Your Attention Please!

Total Page:16

File Type:pdf, Size:1020Kb

Your Attention Please! Your attention please! The following text was published as a book by Prentice Hall in 1994. It has since gone out of print, and the copyright was formally reversed back to the authors Kim Waldén and Jean-Marc Nerson in 2001. We have decided to make the text publicly available with the following provision. You may download and copy the text at will, but as soon as some part is extracted and presented out of context of the complete book, there must always be a clearly visible reference to the book and its authors, and also a pointer to the website www.bon-method.com (since the printed book is no longer available) so that any reader of the partial content can quickly find the original full text. The text of this provision must also be included in any such presentation. Seamless Object-Oriented Software Architecture Analysis and Design of Reliable Systems Kim Waldén Jean-Marc Nerson Printed version September 6, 1994 Contents Series editor’s preface xi Preface xiii Part I Introduction 1 1 Object-oriented software development 3 1.1 Introduction 3 1.2 Seamlessness 7 1.3 Reversibility 7 1.4 Software contracting 9 2 The BON approach 11 2.1 Introduction 11 2.2 What is not in BON 12 2.3 Other methods 15 2.4 The BON position 16 2.5 Characteristics of the notation 17 2.6 Static and dynamic models 24 Part II The model 27 3 The static model—classes and clusters 29 3.1 Introduction 29 3.2 BON modeling charts 30 3.3 System state information 35 3.4 Typed class interfaces 36 3.5 Class header 37 3.6 Indexing clause 37 v vi CONTENTS 3.7 Inheritance clause 39 3.8 Class features 39 3.9 Class invariant 47 3.10 Graphical and textual specification 48 3.11 The BON assertion language 49 3.12 The BON predicate logic 52 3.13 Assertions and partial functions 57 3.14 Scalable system description 59 3.15 Class headers 59 3.16 Clusters 60 4 Static relations 65 4.1 Inheritance relations 65 4.2 Client relations 69 4.3 Class vs. object dependencies 86 4.4 Indirect client dependencies 88 4.5 Semantic links 89 5 The dynamic model 90 5.1 Introduction 90 5.2 Dynamic charts 93 5.3 Dynamic diagrams 99 Part III The method 117 6 Issues of a general method 119 6.1 Introduction 119 6.2 Simulating an ideal process 120 6.3 Enterprise modeling 121 6.4 What is analysis and what is design? 122 6.5 Reuse 125 6.6 User centered design 129 6.7 Roles of analysis objects 135 6.8 Modeling a system interface 136 6.9 System usage 140 6.10 A paradigm shift 142 CONTENTS vii 7 The BON process 143 7.1 The BON deliverables 143 7.2 Characteristics of the process 148 7.3 Task 1: Delineate system borderline 152 7.4 Task 2: List candidate classes 160 7.5 Task 3: Select classes and group into clusters 162 7.6 Task 4: Define classes 166 7.7 Task 5: Sketch system behaviors 168 7.8 Task 6: Define public features 171 7.9 Task 7: Refine system 172 7.10 Task 8: Generalize 174 7.11 Task 9: Complete and review system 175 8 BON standard activities 178 8.1 Finding classes 178 8.2 Classifying 189 8.3 Clustering 194 8.4 Defining class features 198 8.5 Selecting and describing object scenarios 203 8.6 Working out contracting conditions 205 8.7 Assessing reuse 212 8.8 Indexing and documenting 215 8.9 Evolving the system architecture 220 Part IV Case studies 229 9 A conference management system 231 9.1 System borderline 232 9.2 Candidate classes in the problem domain 235 9.3 Class selection and clustering 236 9.4 Class definition 242 9.5 System behavior 252 9.6 Formal class description 260 10 A video recorder 270 10.1 System borderline 270 viii CONTENTS 10.2 Candidate classes 274 10.3 Class selection and clustering 275 10.4 Class definition 279 10.5 System behavior 283 10.6 Formal class description 286 10.7 Final static architecture 288 11 Relational and object-oriented coexistence 289 11.1 From data storage to object persistence 290 11.2 Object models and relational models 293 11.3 A relational database wrapper 295 11.4 Interfacing an existing relational schema 303 11.5 Querying a persistent object model 312 11.6 Persistent object management 315 11.7 Automatic generation of SQL statements 324 11.8 Full static architecture 331 12 Exercises 332 12.1 Clustering a problem domain 332 12.2 Defining class relationships 334 12.3 Assertions and classification 335 12.4 Dynamic behavior 336 12.5 Prescription and description 337 12.6 Traffic-control system 338 12.7 Dice game 339 12.8 Car rental company 340 12.9 Truck freight 341 12.10 Real-time process control 345 Part V Appendices 347 Appendix A BON textual grammar 349 A.1 Introduction 349 A.2 