H. Volcanii Deletion Strains

Total Page:16

File Type:pdf, Size:1020Kb

H. Volcanii Deletion Strains CHARACTERIZATION OF GLYCEROL METABOLISM AND RELATED METABOLIC PATHWAYS IN THE HALOARCHAEAON Haloferax volcanii By KATHERINE SHERWOOD RAWLS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 1 © 2010 Katherine Sherwood Rawls 2 To my husband, Colin Rawls, who has been my guiding light, and to my parents, Steve and Francy Sherwood, for their unconditional love and support 3 ACKNOWLEDGMENTS I express my deepest gratitude to my academic advisor, Dr. Julie Maupin-Furlow, for challenging my intellectual capabilities and for expanding my scientific curiosity. Her guidance during my graduate career has been crucial toward successful completion of my degree. I also wish to thank the additional members of my graduate supervisory committee, Drs. Linda Bloom, Graciela Lorca, Lonnie Ingram and K.T. Shanmugam for their project insight and for generous use of their equipment. Special thanks are extended to current and former graduate students, post- doctoral students, laboratory technicians, and undergraduate researchers of the Maupin-Furlow research laboratory for creating a stimulating, pleasant environment in which to work. Specifically, I would like to acknowledge David Cano for his help in generating the glycerol kinase mutant; Shalane Yacovone and Mario Corro for their assistance in generating several knockout strains including the phosphotransferase system mutants, the dihydroxyacetone kinase mutants, and the GlpR repressor mutant; and Mayra Souza for her additional assistance in generating the GlpR repressor mutant as well as the transcriptional promoter-reporter fusion constructs. Also, I wish to thank Gosia Gil-Ramadas for her guidance as my undergraduate research mentor. Special thanks are also extended to Dr. Sivakumar Uthandi and Nikita Nembhard for their insightful advice and support, especially during my last semester of graduate school. Thank you to all graduate funding agencies including the University of Florida Alumni Foundation, the Doris Lowe and Verna and Earl Lowe Scholarship Fund, the National Institute of Health, and the Department of Energy for their financial support of my dissertation project. 4 I finally wish to acknowledge my immediate family members: my parents, Francy and Steve Sherwood; my sister, Kelley Sherwood; my niece, Reagan Timmons; my grandmothers Johnnie Sherwood and Helen Glenn; and my late grandfathers Jim Sherwood and Bill Glenn, who have always graciously provided their moral and financial support throughout my academic career. I most importantly thank my husband, Colin Rawls, for providing unwavering love and encouragement throughout this challenging process. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF ABBREVIATIONS ........................................................................................... 14 ABSTRACT ................................................................................................................... 20 CHAPTER 1 LITERATURE REVIEW .......................................................................................... 22 Introduction ............................................................................................................. 22 An Overview of Glycerol Metabolism ...................................................................... 22 Biosynthesis of Glycerol ................................................................................... 23 Glycerol-3-phosphate dehydrogenase ....................................................... 24 Glycerol-3-phosphate phosphatase ........................................................... 25 Glycerol Dissimilation to Dihydroxyacetone Phosphate ................................... 25 Glycerol kinase .......................................................................................... 27 Glycerol-3-phosphate dehydrogenase ....................................................... 28 Glycerol dehydrogenase ............................................................................ 30 Dihydroxyacetone kinase ........................................................................... 30 Anaerobic Glycerol Dissimilation Pathways ...................................................... 32 Glycerol dehydratase ................................................................................. 33 1,3-Propanediol dehydrogenase ................................................................ 35 Glycerol Transport Across a Biological Membrane ................................................. 35 Intrinsic Permeability ........................................................................................ 36 Aquaglyceroporins ............................................................................................ 37 Glycerol facilitator protein GlpF .................................................................. 38 Fps1p ......................................................................................................... 39 Additional Aquaglyceroporins ........................................................................... 41 Active Transport of Glycerol ............................................................................. 44 Transcriptional and Post-Translational Control of Glycerol Metabolism .................. 45 Transcriptional Regulators of Glycerol Metabolism .......................................... 45 cAMP-cAMP receptor protein ..................................................................... 46 FNR ........................................................................................................... 48 CcpA .......................................................................................................... 50 GlpR ........................................................................................................... 51 DhaR .......................................................................................................... 54 ArcA/ArcB .................................................................................................. 55 Additional transcriptional regulators of glycerol metabolism ...................... 57 Allosteric and Post-translational Regulation of Glycerol Kinase Activity ........... 