Holographic Algorithms Jin-Yi Cai ∗ Computer Sciences Department University of Wisconsin Madison, WI 53706. USA. Email:
[email protected] Abstract Leslie Valiant recently proposed a theory of holographic algorithms. These novel algorithms achieve exponential speed-ups for certain computational problems compared to naive algorithms for the same problems. The methodology uses Pfaffians and (planar) perfect matchings as basic computational primitives, and attempts to create exponential cancellations in computation. In this article we survey this new theory of matchgate computations and holographic algorithms. Key words: Theoretical Computer Science, Computational Complexity Theory, Perfect Match- ings, Pfaffians, Matchgates, Matchcircuits, Matchgrids, Signatures, Holographic Algorithms. 1 Some Historical Background There have always been two major strands of mathematical thought since antiquity and across civilizations: Structural Theory and Computation, as exemplified by Euclid’s Elements and Dio- phantus’ Arithmetica. Structural Theory prizes the formulation and proof of structural theorems, while Computation seeks efficient algorithmic methods to solve problems. Of course, these strands of mathematical thought are not in opposition to each other, but rather they are highly intertwined and mutually complementary. For example, from Euclid’s Elements we learn the Euclidean algo- rithm to find the greatest common divisor of two positive integers. This algorithm can serve as the first logical step in the structural derivation of elementary number theory. At the same time, the correctness and efficiency of this and similar algorithms demand proofs in a purely structural sense, and use quite a bit more structural results from number theory [4]. As another example, the computational difficulty of recognizing primes and the related (but separate) problem of in- teger factorization already fascinated Gauss, and are closely tied to the structural theory of the distribution of primes [21, 1, 2].