The syntax notation 350 A.3 BON specification 352 A.4 Informal charts 352 CONTENTS ix A.5 Static diagrams 354 A.6 Class interface description 355 A.7 Formal assertions 357 A.8 Dynamic diagrams 358 A.9 Notational tuning 359 A.10 Lexical components 359 Appendix B BON textual examples 364 B.1 BON specification 364 B.2 Informal charts 365 B.3 Static diagrams 367 B.4 Dynamic diagrams 374 Appendix C BON quick reference 381 Appendix D Other approaches 386 Appendix E Glossary of terms 388 References 411 Index 425 x CONTENTS Series editor’s preface A rumor has been spreading for some time among people that follow progress in object-oriented analysis and design: “Wait for BON!” Those not in the know would ask what in the world BON could be. Indeed, the publicity around the Business Object Notation has been modest—an article in the Communications of the ACM, presentations at a workshop or two, public seminars in Europe and North America, tutorials at TOOLS and other conferences—but it was enough to attract the attention of many O-O enthusiasts who were dissatisfied with the limitations of first-generation analysis methods. In the meantime, BON was being taught to many practitioners, applied in numerous industrial projects, and repeatedly polished as a result. As this book finally reaches publication it is certain to cause a major advance in the field of object-oriented methods. Its most remarkable feature is the thoroughness with which it applies object-oriented principles, unencumbered by leftovers from earlier methods. Going O-O all the way is not a matter of dogmatism, but the secret for obtaining the real benefits of the method, following in particular from two principles developed at length in the book: seamless development, the removal of artificial gaps and mismatches between successive software development activities; and reversibility, the recognition that at any step of the development process, including implementation and maintenance, it must be possible to update the results of earlier phases such as analysis and design, and still maintain full consistency between the analysis, design, implementation and maintenance views. By ensuring seamlessness and reversibility it is possible to obtain a continuous software development process, essential to the quality of the resulting products. This book is also one of a select few in the OOAD literature that pays serious attention to the question of software reliability, by using some elements of formal reasoning, in particular assertions, as a way to specify semantic properties of a system at the earliest possible stage. Following the presentation of the model and method in parts I, II, and III, a large section of the book (part IV) is devoted to a set of in-depth case studies and to exercises, drawn for the most part from projects in which the authors acted as xi xii SERIES EDITOR’S PREFACE consultants. This abundant practical material will help readers apply the ideas of BON to their own application areas. From now on, no one will be able to claim knowledge of object-oriented analysis and design who has not read Kim Waldén and Jean-Marc Nerson. Bertrand Meyer Preface In the past few years, object-oriented techniques have finally made the passage from the programming-in-the-small island to the mainland of programming-in- the-large. Accompanying this transition has been a change in the role and perception of software methods: in addition to their well-established use in the earliest stages of a project—requirements analysis and system specification— they are increasingly viewed as providing the intellectual support needed across the entire software construction process, through design and implementation to maintenance and reengineering. The object-oriented approach is best suited to achieve this seamlessness of the software development process, without which it would not be possible to meet the quality and productivity challenges that confront the software industry. This book shows how a consistent set of object-oriented abstractions can be applied throughout the process, based on three major ideas: seamlessness, reversibility, and contracting. Seamlessness, as in the first word of the title, follows from the observation that the similarities between the tasks to be carried out at the various steps of a project far outweigh their inevitable differences, making it possible to obtain a continuous process that facilitates communication between the various actors involved, ensures a direct mapping between a problem and its software solution, and results in a high level of quality for the final product.
