam und gelten für das ganze Jahr. Liegt die prozentuelle Differenz der Jahresdurchschnittsindexziffern unter 3% werden die folgenden Differenzen hinzugezählt und die Preisanpassung erfolgt dann bei Überschreitung der 3% Grenze.

8.2 Arbeitspreis ist von der Entwicklung des Pelletspreises abhängig. Für die Ermittlung des Pelletspreises wird der Pelletspreis-Index von Propellets-Austria (www.propellets.at/Kosten/Pelletspreis-Index) herangezogen. Als Basis wird der Preis bei Angebotslegung von € ______/kWh, (wie in Punkt 7.2 beschrieben) bezogen auf de Pelletspreis Stand August 2006, herangezogen.

Preisänderungen müssen schriftlich bekannt gegeben werden.

ANNEX 5 > VI < VI

9. Haftung

9.1 Schadenersatzansprüche gegen CONTRACTOR, seine Organe, Bediensteten und Beauftragten wegen Versorgungsstörungen, insbesondere Einschränkungen, Unterbrechungen oder Unregelmäßigkeiten der Wärmelieferung sind ausgeschlossen, es sei denn, dass CONTRACTOR Vorsatz oder grobe Fahrlässigkeit zu vertreten hat. Gleiches gilt für in andere Weise verursachte Schäden.

9.2 Schadenersatzansprüche der in 9.1 bezeichneten Art verjähren in drei Jahren von dem Zeitpunkt an, zu welchem der Ersatzberechtigte von dem Schaden, von den Umständen, aus denen sich seine Anspruchsberechtigung ergibt und von dem Ersatzpflichtigen Kenntnis erlangt, ohne Rücksicht auf diese Kenntnis aber in fünf Jahren von dem schädigendem Ereignis an.

10. Billigkeitsklausel

Wenn die wirtschaftlichen, technischen oder rechtlichen Voraussetzungen, unter denen die Bestimmungen dieses Vertrages vereinbart worden sind, eine grundlegende Änderung erfahren und in Folge dessen einem Vertragspartner oder beiden ein Festhalten am Vertrag nicht mehr zugemutet werden kann, weil dies den bei Vertragsabschluss vorhandenen Vorstellungen über einen angemessenen Ausgleich der beiderseitigen wirtschaftlichen Interessen nicht entsprechen würde, so ist dieser Vertrag unter Berücksichtigung des Grundsatzes von Treu und Glauben und unter Beachtung des Gleichbehandlungsgrundsatzes den geänderten Verhältnissen anzupassen oder innerhalb einer angemessenen Frist aufzulösen.

11. Einstellung der Versorgung

CONTRACTOR ist berechtigt, die Wärmeversorgung sofort einzustellen, wenn der Kunde den Bestimmungen dieses Vertrages zuwider handelt und die Einstellung erforderlich ist, um

a) eine unmittelbare Gefahr für die Sicherheit von Personen oder Anlagen abzuwenden oder b) einen Verbrauch von Wärme unter Umgehung, Beeinflussung oder vor Anbringung der Messeeinrichtungen zu verhindern. c) wenn der Kunde seine Zahlungsverpflichtungen aus diesem Vertrag trotz Mahnung nicht oder nicht vollständig nachkommt. d) wenn der Kunde anderen Verpflichtungen aus diesem Vertrag trotz Mahnung nicht oder nicht vollständig nachkommt oder die Vertragserfüllung vereitelt oder zu vereiteln versucht. e) wenn der Kunde den jederzeitigen Zutritt des Lieferanten zur Liegenschaft nicht oder nicht vollständig gewährleistet.

12.Rechtsnachfolge

ANNEX 5 > VII < VII

Findet ganz oder teilweise ein Eigentümerwechsel an der Liegenschaft/Gebäude statt, ist der Kunde während der Laufzeit dieses Vertrages verpflichtet, formwirksam alle Rechte und Pflichten des Kunden aus diesem Vertrag auf den Erwerber der Liegenschaft und dessen Rechtsnachfolger zu übertragen. Abweichungen hiervon bedürfen der schriftlichen Zustimmung von CONTRACTOR.

Der Kunde wird von seinen Verpflichtungen aus diesem Vertrag erst frei, wenn der Erwerber der Liegenschaft/Gebäude CONTRACTOR gegenüber den Eintritt in diesen Vertrag schriftlich erklärt hat.

CONTRACTOR ist berechtigt, diesen Vertrag mit allen Rechten und Pflichten auf einen Dritten zu übertragen.

13.Abnahmepflicht

Der Kunde verpflichtet sich, den in Punkt 2 definierten Wärmebedarf während der Vertragslaufzeit durch Bezug von CONTRACTOR zu decken. Ergibt sich ein darüber hinaus gehender Wärmebedarf, so verpflichtet sich der Kunde, auch diesen bei CONTRACTOR zu decken, sofern dieser zur Lieferung bereit und in der Lage ist.

Die Wärme wird dem Kunden nur für die Versorgung der in diesem Vertrag genannten Liegenschaft/Gebäude zur Verfügung gestellt. Die Weiterleitung zur Versorgung anderer Liegenschaften/Gebäude ist mit CONTRACTOR abzustimmen und bedarf der schriftlichen Zustimmung des Lieferanten.

