Program of the Sessions, Washington, DC Meeting

Total Page:16

File Type:pdf, Size:1020Kb

Program of the Sessions, Washington, DC Meeting Program of the Sessions Washington, District of Columbia, January 5–8, 2009 1:00PM What does the math-based introductory course look Saturday, January 3 (7) like in 2009? How do we merge mathematical concepts into the introductory course for the math/science student? How does statistical AMS Short Course on Quantum Computation and programming fit in? Quantum Information (Part I) Richard D. De Veaux, Williams College 2:30PM Break. 8:00 AM –5:00PM 2:45PM Introduction to modeling. Regression and ANOVA. Organizer: Samuel J. Lomonaco,Universityof (8) Overview: How much to teach the first semester. Maryland Baltimore County Richard D. De Veaux, Williams College 8:00AM Registration. 9:00AM A Rosetta Stone for quantum computing. (1) Samuel Lomonaco, University of Maryland Baltimore County Sunday, January 4 10:15AM Break. 10:45AM Quantum algorithms. AMS Department Chairs Workshop (2) Peter Shor, Massachusetts Institute of Technology 8:00 AM –6:30PM 2:00PM Concentration of measure effects in quantum (3) information. Patrick Hayden, McGill University MAA Board of Governors 3:15PM Break. 8:00 AM –6:00PM 3:45PM Quantum error correction and fault tolerance. (4) Daniel Gottesman, Perimeter Institute MAA Ancillary Workshop 8:30 AM –5:00PM MAA Short Course on Data Mining and New Trends in Teaching Statistics (Part I) Teaching introductory data analysis through modeling. 8:00 AM –4:00PM Presenter: Daniel Kaplan, Macalester College Organizer: Richard D. De Veaux, Williams College AMS Short Course on Quantum Computation and 8:00AM Registration Quantum Information (Part II) 9:00AM Math is music—statistics is literature. What are the (5) challenges of teaching statistics, and why is it 9:00 AM –5:00PM different from mathematics? Richard D. De Veaux, Williams College Organizer: Sanuel J. Lomonaco,Universityof Maryland Baltimore County 10:30AM Break. 9:00AM Riemannian geometry of quantum computation. 10:45AM What does the introductory course look like in (9) Howard Brandt,U.S.ArmyResearchLaboratory (6) 2009? How technology has changed what we do in introductory statistics for the non-math/science 10:15AM Break. student. 10:45AM Topology and quantum computing. Richard D. De Veaux, Williams College (10) Louis H. Kauffman, University of Illinois at Chicago The time limit for each AMS contributed paper in the sessions is ten Papers flagged with a solid triangle () have been designated by the minutes. The time limit for each MAA contributed paper varies. In the author as being of possible interest to undergraduate students. Special Sessions the time limit varies from session to session and within Abstractsofpaperspresentedin the sessions at this meeting will be sessions. To maintain the schedule, time limits will be strictly enforced. found in Volume 30, Issue 1 of Abstracts of papers presented to the For papers with more than one author, an asterisk follows the name of American Mathematical Society, ordered according to the numbers in the author who plans to present the paper at the meeting. parentheses following the listings. JANUARY 2009 NOTICES OF THE AMS 113 Program of the Sessions – Sunday, January 4 (cont’d.) 2:00PM Quantum knots and mosaics. 9:00AM A numerical and analytical study of modeling (11) Samuel Lomonaco, University of Maryland (18) techniques for microstructure evolution. Baltimore County M. R. Atkins, George Mason University 3:15PM Break. (1046-35-103) 3:45PM Panel Discussion: The Grand Mathematical 9:30AM Understanding and predicting materials properties Challenge for Quantum Computation and Quantum (19) from phase-field simulations. Preliminary report. Information. Thomas Dean Stephens, George Mason University (1046-35-101) MAA Short Course on Data Mining and New Trends in 10:00AM Vector invariants of elementary Abelian p-Groups. Teaching