Recommended publications
  • BLOCKS in DELIGNE's CATEGORY Rep(St) JONATHAN COMES A
    BLOCKS IN DELIGNE'S CATEGORY Rep(St) by JONATHAN COMES A DISSERTATION Presented to the Department of Mathematics and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2010 11 University of Oregon Graduate School Confirmation of Approval and Acceptance of Dissertation prepared by: Jonathan Comes Title: "Blocks in Deligne's Category Rep(S_t)" This dissertation has been accepted and approved in partial fulfillment ofthe requirements for the Doctor ofPhilosophy degree in the Department ofMathematics by: Victor Ostrik, Chairperson, Mathematics Daniel Dugger, Member, Mathematics Jonathan Brundan, Member, Mathematics Alexander Kleshchev, Member, Mathematics Michael Kellman, Outside Member, Chemistry and Richard Linton, Vice President for Research and Graduate Studies/Dean ofthe Graduate School for the University ofOregon. June 14,2010 Original approval signatures are on file with the Graduate School and the University of Oregon Libraries. ' iii @201O, Jonathan Comes -------- iv An Abstract of the Dissertation of Jonathan Comes for the degree of Doctor of Philosophy in the Department of Mathematics to be taken June 2010 Title: BLOCKS IN DELIGNE'S CATEGORY Rep(St) Approved: _ Dr. Victor Ostrik We give an exposition of Deligne's tensor category Rep(St) where t is not necessarily an integer. Thereafter, we give a complete description of the blocks in Rep(St) for arbitrary t. Finally, we use our result on blocks to decompose tensor products and classify tensor ideals
    [Show full text]
  • Arxiv:0903.1373V2 [Math.CO] 19 Dec 2009 Ewl Ae Rv 1 N Hwta Vr Tphr a Emat Be Can Here Step Every That Show and Rigorous
    TRACE DIAGRAMS, SIGNED GRAPH COLORINGS, AND MATRIX MINORS STEVEN MORSE AND ELISHA PETERSON Abstract. Trace diagrams are structured graphs with edges la- beled by matrices. Each diagram has an interpretation as a par- ticular multilinear function. We provide a rigorous combinatorial definition of these diagrams using a notion of signed graph color- ing, and prove that they may be efficiently represented in terms of matrix minors. Using this viewpoint, we provide new proofs of several standard determinant formulas and a new generalization of the Jacobi determinant theorem. 1. Introduction Trace diagrams provide a graphical means of performing computa- tions in multilinear algebra. The following example, which proves aa vector identity, illustrates the power of the notation. Example. For u, v, w ∈ C3, diagrams for the cross product and inner product are u × v = and u · v = . u v u v By “bending” the diagrammatic identity arXiv:0903.1373v2 [math.CO] 19 Dec 2009 (1) = − , and attaching vectors, one obtains = − , u v w x u v w x u v w x which is the vector identity (u × v) · (w × x)=(u · w)(v · x) − (u · x)(v · w). We will later prove (1) and show that every step here can be mathe- matically rigorous. 1 2 STEVENMORSEANDELISHAPETERSON In this paper, we define a set of combinatorial objects called trace diagrams. Each diagram translates to a well-defined multilinear func- tion, provided it is framed (the framing specifies the domain and range of the function). We introduce the idea of signed graph coloring to de- scribe this translation, and show that it preserves a tensorial structure.
    [Show full text]
  • Arxiv:0903.1373V2 [Math.CO] 19 Dec 2009 Ewl Ae Rv 1 N Hwta Vr Tphr a Emathe- Be Can Here Step Every That Show and Rigorous
    TRACE DIAGRAMS, SIGNED GRAPH COLORINGS, AND MATRIX MINORS STEVEN MORSE AND ELISHA PETERSON Abstract. Trace diagrams are structured graphs with edges la- beled by matrices. Each diagram has an interpretation as a par- ticular multilinear function. We provide a rigorous combinatorial definition of these diagrams using a notion of signed graph color- ing, and prove that they may be efficiently represented in terms of matrix minors. Using this viewpoint, we provide new proofs of several standard determinant formulas and a new generalization of the Jacobi determinant theorem. 1. Introduction Trace diagrams provide a graphical means of performing computa- tions in multilinear algebra. The following example, which proves aa vector identity, illustrates the power of the notation. Example. For u, v, w ∈ C3, diagrams for the cross product and inner product are u × v = and u · v = . u v u v By “bending” the diagrammatic identity arXiv:0903.1373v2 [math.CO] 19 Dec 2009 (1) = − , and attaching vectors, one obtains = − , u v w x u v w x u v w x which is the vector identity (u × v) · (w × x)=(u · w)(v · x) − (u · x)(v · w). We will later prove (1) and show that every step here can be mathe- matically rigorous. 1 2 STEVENMORSEANDELISHAPETERSON In this paper, we define a set of combinatorial objects called trace diagrams. Each diagram translates to a well-defined multilinear func- tion, provided it is framed (the framing specifies the domain and range of the function). We introduce the idea of signed graph coloring to de- scribe this translation, and show that it preserves a tensorial structure.