58 Hpr- and EI-dependent phosphorylation of glycerol kinase ........................ 59 Fructose 1,6-bisphosphate......................................................................... 60 6 EIIAGlc ........................................................................................................ 61 Industrial and Biological Significance of Glycerol .................................................... 63 Glycerol as a Feedstock for Bioconversion ...................................................... 63 Therapeutic and Diagnostic Uses of Glycerol ................................................... 65 Biological Relevance of Glycerol to Halophilic Communities ............................ 66 Osmoprotectant properties of glycerol ....................................................... 66 Glycerol production by the halotolerant green algae Dunaliella ................. 68 Glycerol metabolism in halophilic bacteria ................................................. 70 Glycerol metabolism in haloarchaea .......................................................... 71 An Overview of Glucose and Fructose Metabolism in Haloarchaea ....................... 72 Transport of Fructose and Glucose Across a Biological Membrane ....................... 73 Overview of the Phosphotransferase System ................................................... 73 General carrier protein EI ........................................................................... 75 General carrier protein Hpr ........................................................................ 76 Sugar-specific component EII .................................................................... 76 ATP Binding Cassette Transporters ................................................................. 77 Secondary Transporters ................................................................................... 79 Fructose and Glucose Metabolism and Their Regulation in Haloarchaea .............. 79 Glucose Degradation through a Modified Entner-Doudoroff Pathway .............. 80 Fructose Degradation through a Modified Embden-Meyerhof-Parnas Pathway ........................................................................................................ 82 Regulation of Glucose and Fructose Metabolism in Haloarchaea .................... 83 TrmB .......................................................................................................... 83 General transcription factors TATA binding protein and transcription factor B ................................................................................................... 84 Project Rationale and Design ................................................................................. 86 2 METHODS AND MATERIALS ................................................................................ 91 Chemicals, Media, and Strains ............................................................................... 91 Chemicals and Reagents ................................................................................. 91 Strains, Plasmids, and Culture Conditions ....................................................... 92 High Performance Liquid Chromatography
Recommended publications
  • <I>Lactobacillus Reuteri</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Food Science and Technology Department Technology 2014 From prediction to function using evolutionary genomics: Human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions Jennifer K. Spinler Texas Children’s Hospital, [email protected] Amrita Sontakke Baylor College of Medicine Emily B. Hollister Baylor College of Medicine Susan F. Venable Baylor College of Medicine Phaik Lyn Oh University of Nebraska, Lincoln See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/foodsciefacpub Spinler, Jennifer K.; Sontakke, Amrita; Hollister, Emily B.; Venable, Susan F.; Oh, Phaik Lyn; Balderas, Miriam A.; Saulnier, Delphine M.A.; Mistretta, Toni-Ann; Devaraj, Sridevi; Walter, Jens; Versalovic, James; and Highlander, Sarah K., "From prediction to function using evolutionary genomics: Human-specific ce otypes of Lactobacillus reuteri have diverse probiotic functions" (2014). Faculty Publications in Food Science and Technology. 132. http://digitalcommons.unl.edu/foodsciefacpub/132 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jennifer K. Spinler, Amrita Sontakke, Emily B. Hollister,
    [Show full text]
  • Medium and Long-Term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources
    Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources - The Potential of White Biotechnology The BREW Project Final report Prepared under the European Commission’s GROWTH Programme (DG Research) Project team: Academy Utrecht University (UU), Dept. of Science, Technology and Society (STS), Utrecht, Netherlands Fraunhofer Institute for Systems and Innovation Research (FhG-ISI), Karlsruhe, Germany Universidad Complutense de Madrid (UCM), Dept. of Chemical Engineering, Madrid, Spain Plant Research International (PRI), Wageningen, Netherlands CERISS (Centro per l'Educazione, la Ricerca, l'Informazione su Scienza e Società), Milan, Italy A&F (Agrotechnology and Food Innovations) Wageningen, Netherlands Industry partners BP Chemicals, Hull, United Kingdom Degussa AG, Hanau, Germany DSM NV, Heerlen, Netherlands DuPont, Bad Homburg, Germany NatureWorks, Naarden, Netherlands Novozymes A/S, Bagsvaerd, Denmark Roquette Frères, Lestrem, France Shell International Chemicals BV, Amsterdam, Netherlands Uniqema, Wilton/Redcar, United Kingdom Utrecht, September 2006 Authors Dr. Martin Patel (project co-ordinator) Utrecht University (UU) Manuela Crank, BE Chem Department of Science, Technology Dr. Veronika Dornburg and Society (STS) Barbara Hermann, M.Sc. Heidelberglaan 2 Lex Roes, M.Sc. NL-3584 CS Utrecht, Netherlands Tel. +31 (0) 30 253-7600 Fax +31 (0) 30 253-7601 [email protected] Dr. Bärbel Hüsing Fraunhofer Institute for Systems and Innovation Research (FhG-ISI), Karlsruhe, Germany Dr. Leo Overbeek Plant Research International (PRI) Wageningen, Netherlands Dr. Fabio Terragni CERISS (Centro per l'Educazione, la Dr. Elena Recchia Ricerca, l'Informazione su Scienza e Società), Milan, Italy Contributors Academy Dr. Ruud Weusthuis A&F (Agrotechnology and Food Innovations) Wageningen, Netherlands Prof.
