Of Triangles, Gas, Price, and Men
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theorems Wednesday, May 9, 2018 12:53 AM
Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property • Suppose is an ordered set with the least-upper-bound property • Suppose , and is bounded below • Let be the set of lower bounds of • Then exists in and Theorem 1.20: The Archimedean property of • Given , and • There is a positive integer such that Theorem 1.20: is dense in • If , and , then there exists a s.t. • We can always find a rational number between two real numbers Theorem 1.21: -th Root of Real Numbers • For every real , and positive integer • There is one and only one positive real number s.t. • Theorem 1.31: Properties of Complex Numbers • If and are complex numbers, then • • • • is real and positive (except when ) Theorem 1.33: Properties of Complex Numbers • If and are complex numbers, then • unless in which case • • • • (Triangle Inequality) Theorem 1.37: Properties of Euclidean Spaces • Suppose , then • Page 1 • if and only if • • (Schwarz's Inequality) • (Triangle Inequality) • (Triangle Inequality) Theorem 2.8: Infinite Subset of Countable Set • Every infinite subset of a countable set is countable Theorem 2.12: Union of Countable Sets • Let be a sequence of countable sets, then • Theorem 2.13: Cartesian Product of Countable Sets • Let be a countable set • Let be the set of all -tuples where ○ for ○ may not be distinct • Then is countable Theorem 2.14: Cantor's Diagonalization Argument • Let be the set of all sequqnecse whose digits are 0 and 1 • Then is uncountable Theorem 2.19: Every Neighborhood is an Open Set • Every neighborhood -
The Infinity Theorem Is Presented Stating That There Is at Least One Multivalued Series That Diverge to Infinity and Converge to Infinite Finite Values
Open Journal of Mathematics and Physics | Volume 2, Article 75, 2020 | ISSN: 2674-5747 https://doi.org/10.31219/osf.io/9zm6b | published: 4 Feb 2020 | https://ojmp.wordpress.com CX [microresearch] Diamond Open Access The infinity theorem Open Mathematics Collaboration∗† March 19, 2020 Abstract The infinity theorem is presented stating that there is at least one multivalued series that diverge to infinity and converge to infinite finite values. keywords: multivalued series, infinity theorem, infinite Introduction 1. 1, 2, 3, ..., ∞ 2. N =x{ N 1, 2,∞3,}... ∞ > ∈ = { } The infinity theorem 3. Theorem: There exists at least one divergent series that diverge to infinity and converge to infinite finite values. ∗All authors with their affiliations appear at the end of this paper. †Corresponding author: [email protected] | Join the Open Mathematics Collaboration 1 Proof 1 4. S 1 1 1 1 1 1 ... 2 [1] = − + − + − + = (a) 5. Sn 1 1 1 ... 1 has n terms. 6. S = lim+n + S+n + 7. A+ft=er app→ly∞ing the limit in (6), we have S 1 1 1 ... + 8. From (4) and (7), S S 2 = 0 + 2 + 0 + 2 ... 1 + 9. S 2 2 1 1 1 .+.. = + + + + + + 1 10. Fro+m (=7) (and+ (9+), S+ )2 2S . + +1 11. Using (6) in (10), limn+ =Sn 2 2 limn Sn. 1 →∞ →∞ 12. limn Sn 2 + = →∞ 1 13. From (6) a=nd (12), S 2. + 1 14. From (7) and (13), S = 1 1 1 ... 2. + = + + + = (b) 15. S 1 1 1 1 1 ... + 1 16. S =0 +1 +1 +1 +1 +1 1 .. -
Mathematics Course: Analysis I
Analysis I Carl Turner November 21, 2010 Abstract These are notes for an undergraduate course on analysis; please send corrections, suggestions and notes to [email protected] The author's homepage for all courses may be found on his website at SuchIdeas.com, which is where updated and corrected versions of these notes can also be found. The course materials are licensed under a permissive Creative Commons license: Attribution- NonCommercial-ShareAlike 3.0 Unported (see the CC website for more details). Thanks go to Professor G. Paternain for allowing me to use his Analysis I course (Lent 2010) as the basis for these notes. Contents 1 Limits and Convergence3 1.1 Fundamental Properties of the Real Line...........................3 1.2 Cauchy Sequences.......................................5 1.3 Series..............................................6 1.4 Sequences of Non-Negative Terms...............................7 1.5 Alternating Series and Absolute Convergence........................ 10 2 Continuity 13 2.1 Denitions and Basic Properties............................... 13 2.2 Intermediate Values, Extreme Values and Inverses..................... 