    [Show full text]
  • The Ground-State Energies in Γi-Deformed N = 4 SYM Theory at Leading Wrapping Order
    HU-MATH-2014-07 HU-EP-14/15 A piece of cake: the ground-state energies in γi-deformed N = 4 SYM theory at leading wrapping order Jan Fokken, Christoph Sieg, Matthias Wilhelm Institut f¨ur Mathematik und Institut f¨ur Physik Humboldt-Universit¨at zu Berlin IRIS Geb¨aude Zum Grossen Windkanal 6 12489 Berlin fokken, csieg, mwilhelm @physik.hu-berlin.de 1 2 L 3 ∼ ζ(2L − 3) L−1 4 Abstract. In the non-supersymmetric γi-deformed N = 4 SYM theory, the scaling di- mensions of the operators tr[ZL] composed of L scalar fields Z receive finite-size wrapping and prewrapping corrections in the ’t Hooft limit. In this paper, we calculate these scaling dimensions to leading wrapping order directly from Feynman diagrams. For L ≥ 3, the result is proportional to the maximally transcendental ‘cake’ integral. It matches with an earlier result obtained from the integrability-based L¨uscher corrections, TBA and Y- system equations. At L = 2, where the integrability-based equations yield infinity, we find a finite rational result. This result is renormalization-scheme dependent due to the non-vanishing β-function of an induced quartic scalar double-trace coupling, on which we have reported earlier. This explicitly shows that conformal invariance is broken – even in the ’t Hooft limit. Keywords. PACS: 11.15.-q; 11.30.Pb; 11.25.Tq Keywords: Super-Yang-Mills; Anomalous dimensions; Integrability; 1 Introduction and summary In this paper, we provide a field-theoretic test of integrability in the γi-deformed N = 4 SYM theory (γi-deformation). This theory was proposed as the field-theory part of a non-supersymmetric example of the AdS/CFT correspondence [1], which is obtained by applying a three-parameter deformation to both sides of the original correspondence [2–4].
    [Show full text]
  • Correspondences, Integral Structures, and Compatibilities in P-Adic Cohomology
    Correspondences, Integral Structures, and Compatibilities in p-adic Cohomology by Bryden R. Cais A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2007 Doctoral Committee: Professor Brian Conrad, Chair Professor Karen Smith Professor Stephen Debacker Professor Ralph Lydic When the stars threw down their spears, And watered heaven with their tears: Did he smile his work to see? Did he who made the Lamb make thee? |WIlliam Blake, The Tyger c Bryden R. Cais 2019 All Rights Reserved ACKNOWLEDGEMENTS It is a pleasure to thank Robert Coleman, Johan de Jong, Kiran Kedlaya, Barry Mazur, Bill Messing, Martin Olsson, Karen Smith, and Jason Starr for many helpful exchanges and conversations. I heartily thank Karen Smith for several enlightening discussions, for her interest in my thesis, and for agreeing to read the final draft. I owe a particular debt of gratitude to Benedict Gross, both for his paper [22] that motivated this thesis, and for his encouragement over the course of my mathematical career. I would also like to thank Stephen Debacker and Ralph Lydic for agreeing to be on my thesis committe. Many special thanks go to my family for their unwavering encouragement, and to Mark for his continued friendship and support. It is impossible to measure the debt I owe to my advisor, Brian Conrad. Over the past five years he has been an indefatigable source of encouragement, wisdom, and inspiration, and his help and patient guidance have been invaluable in the writing of this thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS :::::::::::::::::::::::::: ii LIST OF APPENDICES :::::::::::::::::::::::::::: v INSTRUCTIONS FOR THE READER :::::::::::::::::: vi CHAPTER I.