14. Sonstige Bestimmungen

CONTRACTOR wird das Recht der Nutzung der Grundflächen des Kunden zum Zwecke der Zu- und Fortleitung von Heizwasser eingeräumt

Alle in diesem Lieferübereinkommen genannten Preise verstehen sich ohne die gesetzlich hinzuzurechnende Umsatzsteuer

ANNEX 5 > VIII < VIII

15. Eigentumsverhältnisse

Der Kunde versichert, Eigentümer der Liegenschaft wie in Punkt 1 beschrieben zu sein

In Fällen, in denen der Kunde nicht Liegenschaftseigentümer sondern Mieter, Bauberechtigter oder Nutzungsberechtigter der Liegenschaft ist, legt dieser die gerichtlich oder notariell beglaubigte Zustimmungserklärung des Liegenschaftseigentümer zu diesem Vertrag vor

Der Kunde und – in Fällen, in denen der Kunde nicht Liegenschaftseigentümer ist – der Liegenschaftseigentümer gestatten CONTRACTOR unentgeltlich, die für den Betrieb der Wärmeversorgungsanlage erforderlichen Versorgungsleitungen auf der Liegenschaft zu verlegen, sowie die erforderlichen baulichen Maßnahmen auf der Liegenschaft durchzuführen.

Der Kunde gewährleistet, dass die Wärmeversorgungsanlage mit Versorgungsleitungen für Wasser, Strom und Telefon versehen ist. Bei Bedarf stellt der Kunde für die Stromversorgung einen Subzähler.

Die Wärmeversorgungsanlage (EnergyCabin®) wird nur zu einem vorübergehenden Zweck für die Vertragsdauer mit der Liegenschaft verbunden. Der Kunde bzw. der Liegenschaftseigentümer erklärt sich mit der Aufstellung der Wärmeversorgungsanlage und der Verlegung der erforderlichen Versorgungsleitungen als einverstanden. Die Wärmeversorgungsanlage ist nicht Bestandteil der Liegenschaft und fällt nicht in das Eigentum des Kunden oder Liegenschaftseigentümers. CONTRACTOR entfernt die Wärmeversorgungsanlage nach der Beendigung des Vertrages von der Liegenschaft auf seine Kosten, wenn nichts anderes vereinbart ist.

16.Sicherheiten

1. Der Kunde verpflichtet sich, zu Gunsten von CONTRACTOR am Heizkessel das Maschineneigentum sowie an der Liegenschaft ein Fruchtgenussrecht im Grundbuch einzuverleiben, das zum Betrieb der Wärmeversorgungsanlage unter Ausschluss des Liegenschaftseigentümers berechtigt. 2. Der Kunde verpflichtet sich, zu Gunsten von CONTRACTOR für die Errichtung der Wärmeversorgungsanlage an der Liegenschaft ein Baurecht im Grundbuch für die Dauer von 20 Jahren einzuverleiben.

ANNEX 5 > IX < IX

17. Aufrechnung

Gegen Ansprüche von CONTRACTOR kann nur mit unbestrittenen oder rechtskräftig festgestellten Gegenansprüchen aufgerechnet werden.

18. Dienstbarkeitsklausel

Der Kunde bzw. dessen Rechtsnachfolger hat CONTRACTOR, bzw. dem mit einem Firmenausweis versehenen Beauftragten (Pelletslieferung, Wartungs- und Servicearbeiten etc.), Zutritt zu seiner Liegenschaft, seinen Gebäuden und seinen Räumen zu gestatten, soweit dies erforderlich ist, unbedingt und jederzeit aber zu der Wärmeversorgungsanlage.

19. Schlussbestimmungen

1. Vertragsänderungen- bzw. ergänzungen gelten nur mit gegenseitiger schriftlicher Bestätigung der Vertragsparteien. Vertragskündigungen müssen schriftlich erfolgen. 2. Es gilt österreichisches materielles Recht. Die Anwendbarkeit des UN-Kaufrechtes wird ausdrücklich ausgeschlossen. 3. Zur Entscheidung aller mittelbar oder unmittelbar aus diesem Vertrag entstehenden Streitigkeiten – einschließlich solcher über sein Bestehen oder Nichtbestehen - wird das für den Sitz von CONTRACTOR örtlich und sachlich zuständige österreichische Gericht als zuständig vereinbart. 4. Für Lieferungen und Zahlungen gilt unabhängig von der Zahlungsart als Erfüllungsort der Sitz von CONTRACTOR, selbst dann, wenn die Übergabe vereinbarungsgemäß an einem anderen Ort erfolgt. 5. Die Bestimmungen dieses Vertrages gehen allen gesetzlichen Vorschriften vor, sofern diese Vorschriften abdingbar sind. 6. Die Unwirksamkeit einzelner Bestimmungen dieses Vertrages hat auf den Bestand und die Fortdauer des Vertrages keinen Einfluss. Die Vertragspartner verpflichten sich, die unwirksame Bestimmung durch eine neue, ihrem wirtschaftlichen Erfolg möglichst nahe kommende Bestimmung zu ersetzen. 7. Sollte der Baukostenindex und/oder der Verbraucherpreisindex des Österreichischen Statistischen Zentralamtes nicht mehr verlautbart werden, so ist der/die an dessen/deren Stelle tretende Wert /e heranzuziehen. 8. Sohin erteilt der Kunde seine ausdrückliche Einwilligung, dass aufgrund dieses Vertrages die in Punkt 18 beschriebenen Dienstbarkeiten ins Grundbuch eingetragen werden. 9. Die befugten Ansprechpartner sind auf Seiten von CONTRACTOR NAME und auf Seiten des Kunden ______

______, am

Der Auftraggeber Der Auftragnehmer

ANNEX 5 > X < X