15 3 Dierentiability 18 3.1 Denitions and Basic Properties............................... 18 3.2 The Mean Value Theorem and Taylor's Theorem...................... 20 3.3 Taylor Series and Binomial Series............................... 25 3.4 * Comments on Complex Dierentiability.......................... 26 4 Power Series 28 4.1 Fundamental Properties.................................... 28 4.2 Standard Functions....................................... 32 4.2.1 Exponentials and logarithms............................. 32 1 4.2.2 Trigonometric functions................................ 35 4.2.3 Hyperbolic functions.................................. 37 5 Integration 38 5.1 Denitions and Key Properties................................ 38 5.2 Computation of Integrals................................... 44 5.3 Mean Values and Taylor's Theorem Again, Improper Integrals and the Integral Test. -
Elliptic Systems on Riemann Surfaces
Lecture Notes of TICMI, Vol.13, 2012 Giorgi Akhalaia, Grigory Giorgadze, Valerian Jikia, Neron Kaldani, Giorgi Makatsaria, Nino Manjavidze ELLIPTIC SYSTEMS ON RIEMANN SURFACES © Tbilisi University Press Tbilisi Abstract. Systematic investigation of Elliptic systems on Riemann surface and new results from the theory of generalized analytic functions and vectors are pre- sented. Complete analysis of the boundary value problem of linear conjugation and Riemann-Hilbert monodromy problem for the Carleman-Bers-Vekua irregular systems are given. 2000 Mathematics Subject Classi¯cation: 57R45 Key words and phrases: Generalized analytic function, Generalized analytic vector, irregular Carleman-Bers-Vekua equation, linear conjugation problem, holo- morphic structure, Beltrami equation Giorgi Akhalaia, Grigory Giorgadze*, Valerian Jikia, Neron Kaldani I.Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University 2 University st., Tbilisi 0186, Georgia Giorgi Makatsaria St. Andrews Georgian University 53a Chavchavadze Ave., Tbilisi 0162, Georgia Nino Manjavidze Georgian Technical University 77 M. Kostava st., Tbilisi 0175, Georgia * Corresponding Author. email: [email protected] Contents Preface 5 1 Introduction 7 2 Functional spaces induced from regular Carleman-Bers-Vekua equations 15 2.1 Some functional spaces . 15 2.2 The Vekua-Pompej type integral operators . 16 2.3 The Carleman-Bers-Vekua equation . 18 2.4 The generalized polynomials of the class Ap;2(A; B; C), p > 2 . 20 2.5 Some properties of the generalized power functions . 22 2.6 The problem of linear conjugation for generalized analytic functions . 26 3 Beltrami equation 28 4 The pseudoanalytic functions 36 4.1 Relation between Beltrami and holomorphic disc equations . 38 4.2 The periodicity of the space of generalized analytic functions . -
1 Notes for Expansions/Series and Differential Equations in the Last
Notes for Expansions/Series and Differential Equations In the last discussion, we considered perturbation methods for constructing solutions/roots of algebraic equations. Three types of problems were illustrated starting from the simplest: regular (straightforward) expansions, non-uniform expansions requiring modification to the process through inner and outer expansions, and singular perturbations. Before proceeding further, we first more clearly define the various types of expansions of functions of variables. 1. Convergent and Divergent Expansions/Series Consider a series, which is the sum of the terms of a sequence of numbers. Given a sequence {a1,a2,a3,a4,a5,....,an..} , the nth partial sum Sn is the sum of the first n terms of the sequence, that is, n Sn = ak . (1) k =1 A series is convergent if the sequence of its partial sums {S1,S2,S3,....,Sn..} converges. In a more formal language, a series converges if there exists a limit such that for any arbitrarily small positive number ε>0, there is a large integer N such that for all n ≥ N , ^ Sn − ≤ ε . (2) A sequence that is not convergent is said to be divergent. Examples of convergent and divergent series: • The reciprocals of powers of 2 produce a convergent series: 1 1 1 1 1 1 + + + + + + ......... = 2 . (3) 1 2 4 8 16 32 • The reciprocals of positive integers produce a divergent series: 1 1 1 1 1 1 + + + + + + ......... (4) 1 2 3 4 5 6 • Alternating the signs of the reciprocals of positive integers produces a convergent series: 1 1 1 1 1 1 − + − + − + ......... = ln 2 . -