Statistics (Part II) (20) Preliminary report. Aaron B. Adcock, Texas Tech University, Lubbock 9:00 AM –4:00PM TX (1046-13-22) 10:30AM Mathematical modeling, analysis and computation Organizer: Richard D. De Veaux, Williams College (21) of a fluid-structure interaction problem with 9:00AM Introduction to data mining, Part I: What is data applications. Preliminary report. (12) mining? How does it differ from statistics? What are Sarah Minerva Venuti*, Kevin Kelbaugh and the problems and techniques in data mining? Padmanabhan Seshayer, George Mason University Richard D. De Veaux, Williams College (1046-65-66) 10:30AM Break. 10:45AM Introduction to data mining, Part II: Five lessons AMS Special Session on Recent Trends in Coding (13) learned from data mining. Theory, I Richard D. De Veaux, Williams College 1:00PM Introduction to data mining, Part III: The methods 8:00 AM –10:50AM (14) and algorithms of data mining. Richard D. De Veaux, Williams College Organizers: Gretchen L. Matthews,Clemson University 2:30PM Break. Judy L. Walker, University of Nebraska 2:45PM Introduction to data mining, Part IV: Practical data (15) mining: Case studies. 8:00AM Generalizing binary quadratic residue codes. Richard D. De Veaux, Williams College (22) P. Charters, University of Texas at Austin (1046-11-645) AMS Council 8:25AM Locally decodable codes. (23) Sergey Yekhanin, Microsoft Research 1:30 PM – 10:00 PM (1046-68-951) 8:50AM Iterative subspace pursuit decoding of weighted Joint Meetings Registration (24) euclidean superimposed codes. Wei Dai*andOlgica Milenkovic,Universityof 3:00 PM –7:00PM Illinois at Urbana-Champaign (1046-68-1510) 9:15AM On algebraic constructions of codes for random (25) linear network coding. Felice Manganiello*, Elisa Gorla and Joachim Monday, January 5 Rosenthal, Zurich University (1046-94-854) 9:40AM Further analysis of codes based on permutations. Joint Meetings Registration (26) Christine A. Kelley, University of Nebraska-Lincoln (1046-94-1960) 7:30 AM –4:00PM 10:05AM Coding theory and Pseudorandomness. (27) Venkatesan Guruswami, University of Washington AMS-MAA-SIAM Special Session on Research in & Carnegie Mellon University (1046-05-1085) Mathematics by Undergraduates, I 8:00 AM –10:50AM AMS Special Session on Representation Theory of Lie Algebras and Algebraic Groups, I Organizers: Darren A. Narayan,Rochester Institute of Technology 8:00 AM –10:50AM Jacqueline A. Jensen,SamHouston State University Organizers: David G. Taylor, Roanoke College Carl V. Lutzer, Rochester Institute of Terrell L. Hodge,WesternMichigan Technology University Vadim Ponomarenko, San Diego State Daniel K. Nakano,Universityof University Georgia Tamas Wiandt, Rochester Institute of 8:00AM Killing forms of Lie algebras. Technology (28) Audrey Malagon, Emory University (1046-17-72) 8:00AM Frames: Surgeries, dilation, and robustness. 8:30AM Freudenthal triple systems by root system methods. (16) Preliminary report. (29) Fred W. Helenius, Emory University (1046-17-80) Jennifer L. Wolfe*, Rachael L. Tomasino, Eileen L. 9:00AM Filtrations of Weyl modules. Preliminary report. Radzwion and Sara P. Rimer, Central Michigan (30) Brian Parshall, University of Virginia University (1046-15-90) (1046-20-1137) 8:30AM The minimum semidefinite rank of a graph. 9:30AM Cohomology of algebraic, quantum, and finite (17) Taiji Tsutsui*, Hiram College, Hiram OH, and (31) groups. Rachel Ellen Cranfill, Harvey Mudd College Leonard L. Scott, The University of Virginia (1046-15-91) (1046-20-1149) 114 NOTICES OF THE AMS VOLUME 56, NUMBER 1 Monday, January 5 – Program of the Sessions 10:00AM Cohomology of finite-dimensional quantized 10:00AM Cooperative/competitive dynamics in social (32) enveloping algebras: The mixed case. (44) networks. Preliminary report. Christopher M. Drupieski, University of Virginia Jagdish Chandra*, The George Washington (1046-20-1224) University, and G. S. Ladde,UniversityofSouth 10:30AM Combinatorics of crystal bases for certain Florida (1046-34-472) (33) Demazure modules. 