    [Show full text]
  • Arxiv: Spontaneous Conformal Symmetry Breaking in Fishnet
    CERN-TH-2019-147 Spontaneous Conformal Symmetry Breaking in Fishnet CFT Georgios K. Karananas,1, ∗ Vladimir Kazakov,2, 3, 4, y and Mikhail Shaposhnikov5, z 1Arnold Sommerfeld Center, Ludwig-Maximilians-Universit¨atM¨unchen,Theresienstraße 37, 80333, M¨unchen,Germany 2Laboratoire de Physique de l'Ecole´ Normale Sup´erieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France 3PSL Research University, CNRS, Sorbonne Universit´e 4CERN Theory Department, CH-1211 Geneva 23, Switzerland 5Institute of Physics, Laboratory of Particle Physics and Cosmology, Ecole´ Polytechnique F´ed´erale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland Quantum field theories with exact but spontaneously broken conformal invariance have an in- triguing feature: their vacuum energy (cosmological constant) is equal to zero. Up to now, the only known ultraviolet complete theories where conformal symmetry can be spontaneously broken were associated with supersymmetry (SUSY), with the most prominent example being the N =4 SUSY Yang-Mills. In this Letter we show that the recently proposed conformal “fishnet” theory supports at the classical level a rich set of flat directions (moduli) along which conformal symmetry is spontaneously broken. We demonstrate that, at least perturbatively, some of these vacua survive in the full quantum theory (in the planar limit, at the leading order of 1=Nc expansion) without any fine tuning. The vacuum energy is equal to zero along these flat directions, providing the first non-SUSY example of a four-dimensional quantum field theory with \natural" breaking of conformal symmetry. INTRODUCTION vant for the explanation of the amazing smallness of the cosmological constant. Conformal Field Theories (CFTs) represent an indis- A systematic way to construct effective field theories pensable tool to address the behavior of many systems in enjoying exact but spontaneously broken CI was de- the vicinity of the critical points associated with phase scribed in [6], following the ideas of [7, 8] (for further transitions.
    [Show full text]
  • Trace Diagrams, Representations, and Low-Dimensional Topology
    ABSTRACT Title of Dissertation: TRACE DIAGRAMS, REPRESENTATIONS, AND LOW-DIMENSIONAL TOPOLOGY Elisha Peterson, Doctor of Philosophy, 2006 Dissertation directed by: Professor William Goldman Department of Mathematics This thesis concerns a certain basis for the coordinate ring of the character variety of a surface. Let G be a connected reductive linear algebraic group, and let § be a surface whose fundamental group ¼ is a free group. Then the co- ordinate ring C[Hom(¼; G)] of the homomorphisms from ¼ to G is isomorphic to C[G£r] »= C[G]­r for some r 2 N. The coordinate ring C[G] may be identi- ¯ed with the ring of matrix coe±cients of the maximal compact subgroup of G. Therefore, the coordinate ring on the character variety, which is also the ring of invariants C[Hom(¼; G)]G, may be described in terms of the matrix coe±cients of the maximal compact subgroup. G This correspondence provides a basis f®g for C[Hom(¼; G)] , whose con- stituents will be called central functions. These functions may be expressed as labelled graphs called trace diagrams. This point-of-view permits diagram ma- nipulation to be used to construct relations on the functions. In the particular case G = SL(2; C), we give an explicit description of the central functions for surfaces. For rank one and two fundamental groups, the diagrammatic approach is used to describe the symmetries and structure of the central function basis, as well as a product formula in terms of this basis. For SL(3; C), we describe how to write down the central functions diagrammatically using the Littlewood-Richardson Rule, and give some examples.