    [Show full text]
  • Evolution of Coenzyme BI2 Synthesis Among Enteric Bacteria
    Copyright 0 1996 by the Genetics Society of America Evolution of Coenzyme BI2Synthesis Among Enteric Bacteria: Evidence for Loss and Reacquisition of a Multigene Complex Jeffrey G. Lawrence and John R. Roth Department of Biology, University of Utah, Salt Lake City, Utah 84112 Manuscript received June 16, 1995 Accepted for publication October 4, 1995 ABSTRACT We have examined the distribution of cobalamin (coenzyme BI2) synthetic ability and cobalamin- dependent metabolism among entericbacteria. Most species of enteric bacteria tested synthesize cobala- min under both aerobic and anaerobic conditions and ferment glycerol in a cobalamindependent fashion. The group of species including Escha'chia coli and Salmonella typhimurium cannot ferment glyc- erol. E. coli strains cannot synthesize cobalamin de novo, and Salmonella spp. synthesize cobalamin only under anaerobic conditions. In addition, the cobalamin synthetic genes of Salmonella spp. (cob) show a regulatory pattern different from that of other enteric taxa tested. We propose that the cobalamin synthetic genes, as well asgenes providing cobalamindependent diol dehydratase, were lostby a common ancestor of E. coli and Salmonella spp. and were reintroduced as a single fragment into the Salmonella lineage from an exogenous source. Consistent with this hypothesis, the S. typhimurium cob genes do not hybridize with the genomes of other enteric species. The Salmonella cob operon may represent a class of genes characterized by periodic loss and reacquisition by host genomes. This process may be an important aspect of bacterial population genetics and evolution. OBALAMIN (coenzyme BIZ) is a large evolution- The cobalamin biosynthetic genes have been charac- C arily ancient molecule ( GEORGOPAPADAKOUand terized in S.
    [Show full text]
  • Invasive Escherichia Colito Exposure to Bile Salts
    www.nature.com/scientificreports OPEN Metabolic adaptation of adherent- invasive Escherichia coli to exposure to bile salts Received: 7 August 2018 Julien Delmas 1,2, Lucie Gibold1,2, Tiphanie Faïs1,2, Sylvine Batista1, Martin Leremboure4, Accepted: 13 December 2018 Clara Sinel3, Emilie Vazeille2,5, Vincent Cattoir3, Anthony Buisson2,5, Nicolas Barnich2,6, Published: xx xx xxxx Guillaume Dalmasso 2 & Richard Bonnet1,2 The adherent-invasive Escherichia coli (AIEC), which colonize the ileal mucosa of Crohn’s disease patients, adhere to intestinal epithelial cells, invade them and exacerbate intestinal infammation. The high nutrient competition between the commensal microbiota and AIEC pathobiont requires the latter to occupy their own metabolic niches to survive and proliferate within the gut. In this study, a global RNA sequencing of AIEC strain LF82 has been used to observe the impact of bile salts on the expression of metabolic genes. The results showed a global up-regulation of genes involved in degradation and a down-regulation of those implicated in biosynthesis. The main up-regulated degradation pathways were ethanolamine, 1,2-propanediol and citrate utilization, as well as the methyl-citrate pathway. Our study reveals that ethanolamine utilization bestows a competitive advantage of AIEC strains that are metabolically capable of its degradation in the presence of bile salts. We observed that bile salts activated secondary metabolism pathways that communicate to provide an energy beneft to AIEC. Bile salts may be used by AIEC as an environmental signal to promote their colonization. Te adherent-invasive Escherichia coli (AIEC) pathogroup was initially characterized in isolates from the ileal mucosa of Crohn’s disease (CD) patients1–5.