10:30AM Fractional differential and integral equations of Julie C. Beier, Mercer University (1046-17-445) (45) Riemann-Liouville versus Caputo type. Preliminary report. AMS Special Session on Nonlinear Partial Differential Aghalaya S. Vatsala, University of Louisiana at Equations and Applications, I Lafayette (1046-34-490) 8:00 AM –10:50AM AMS Special Session on Experimental Mathematics, I Organizers: Gui-Qiang G. Chen,Northwestern University 8:00 AM –10:50AM Cleopatra C. Christoforou,University of Houston Organizers: Tewodros Amdeberhan,Tulane 8:00AM Compensated compactness and the University (34) multi-dimensional Euler equations. Luis A. Medina, Tulane University James Glimm, State University of New York at Victor H. Moll, Tulane University Stony Brook (1046-35-257) 8:00AM Towards a classification of periodic orbits of 8:30AM On the dynamics of multicomponent reactive flows. (46) particular fractal billiards. (35) Konstantina Trivisa, University of Maryland Michel L. Lapidus and Robert G. Niemeyer*, (1046-35-1186) University of California, Riverside (1046-37-945) 9:00AM Instantaneous boundary tangency and cusp 8:30AM Towards a proof of the q-TSPP conjecture. (36) formation in two-dimensional fluid flows. (47) Christoph Koutschan, RISC, Johannes Kepler Misha Perepelitsa*, Vanderbilt University, and University, Linz, Austria (1046-05-1749) David Hoff, Indiana University (1046-35-636) 9:00AM Some divisibility properties for Stirling numbers of 9:30AM On shock-free periodic solutions for the Euler (48) the second kind. Preliminary report. (37) equations. O-Yeat Chan*, Dalhousie University, and Dante Robin C. Young*, University of Massachusetts, Manna, Virginia Wesleyan College (1046-11-1271) Amherst, and J. Blake Temple,Universityof 9:30AM Experimentation
Recommended publications
  • Geomathematics in Hungarian Geology
    JOURNAL OF HUNGARIAN GEOMATHEMATICS Volume 1 Geomathematics in Hungarian Geology George Bárdossy1 1Hungarian Academy of Sciences ([email protected]) Abstract The application of mathematical methods has a long tradition in Hungary. The main bases of geomathematics are the universities of the country, more closely the departments related to geology, such as general geology, stratigraphy, paleontology, structural geology, mineralogy, pet-rography, geochemistry, hydrogeology and applied geology. The Hungarian Geological Survey, the Geological Institute of Hungary and the Geochemical Research Laboratory of the Hungarian Academy of Sciences are institutions where geomathematical methods found broad applications. Finally, some mining and exploration companies, like the Hungarian Oil Company (MOL), the Bakony Bauxite Mining Company and others are regularly using geomathematical methods, mainly for the evaluation of exploration results, for deposit and reservoir modelling and for the estimation of resources. Keywords: geomathematics, applications. The application of mathematical methods has a long tradition in Hungary. The main bases of geomathematics are the universities of the country, more closely the departments related to geology, such as general geology, stratigraphy, paleontology, structural geology, mineralogy, pet-rography, geochemistry, hydrogeology and applied geology. The Hungarian Geological Survey, the Geological Institute of Hungary and the Geochemical Research Laboratory of the Hungarian Academy of Sciences are institutions where geomathematical methods found broad applications. Finally, some mining and exploration companies, like the Hungarian Oil Company (MOL), the Bakony Bauxite Mining Company and others are regularly using geomathematical methods, mainly for the evaluation of exploration results, for deposit and reservoir modelling and for the estimation of resources. In the following examples of recent geomathematical applications are listed.