    [Show full text]
  • Trace Diagrams, Signed Graph Colorings, and Matrix Minors Steven Morse and Elisha Peterson
    inv lve a journal of mathematics Trace diagrams, signed graph colorings, and matrix minors Steven Morse and Elisha Peterson mathematical sciences publishers 2010 vol. 3, no. 1 INVOLVE 3:1(2010) Trace diagrams, signed graph colorings, and matrix minors Steven Morse and Elisha Peterson (Communicated by Kenneth S. Berenhaut) Trace diagrams are structured graphs with edges labeled by matrices. Each diagram has an interpretation as a particular multilinear function. We provide a rigorous combinatorial definition of these diagrams using a notion of signed graph coloring, and prove that they may be efficiently represented in terms of matrix minors. Using this viewpoint, we provide new proofs of several stan- dard determinant formulas and a new generalization of the Jacobi determinant theorem. 1. Introduction Trace diagrams provide a graphical means of performing computations in multi- linear algebra. The following example, which proves a vector identity, illustrates the power of the notation. Example. For u; v; w 2 C3, diagrams for the cross product and inner product are u × v D and u · v D : u v u v By “bending” the diagrammatic identity D − ; (1) and attaching vectors, one obtains D − ; u v w x u v w x u v w x which is the vector identity .u × v/ · .w × x/ D .u · w/.v · x/ − .u · x/.v · w/: MSC2000: primary 05C15, 15A69; secondary 57M07, 16W22. Keywords: trace diagrams, graph coloring, matrix minors, multilinear algebra, planar algebra, tensor diagrams, determinant, cofactor. 33 34 STEVEN MORSE AND ELISHA PETERSON We will later prove (1) and show that every step here can be mathematically rigor- ous.
    [Show full text]
  • Partition Functions of Normal Factor Graphs
    Partition Functions of Normal Factor Graphs G. David Forney, Jr. Pascal O. Vontobel Laboratory for Information and Decision Systems Hewlett–Packard Laboratories Massachusetts Institute of Technology 1501 Page Mill Road Cambridge, MA 02139, USA Palo Alto, CA 94304, USA [email protected] [email protected] Abstract—One of the most common types of functions in • The holographic transformations of NFGs of Al- mathematics, physics, and engineering is a sum of products, Bashabsheh and Mao [2], which may be used to derive sometimes called a partition function. After “normalization,” a the “holographic algorithms” of Valiant [21] and others, sum of products has a natural graphical representation, called a normal factor graph (NFG), in which vertices represent factors, may be further generalized to derive the “tree-based edges represent internal variables, and half-edges represent the reparameterization” approach of Wainwright et al. [25], external variables of the partition function. In physics, so-called the “loop calculus” results of Chertkov and Chernyak trace diagrams share similar features. [7], [8], and the Lagrange duality results of Vontobel and We believe that the conceptual framework of representing Loeliger [23], [24]. sums of products as partition functions of NFGs is an important and intuitive paradigm that, surprisingly, does not seem to have • Linear codes defined on graphs and their weight gen- been introduced explicitly in the previous factor graph literature. erating functions have natural representations as NFGs, Of particular interest are NFG modifications that leave the as shown in [13], but we will not discuss this topic here. partition function invariant. A simple subclass of such NFG modifications offers a unifying view of the Fourier transform, II.
    [Show full text]
  • Form Factors and the Dilatation Operator in N=4 Super Yang-Mills
    Form factors and the dilatation operator in N = 4 super Yang-Mills theory and its deformations Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakult¨at der Humboldt-Universit¨at zu Berlin von M.Sc. B.Sc. Matthias Oliver Wilhelm Pr¨asident der Humboldt-Universit¨at zu Berlin Prof. Dr. Jan-Hendrik Olbertz Dekan der Mathematisch-Naturwissenschaftlichen Fakult¨at Prof. Dr. Elmar Kulke Gutachter/innen: 1. Prof. Dr. Matthias Staudacher 2. Prof. Dr. Jan Plefka 3. Prof. Dr. Tristan McLoughlin Tag der m¨undlichen Pr¨ufung: 12.02.2016 2 Zusammenfassung Seit mehr als einem halben Jahrhundert bietet die Quantenfeldtheorie (QFT) den genausten und erfolgreichsten theoretischen Rahmen zur Beschreibung der fundamentalen Wechsel- wirkungen zwischen Elementarteilchen, wenn auch mit Ausnahme der Gravitation. Den- noch sind QFTs im Allgemeinen weit davon entfernt, vollst¨andig verstanden zu sein. Dies liegt an einem Mangel an theoretischen Methoden zur Berechnung ihrer Observablen sowie an fehlendem Verst¨andnis der auftretenden mathematischen Strukturen. In den letzten anderthalb Jahrzehnten kam es zu bedeutendem Fortschritt im Verst¨andnis von speziellen Aspekten einer bestimmten QFT, der maximal supersymmetrischen Yang-Mills-Theorie in vier Dimensionen, auch = 4 SYM-Theorie genannt. Diese haben die Hoffnung N geweckt, dass die = 4 SYM-Theorie exakt l¨osbar ist. Besonders bemerkenswert war der N Fortschritt auf den Gebiet der Streuamplituden auf Grund der Entwicklung sogenannter Masseschalen-Methoden und auf dem Gebiet der Korrelationsfunktionen zusammengeset- zter Operatoren auf Grund von Integrabilit¨at. In dieser Dissertation gehen wir der Frage nach, ob und in welchem Umfang die in diesem Kontext gefunden Methoden und Struk- turen auch zum Verst¨andnis weitere Gr¨oßen in dieser Theorie sowie zum Verst¨andnis an- derer Theorien beitragen k¨onnen.