    [Show full text]
  • J. Nutr. Sci. Vitaminol., 28, 225-236, 1982 the Mechanism of in Situ
    J. Nutr. Sci. Vitaminol.,28, 225-236, 1982 The Mechanism of In Situ Reactivation of Glycerol Inactivated Coenzyme B12-Dependent Enzymes, Glycerol Dehydratase and Diol Dehydratasel Kazutoshi USHIO, Susumu HONDA, Tetsuo TORAYA,2 and Saburo FUKUI3 Laboratory of Industrial Biochemistry, Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606, Japan (Received September 28, 1981) Summary In the previous paper (S. Honda, T. Toraya, and S. Fukui, J. Bacteriol., 143, 1458-1465 (1980)), we reported that the glycerol inactivated holoenzymes of adenosylcobalamin-dependent glycerol dehy dratase and diol dehydratase are rapidly and continually reactivated in toluene-treated cells (in situ) by adenosine 5•L-triphosphate (ATP) and divalent metal ions in the presence of free adenosylcobalamin. To elucidate the mechanism of this in situ reactivation, the nature of the binding of various irreversible cobalamin inhibitors to the dehydratases in situ was investigated. In the presence of ATP and Mn2+, enzyme-bound hydroxocobalamin, cyanocobalamin and methylcobalamin were rapidly displaced by added adenosylcobalamin. Without ATP and Mn2+, such displacement did not take place. In contrast, enzyme-bound adeninyl butylcobalamin and adenosylethylcobalamin were essentially not displace able by the free coenzyme even in the presence of ATP and Mn2+. Inosylcobalamin was a very weak inhibitor irrespective of the presence of ATP and Mn2+ . These results indicate that the relative affinity of the enzymes in situ for the cobalamins with simple Cof ligands was markedly lowered in the presence of ATP and Mn2+, whereas that for the cobalamins with adenine-containing ligands was not. When the glycerol inactivated holoenzymes in situ were dialyzed against a buffer containing ATP and Mg2+, the inactivated coenzyme moiety dissociated from the enzymes leaving apoproteins.
    [Show full text]
  • A Universal Tradeoff Between Growth and Lag in Fluctuating Environments
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2021 January 15. Published in final edited form as: Nature. 2020 August ; 584(7821): 470–474. doi:10.1038/s41586-020-2505-4. A universal tradeoff between growth and lag in fluctuating environments Markus Basan1,2,¶,*, Tomoya Honda3,4,*, Dimitris Christodoulou2, Manuel Hörl2, Yu-Fang Chang1, Emanuele Leoncini1, Avik Mukherjee1, Hiroyuki Okano3, Brian R. Taylor3, Josh M. Silverman5, Carlos Sanchez1, James R. Williamson5, Johan Paulsson1, Terence Hwa3,4,¶, Uwe Sauer2,¶ 1Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. 2Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland. 3Department of Physics, University of California at San Diego, La Jolla, CA 92093 USA. 4Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093 USA. 5Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Abstract The rate of cell growth is crucial for bacterial fitness and a main driver of proteome allocation1,2, but it is unclear what ultimately determines growth rates in different environmental conditions. Increasing evidence suggests that other objectives also play key roles3–7, such as the rate of physiological adaptation to changing environments8,9. The challenge for cells is that these objectives often cannot be independently optimized, and maximizing one often reduces another. Many such tradeoffs have indeed been hypothesized, based on qualitative correlative studies8–11. Here we report the occurrence of a tradeoff between steady-state growth rate and physiological adaptability for Escherichia coli, upon abruptly shifting a growing culture from a preferred carbon source to fermentation products such as acetate.