    [Show full text]
  • Applied Computing and Geosciences
    APPLIED COMPUTING AND GEOSCIENCES AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Editorial Board p.2 • Guide for Authors p.3 ISSN: 2590-1974 DESCRIPTION . Applied Computing & Geosciences is an online-only, open access journal focused on all aspects of computing in the geosciences. Like its companion title Computers & Geosciences, Applied Computing & Geosciences' mission is to advance and disseminate knowledge in all the related areas of at the interface between computer sciences and geosciences. Applied Computing & Geosciences publishes original articles, review articles and case-studies. Alongside welcoming direct submissions, the journal will benefit from an Article Transfer Service which will allow the author(s) to transfer their manuscript online from Computers & Geosciences thus saving authors time and effort spent on formatting and resubmitting. Applied Computing & Geosciences offers the community an innovative, efficient and flexible route for the publication of scientifically and ethically sound articles which address problems in the geosciences which includes: Algorithms; Artificial Intelligence; Computational Methods; Computer Graphics; Computer Visualization; Data Models; Data Processing; Database Retrieval; Distributed Systems; E-Geoscience; Geocomputation; Geographical Information Systems; Geoinformatics; Geomathematics; Image Analysis; Information Retrieval; Modelling; Near and Remote Sensing Data Analysis; Ontologies; Parallel Systems; Programming Languages; Remote Sensing; Simulation; Social Media;
    [Show full text]
  • 2006 Executive Committee CSPG 2005 Strategic Planning Session Geoscience Mixer 2005 William (Bill) Carruthers Gu
    December 11/11/05 6:16 PM Page 1 Canadian Publication Mail Contract - 40070050 $3.00 VOLUME 32, ISSUE 11 DECEMBER 2005 ■ 2006 Executive Committee ■ CSPG 2005 Strategic Planning Session ■ Geoscience Mixer 2005 ■ William (Bill) Carruthers Gussow (1908-2005) ■ 2006 CSPG CSEG CWLS Joint Convention December 11/14/05 9:19 PM Page 2 December 11/11/05 6:16 PM Page 3 CSPG OFFICE #160, 540 - 5th Avenue SW Calgary,Alberta, Canada T2P 0M2 Tel:403-264-5610 Fax: 403-264-5898 Web: www.cspg.org Office hours: Monday to Friday, 8:30am to 4:00pm CONTENTS Business Manager:Tim Howard Email: [email protected] Office Manager: Deanna Watkins Email: [email protected] Communications Manager: Jaimè Croft Larsen Email: [email protected] Conventions Manager: Lori Humphrey-Clements ARTICLES Email: [email protected] Corporate Relations Manager: Kim MacLean 2006 EXECUTIVE COMMITTEE . 28 Email: [email protected] CSPG 2005 STRATEGIC PLANNING SESSION . 33 EDITORS/AUTHORS Please submit RESERVOIR articles to the CSPG GEOSCIENCE MIXER 2005 . 35 office. Submission deadline is the 23rd day of the month, two months prior to issue date. GOOGLING GEOMORPHOLOGY . 36 (e.g., January 23 for the March issue). To publish an article, the CSPG requires digital WILLIAM (BILL) CARRUTHERS GUSSOW (1908 - 2005) . 38 copies of the document. Text should be in Microsoft Word format and illustrations should 2006 CSPG CSEG CWLS JOINT CONVENTION . 43 be in TIFF format at 300 dpi. For additional information on manuscript preparation, refer to the Guidelines for Authors published in the CSPG Bulletin or contact the editor.
    [Show full text]
  • Seismic Wavefield Imaging of Earth's Interior Across Scales
    TECHNICAL REVIEWS Seismic wavefield imaging of Earth’s interior across scales Jeroen Tromp Abstract | Seismic full- waveform inversion (FWI) for imaging Earth’s interior was introduced in the late 1970s. Its ultimate goal is to use all of the information in a seismogram to understand the structure and dynamics of Earth, such as hydrocarbon reservoirs, the nature of hotspots and the forces behind plate motions and earthquakes. Thanks to developments in high- performance computing and advances in modern numerical methods in the past 10 years, 3D FWI has become feasible for a wide range of applications and is currently used across nine orders of magnitude in frequency and wavelength. A typical FWI workflow includes selecting seismic sources and a starting model, conducting forward simulations, calculating and evaluating the misfit, and optimizing the simulated model until the observed and modelled seismograms converge on a single model. This method has revealed Pleistocene ice scrapes beneath a gas cloud in the Valhall oil field, overthrusted Iberian crust in the western Pyrenees mountains, deep slabs in subduction zones throughout the world and the shape of the African superplume. The increased use of multi- parameter inversions, improved computational and algorithmic efficiency , and the inclusion of Bayesian statistics in the optimization process all stand to substantially improve FWI, overcoming current computational or data- quality constraints. In this Technical Review, FWI methods and applications in controlled- source and earthquake seismology are discussed, followed by a perspective on the future of FWI, which will ultimately result in increased insight into the physics and chemistry of Earth’s interior.