Analysis of the Riemann Problem for a Shallow Water Model with Two Velocities Nina Aguillon, Emmanuel Audusse, Edwige Godlewski, Martin Parisot
Analysis of the Riemann Problem for a shallow water model with two velocities Nina Aguillon, Emmanuel Audusse, Edwige Godlewski, Martin Parisot To cite this version: Nina Aguillon, Emmanuel Audusse, Edwige Godlewski, Martin Parisot. Analysis of the Riemann Problem for a shallow water model with two velocities. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2018, 10.1137/17M1152887. hal-01618722v2 HAL Id: hal-01618722 https://hal.inria.fr/hal-01618722v2 Submitted on 19 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Analysis of the Riemann Problem for a shallow water model with two velocities Nina Aguillon∗1,2, Emmanuel Audussey3, Edwige Godlewskiz1,2,4, and Martin Parisotx4,1,2 1Sorbonne Universit´es,UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France 2CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France 3Universit´eParis 13, Laboratoire d'Analyse, G´eom´etrieet Applications, 99 av. J.-B. Cl´ement, F-93430 Villetaneuse, France 4INRIA Paris, ANGE Project-Team, 75589 Paris Cedex 12, France October 18, 2017 Abstract Some shallow water type models describing the vertical profile of the horizontal velocity with several degrees of freedom have been recently pro- posed. -
Bernhard Riemann 1826-1866
Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. -
Wei Zhang – Positivity of L-Functions and “Completion of the Square”
Riemann hypothesis Positivity of L-functions Completion of square Positivity on surfaces Positivity of L-functions and “Completion of square" Wei Zhang Massachusetts Institute of Technology Bristol, June 4th, 2018 1 Riemann hypothesis Positivity of L-functions Completion of square Positivity on surfaces Outline 1 Riemann hypothesis 2 Positivity of L-functions 3 Completion of square 4 Positivity on surfaces 2 Riemann hypothesis Positivity of L-functions Completion of square Positivity on surfaces Riemann Hypothesis (RH) Riemann zeta function 1 X 1 1 1 ζ(s) = = 1 + + + ··· ns 2s 3s n=1 Y 1 = ; s 2 ; Re(s) > 1 1 − p−s C p; primes Analytic continuation and Functional equation −s=2 Λ(s) := π Γ(s=2)ζ(s) = Λ(1 − s); s 2 C Conjecture The non-trivial zeros of the Riemann zeta function ζ(s) lie on the line 1 Re(s) = : 3 2 Riemann hypothesis Positivity of L-functions Completion of square Positivity on surfaces Riemann Hypothesis (RH) Riemann zeta function 1 X 1 1 1 ζ(s) = = 1 + + + ··· ns 2s 3s n=1 Y 1 = ; s 2 ; Re(s) > 1 1 − p−s C p; primes Analytic continuation and Functional equation −s=2 Λ(s) := π Γ(s=2)ζ(s) = Λ(1 − s); s 2 C Conjecture The non-trivial zeros of the Riemann zeta function ζ(s) lie on the line 1 Re(s) = : 3 2 Riemann hypothesis Positivity of L-functions Completion of square Positivity on surfaces Equivalent statements of RH Let π(X) = #fprimes numbers p ≤ Xg: Then Z X dt 1=2+ RH () π(X) − = O(X ): 2 log t Let X θ(X) = log p: p<X Then RH () jθ(X) − Xj = O(X 1=2+): 4 Riemann hypothesis Positivity of L-functions Completion of square -
Math.DG] 14 Dec 2004 Qain:Tertcladnmrclanalysis’
FILLING AREA CONJECTURE AND OVALLESS REAL HYPERELLIPTIC SURFACES1 VICTOR BANGERT!, CHRISTOPHER CROKE+, SERGEI V. IVANOV†, AND MIKHAIL G. KATZ∗ Abstract. We prove the filling area conjecture in the hyperellip- tic case. In particular, we establish the conjecture for all genus 1 fillings of the circle, extending P. Pu’s result in genus 0. We trans- late the problem into a question about closed ovalless real surfaces. The conjecture then results from a combination of two ingredi- ents. On the one hand, we exploit integral geometric comparison with orbifold metrics of constant positive curvature on real sur- faces of even positive genus. Here the singular points are Weier- strass points. On the other hand, we exploit an analysis of the combinatorics on unions of closed curves, arising as geodesics of such orbifold metrics. Contents 1. To fill a circle: an introduction 2 2. Relative Pu’s way 5 3. Outline of proof of Theorem 1.7 6 4. Nearoptimalsurfacesandthefootball 7 5. Finding a short figure eight geodesic 9 6. Proof of circle filling: Step 1 10 7. Proof of circle filling: Step 2 12 Appendix A. Ovalless reality and hyperellipticity 15 A.1. Hyperelliptic surfaces 15 arXiv:math/0405583v2 [math.DG] 14 Dec 2004 A.2. Ovalless surfaces 16 1Geometric and Functional Analysis (GAFA), to appear 1991 Mathematics Subject Classification. Primary 53C23; Secondary 52C07 . Key words and phrases. filling area, hyperelliptic surfaces, integral geometry, orbifold metrics, Pu’s inequality, real surfaces, systolic inequality. !Partially Supported by DFG-Forschergruppe ‘Nonlinear Partial Differential Equations: Theoretical and Numerical Analysis’. +Supported by NSF grant DMS 02-02536 and the MSRI. -