    [Show full text]
  • A Not-So-Characteristic Equation: the Art of Linear Algebra 3
    A NOT-SO-CHARACTERISTIC EQUATION: THE ART OF LINEAR ALGEBRA ELISHA PETERSON Abstract. Can the cross product be generalized? Why are the trace and de- terminant so important in matrix theory? What do all the coefficients of the characteristic polynomial represent? This paper describes a technique for ‘doo- dling’ equations from linear algebra that offers elegant solutions to all these questions. The doodles, known as trace diagrams, are graphs labeled by matri- ces which have a correspondence to multilinear functions. This correspondence permits computations in linear algebra to be performed using diagrams. The result is an elegant theory from which standard constructions of linear algebra such as the determinant, the trace, the adjugate matrix, Cramer’s rule, and the characteristic polynomial arise naturally. Using the diagrams, it is easy to see how little structure gives rise to these various results, as they all can be ‘traced’ back to the definition of the determinant and inner product. 1. Introduction When I was an undergraduate, I remember asking myself: why does the cross product “only work” in three dimensions? And what’s so special about the trace and determinant of a matrix? What is the real reason behind the connection between the cross product and the determinant? These questions have traditional answers, but I never found them satisfying. Perhaps that’s because I could not, as a visual learner, “see” what these things really meant. A few years ago, I was delighted to come across the correspondences u × v ↔ and u · v ↔ u v u v in a book by the physicist G.E.
    [Show full text]
  • Trace Diagrams, Spin Networks, and Spaces of Graphs KAIST Geometric Topology Fair
    Introduction Trace Diagrams and Their Properties Structure of the Coordinate Ring Central Functions Trace Diagrams, Spin Networks, and Spaces of Graphs KAIST Geometric Topology Fair Elisha Peterson United States Military Academy July 10, 2007 Elisha Peterson Trace Diagrams, Spin Networks, and Spaces of Graphs Introduction Trace Diagrams and Their Properties Fundamental Group Representations and the Coordinate Ring Structure of the Coordinate Ring Central Functions Motivation I Every representation ρ ∈ Hom(π, G) where G = SL(2, C) induces a map π → C given by taking the trace of π C [G ×r ]G = C[χ] ρ(x). These elements are x tr(ρ(x)) conjugation-invariant and reside in ?? ×r G both C[G ] and the coordinate ring ? of the character variety. For this reason, the study of the structure of the character variety and its coordinate ring often boils down to examining trace relations [described in detail in Lawton’s first talk]. This talk will describe a more geometric way to discuss trace relations. Elisha Peterson Trace Diagrams, Spin Networks, and Spaces of Graphs Introduction Trace Diagrams and Their Properties Fundamental Group Representations and the Coordinate Ring Structure of the Coordinate Ring Central Functions Motivation I Every representation ρ ∈ Hom(π, G) where G = SL(2, C) induces a map π → C given by taking the trace of π C [G ×r ]G = C[χ] ρ(x). These elements are x tr(ρ(x)) conjugation-invariant and reside in ?? ×r G both C[G ] and the coordinate ring ? of the character variety. For this reason, the study of the structure of the character variety and its coordinate ring often boils down to examining trace relations [described in detail in Lawton’s first talk].
    [Show full text]