    [Show full text]
  • The Life and Works of Sadid Al-Din Kazeroni: an Iranian Physician and Anatomist
    ORerimgiinnaisl cAernticcele Middle East Journal of Cancer; JOuclyto 2b0e1r 52 061(38);: 9(4): 323-327 The Life and Works of Sadid al-Din Kazeroni: An Iranian Physician and Anatomist Seyyed Alireza Golshani* ♦, Seyyed Ehsan Golshan**, Mohammad Ebrahim Zohalinezhad*** *Department of History, Ferdowsi University of Mashhad, Mashhad, Iran **Department of Foreign Languages, Marvdasht Azad University, Marvdasht, Iran ***Assistant Professor, Persian Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Eessence of Parsiyan Wisdom Institute, Traditional Medicine and Medicinal Plant Incubator, Shiraz University of Medical Sciences, Shiraz, Iran Abstract Background: One of the great physicians in Iran who had expertise in medicine, surgery, and pharmacy was Sadid al-Din Kazeroni. He was a 14 th century physician. No information is available on his birth and death – only “Al-Mughni”, a book, has been left to make him famous in surgical and medical knowledge. Methods: We used desk and historical research methods in this research, with a historical approach. This commonly used research method in human sciences was used to criticize and study the birthplace and works of Sadid al-Din Kazeroni. Results and Conclusion: Sadid al-Din Kazeroni discussed the exact issues in the field of anatomy, surgery, and gynecology. He was fluent in pharmacology. In his pharmacology book, for the first time, he named drugs considered necessary before and after surgery. In this study, we reviewed the biography and introduction of the works and reviewed “Al-Mughni”, a book on breast cancer. Keywords: Sadid al-Din Kazeroni, Breast cancer, Anatomical illustration, Al-Mughni, Persian medicine ♦Corresponding Author: Seyyed Alireza Golshani, PhD Student Introduction the Nobel Prize in Math.
    [Show full text]
  • Arxiv:2009.11923V1 [Math.GT] 24 Sep 2020 Manifolds One Is Interested in Studying
    A MODEL FOR RANDOM THREE{MANIFOLDS BRAM PETRI AND JEAN RAIMBAULT Abstract. We study compact three-manifolds with boundary obtained by randomly gluing together truncated tetrahedra along their faces. We prove that, asymptotically almost surely as the number of tetrahedra tends to infinity, these manifolds are connected and have a single boundary component. We prove a law of large numbers for the genus of this boundary component, we show that the Heegaard genus of these manifolds is linear in the number of tetrahedra and we bound their first Betti number. We also show that, asymptotically almost surely as the number of tetrahedra tends to infinity, our manifolds admit a unique hyperbolic metric with totally geodesic boundary. We prove a law of large numbers for the volume of this metric, prove that the associated Laplacian has a uniform spectral gap and show that the diameter of our manifolds is logarithmic as a function of their volume. Finally, we determine the Benjamini{Schramm limit of our sequence of random manifolds. 1. Introduction 1.1. Context. Random constructions of compact manifolds can be seen as an analogue of the well-established theory of random graphs and serve similar purposes. First of all, they make the notion of a \typical" manifold rigorous. Secondly, they can be used as a testing ground for conjectures of which the proof is still out of reach. Finally, there is what is often called the probabilistic method { using probability theory to prove the existence of objects with extremal properties. In this paper we are mostly interested in the first aspect.