1 Complex Theory of Abelian Varieties
1 Complex Theory of Abelian Varieties Definition 1.1. Let k be a field. A k-variety is a geometrically integral k-scheme of finite type. An abelian variety X is a proper k-variety endowed with a structure of a k-group scheme. For any point x X(k) we can defined a translation map Tx : X X by 2 ! Tx(y) = x + y. Likewise, if K=k is an extension of fields and x X(K), then 2 we have a translation map Tx : XK XK defined over K. ! Fact 1.2. Any k-group variety G is smooth. Proof. We may assume that k = k. There must be a smooth point g0 G(k), and so there must be a smooth non-empty open subset U G. Since2 G is covered by the G(k)-translations of U, G is smooth. ⊆ We now turn our attention to the analytic theory of abelian varieties by taking k = C. We can view X(C) as a compact, connected Lie group. Therefore, we start off with some basic properties of complex Lie groups. Let X be a Lie group over C, i.e., a complex manifold with a group structure whose multiplication and inversion maps are holomorphic. Let T0(X) denote the tangent space of X at the identity. By adapting the arguments from the C1-case, or combining the C1-case with the Cauchy-Riemann equations we get: Fact 1.3. For each v T0(X), there exists a unique holomorphic map of Lie 2 δ groups φv : C X such that (dφv)0 : C T0(X) satisfies (dφv)0( 0) = v. -
Notes on the Riemann Hypothesis Ricardo Pérez-Marco
Notes on the Riemann Hypothesis Ricardo Pérez-Marco To cite this version: Ricardo Pérez-Marco. Notes on the Riemann Hypothesis. 2018. hal-01713875 HAL Id: hal-01713875 https://hal.archives-ouvertes.fr/hal-01713875 Preprint submitted on 21 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NOTES ON THE RIEMANN HYPOTHESIS RICARDO PEREZ-MARCO´ Abstract. Our aim is to give an introduction to the Riemann Hypothesis and a panoramic view of the world of zeta and L-functions. We first review Riemann's foundational article and discuss the mathematical background of the time and his possible motivations for making his famous conjecture. We discuss some of the most relevant developments after Riemann that have contributed to a better understanding of the conjecture. Contents 1. Euler transalgebraic world. 2 2. Riemann's article. 8 2.1. Meromorphic extension. 8 2.2. Value at negative integers. 10 2.3. First proof of the functional equation. 11 2.4. Second proof of the functional equation. 12 2.5. The Riemann Hypothesis. 13 2.6. The Law of Prime Numbers. 17 3. On Riemann zeta-function after Riemann. -
Riemann Forms
Riemann Forms Ching-Li Chai∗ The notion of Riemann forms began as a coordinate-free reformulation of the Riemann period relations for abelian functions discovered by Riemann. This concept has evolved with the progress in mathematics in the 150 years after Riemann. Nowadays it is often viewed from the perspective of abstract Hodge theory: a Riemann form gives an alternating pairing on a (pure) Hodge Z-structure of Hodge type f(0;−1);(−1;0)g and weight −1, with values in the “Tate twisted” version Z(1) of Z. Along more algebraic lines, the concept of Riemann forms was extended to abelian varieties over arbitrary base fields, after Weil [8] developed the theory of abelian varieties over an arbitrary base fields. For any (co)homology theory, for instance de Rham, Hodge, etale´ or crystalline cohomology theory, a Riemann form for an abelian variety is an alternating pairing induced by a polarization of A, on the first homology group H1(A) of an abelian variety A, with values in H1(Gm), the first Tate twist of the homology of a point. A synopsis for the case of etale´ cohomology is given in x2. x1. From Riemann matrices to Riemann forms A version of theorem 1.1 appeared in [3, pp. 148–150], preceded by the high praise “il est extremement` remarquable est c’est a` M. le Dr. Riemann, de Gottingue,¨ qu’on doit cette decouverte´ analytique . ” from Hermite. This theorem is stated in terms of period matrices for abelian functions in the article on Riemann bilinear relations; see [7, Ch.