    [Show full text]
  • BLOCKS in DELIGNE's CATEGORY Rep(St) JONATHAN COMES A
    BLOCKS IN DELIGNE'S CATEGORY Rep(St) by JONATHAN COMES A DISSERTATION Presented to the Department of Mathematics and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2010 11 University of Oregon Graduate School Confirmation of Approval and Acceptance of Dissertation prepared by: Jonathan Comes Title: "Blocks in Deligne's Category Rep(S_t)" This dissertation has been accepted and approved in partial fulfillment ofthe requirements for the Doctor ofPhilosophy degree in the Department ofMathematics by: Victor Ostrik, Chairperson, Mathematics Daniel Dugger, Member, Mathematics Jonathan Brundan, Member, Mathematics Alexander Kleshchev, Member, Mathematics Michael Kellman, Outside Member, Chemistry and Richard Linton, Vice President for Research and Graduate Studies/Dean ofthe Graduate School for the University ofOregon. June 14,2010 Original approval signatures are on file with the Graduate School and the University of Oregon Libraries. ' iii @201O, Jonathan Comes -------- iv An Abstract of the Dissertation of Jonathan Comes for the degree of Doctor of Philosophy in the Department of Mathematics to be taken June 2010 Title: BLOCKS IN DELIGNE'S CATEGORY Rep(St) Approved: _ Dr. Victor Ostrik We give an exposition of Deligne's tensor category Rep(St) where t is not necessarily an integer. Thereafter, we give a complete description of the blocks in Rep(St) for arbitrary t. Finally, we use our result on blocks to decompose tensor products and classify tensor ideals
    [Show full text]
  • Of Triangles, Gas, Price, and Men
    OF TRIANGLES, GAS, PRICE, AND MEN Cédric Villani Univ. de Lyon & Institut Henri Poincaré « Mathematics in a complex world » Milano, March 1, 2013 Riemann Hypothesis (deepest scientific mystery of our times?) Bernhard Riemann 1826-1866 Riemann Hypothesis (deepest scientific mystery of our times?) Bernhard Riemann 1826-1866 Riemannian (= non-Euclidean) geometry At each location, the units of length and angles may change Shortest path (= geodesics) are curved!! Geodesics can tend to get closer (positive curvature, fat triangles) or to get further apart (negative curvature, skinny triangles) Hyperbolic surfaces Bernhard Riemann 1826-1866 List of topics named after Bernhard Riemann From Wikipedia, the free encyclopedia Riemann singularity theorem Cauchy–Riemann equations Riemann solver Compact Riemann surface Riemann sphere Free Riemann gas Riemann–Stieltjes integral Generalized Riemann hypothesis Riemann sum Generalized Riemann integral Riemann surface Grand Riemann hypothesis Riemann theta function Riemann bilinear relations Riemann–von Mangoldt formula Riemann–Cartan geometry Riemann Xi function Riemann conditions Riemann zeta function Riemann curvature tensor Zariski–Riemann space Riemann form Riemannian bundle metric Riemann function Riemannian circle Riemann–Hilbert correspondence Riemannian cobordism Riemann–Hilbert problem Riemannian connection Riemann–Hurwitz formula Riemannian cubic polynomials Riemann hypothesis Riemannian foliation Riemann hypothesis for finite fields Riemannian geometry Riemann integral Riemannian graph Bernhard
    [Show full text]
  • Interview with Research Fellow Maryam Mirzakhani
    Profile Interview with Research Fellow Maryam Mirzakhani Could you talk about your mathematical education? What experiences and people were especially influential? I was very lucky in many ways. The war ended when I finished elementary school; I couldn’t have had the great opportunities that I had if I had been born ten years earlier. I went to a great high school in Tehran, Farzanegan, and had very good teachers. I met my friend Roya Beheshti the first week after entering middle school. It is invaluable to have a friend who shares your interests, and helps you stay motivated. Our school was close to a street full of bookstores in Tehran. I remember how walking along this crowded street, and going to the bookstores, was so exciting for us. We couldn’t skim through the books like people usually do here in a bookstore, so we would end up buying a lot of random books. Maryam Mirzakhani, a native of Iran, is currently a professor of mathematics at Stanford. She Also, our school principal was a strong-willed completed her Ph.D. at Harvard in 2004 under the woman who was willing to go a long way to provide direction of Curtis T. McMullen. In her thesis she us with the same opportunities as the boys’ school. showed how to compute the Weil-Petersson volume Later, I got involved in Math Olympiads that made of the moduli space of bordered Riemann surfaces. me think about harder problems. As a teenager, I Her research interests include Teichmüller theory, enjoyed the challenge.
    [Show full text]
  • Number-Theory Prodigy Among Winners of Coveted Maths Prize Fields Medals Awarded to Researchers in Number Theory, Geometry and Differential Equations
    NEWS IN FOCUS nature means these states are resistant to topological states. But in 2017, Andrei Bernevig, Bernevig and his colleagues also used their change, and thus stable to temperature fluctua- a physicist at Princeton University in New Jersey, method to create a new topological catalogue. tions and physical distortion — features that and Ashvin Vishwanath, at Harvard University His team used the Inorganic Crystal Structure could make them useful in devices. in Cambridge, Massachusetts, separately pio- Database, filtering its 184,270 materials to find Physicists have been investigating one class, neered approaches6,7 that speed up the process. 5,797 “high-quality” topological materials. The known as topological insulators, since the prop- The techniques use algorithms to sort materi- researchers plan to add the ability to check a erty was first seen experimentally in 2D in a thin als automatically into material’s topology, and certain related fea- sheet of mercury telluride4 in 2007 and in 3D in “It’s up to databases on the basis tures, to the popular Bilbao Crystallographic bismuth antimony a year later5. Topological insu- experimentalists of their chemistry and Server. A third group — including Vishwa- lators consist mostly of insulating material, yet to uncover properties that result nath — also found hundreds of topological their surfaces are great conductors. And because new exciting from symmetries in materials. currents on the surface can be controlled using physical their structure. The Experimentalists have their work cut out. magnetic fields, physicists think the materials phenomena.” symmetries can be Researchers will be able to comb the databases could find uses in energy-efficient ‘spintronic’ used to predict how to find new topological materials to explore.
    [Show full text]
  • BULLETIN of DELTA STATE UNIVERSITY (USPS) 152-880) Cleveland, Mississippi 38733 Founded April 9, 1924 Opened September 25, 1925
    2011-2012ug1 pages 1-65.qxp 6/3/2011 2:47 PM Page 1 BULLETIN OF DELTA STATE UNIVERSITY (USPS) 152-880) Cleveland, Mississippi 38733 Founded April 9, 1924 Opened September 25, 1925 UNDERGRADUATE ANNOUNCEMENTS EIGHTY-FOURTH SESSION 2011-2012 CATALOG This bulletin presents information which, at the time of preparation for printing, most ac- curately describes the course offerings, policies, procedures, regulations, and requirements of the University. However, it does not establish contractual relationships. The University reserves the right to alter or change any statement contained herein without prior notice. Volume 86 June 2011 Number 2 PUBLISHED ANNUALLY BY DELTA STATE UNIVERSITY CLEVELAND, MISSISSIPPI 38733 Entered as Second-Class Matter July 1926, at the Post Office at Cleveland, Mississippi, Under the Act of February 28, 1925. Postmaster: Send change of address to Delta State University, Cleveland, Mississippi 38733 2011-2012ug1 pages 1-65.qxp 6/3/2011 2:47 PM Page 2 TABLE OF CONTENTS Board of Trustees ..................................................................................................3 The University Calendar ......................................................................................4 General Information ............................................................................................6 Facilities ............................................................................................................11 Student Activities ................................................................................................18
    [Show full text]
  • An Exact Riemann Solver and a Godunov Scheme for Simulating Highly Transient Mixed Flows F
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 235 (2011) 2030–2040 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam An exact Riemann solver and a Godunov scheme for simulating highly transient mixed flows F. Kerger ∗, P. Archambeau, S. Erpicum, B.J. Dewals, M. Pirotton Research Unit of Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH), Department ArGEnCo, University of Liege, 1, allée des chevreuils, 4000-Liège-Belgium, Belgium article info a b s t r a c t Article history: The current research aims at deriving a one-dimensional numerical model for describing Received 26 August 2009 highly transient mixed flows. In particular, this paper focuses on the development Received in revised form 24 August 2010 and assessment of a unified numerical scheme adapted to describe free-surface flow, pressurized flow and mixed flow (characterized by the simultaneous occurrence of free- Keywords: surface and pressurized flows). The methodology includes three steps. First, the authors Hydraulics derived a unified mathematical model based on the Preissmann slot model. Second, a first- Finite volume method order explicit finite volume Godunov-type scheme is used to solve the set of equations. Negative Preissmann slot Saint-Venant equations Third, the numerical model is assessed by comparison with analytical, experimental and Transient flow numerical results. The key results of the paper are the development of an original negative Water hammer Preissmann slot for simulating sub-atmospheric pressurized flow and the derivation of an exact Riemann solver for the Saint-Venant equations coupled with the Preissmann slot.
    [Show full text]