    [Show full text]
  • Carbonyl Stress in Bacteria: Causes and Consequences
    ISSN 0006-2979, Biochemistry (Moscow), 2015, Vol. 80, No. 13, pp. 1655-1671. © Pleiades Publishing, Ltd., 2015. Original Russian Text © O. V. Kosmachevskaya, K. B. Shumaev, A. F. Topunov, 2015, published in Uspekhi Biologicheskoi Khimii, 2015, Vol. 55, pp. 49-82. REVIEW Carbonyl Stress in Bacteria: Causes and Consequences O. V. Kosmachevskaya, K. B. Shumaev, and A. F. Topunov* Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; E-mail: [email protected] Received May 30, 2015 Abstract—Pathways of synthesis of the α-reactive carbonyl compound methylglyoxal (MG) in prokaryotes are described in this review. Accumulation of MG leads to development of carbonyl stress. Some pathways of MG formation are similar for both pro- and eukaryotes, but there are reactions specific for prokaryotes, e.g. the methylglyoxal synthase reaction. This reaction and the glyoxalase system constitute an alternative pathway of glucose catabolism – the MG shunt not associated with the synthesis of ATP. In violation of the regulation of metabolism, the cell uses MG shunt as well as other glycolysis shunting pathways and futile cycles enabling stabilization of its energetic status. MG was first examined as a biologically active metabolic factor participating in the formation of phenotypic polymorphism and hyperpersistent potential of bacte- rial populations. The study of carbonyl stress is interesting for evolutionary biology and can be useful for constructing high- ly effective producer strains. DOI: 10.1134/S0006297915130039 Key words: carbonyl stress, bacteria, methylglyoxal, metabolite overproduction The term “carbonyl stress” that describes an imbal- betes, which initiated studies of nonenzymatically glycat- ance between the formation and removal of reactive car- ed proteins and AGEs in living organisms.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Biosynthesis of Poly(3-Hydroxypropionate) from Glycerol by Recombinant Escherichia Coli
    Bioresource Technology 131 (2013) 548–551 Contents lists available at SciVerse ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Short Communication Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli ⇑ ⇑ Qi Wang a,b, Peng Yang a,c, Changshui Liu a,b, Yongchang Xue c, Mo Xian a, , Guang Zhao a, a Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China b University of Chinese Academy of Sciences, Beijing 100049, China c School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China highlights " A P3HP biosynthetic pathway from glycerol was constructed in Escherichia coli. " Utilization of glucose as cosubstrate improved P3HP production greatly. " Fermentation process for P3HP production was simplified. " The highest P3HP production from inexpensive carbon source was achieved. article info abstract Article history: Poly(3-hydroxypropionate) (P3HP) is a biodegradable and biocompatible thermoplastic. In this study, a Received 4 December 2012 P3HP biosynthetic pathway from glycerol was constructed in recombinant Escherichia coli. The genes Received in revised form 18 January 2013 for glycerol dehydratase and its reactivating factor (dhaB123 and gdrAB, from Klebsiella pneumoniae), Accepted 19 January 2013 propionaldehyde dehydrogenase (pduP, from Salmonella typhimurium), and polyhydroxyalkanoate syn- Available online 4 February 2013 thase (phaC1, from Cupriavidus necator) were cloned and expressed in E. coli. After culture condition opti- mization, the final engineered strain accumulated 10.1 g/L P3HP (46.4% of the cell dry weight) using Keywords: glycerol and glucose as cosubstrates in an aerobic fed-batch fermentation. To date, this is the highest Poly(3-hydroxypropionate) P3HP production without addition of any expensive precursor.
    [Show full text]
  • Fluoroacetate Resistance in Streptomyces Cattleya 3.1 Introduction 41 3.2 Materials and Methods 42 3.3 Results and Discussion 47 3.4 Conclusions 66 3.5 References 67
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Expanding the scope of organofluorine biochemistry through the study of natural and engineered systems Permalink https://escholarship.org/uc/item/9n89c8zv Author Walker, Mark Chalfant Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Expanding the scope of organofluorine biochemistry through the study of natural and engineered systems by Mark Chalfant Walker A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michelle C. Y. Chang, Chair Professor Judith P. Klinman Professor Susan Marqusee Professor Mathew B. Francis Spring 2013 Expanding the scope of organofluorine biochemistry through the study of natural and engineered systems © 2013 by Mark Chalfant Walker Abstract Expanding the scope of organofluorine biochemistry through the study of natural and engineered systems by Mark Chalfant Walker Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Michelle C. Y. Chang, Chair Fluorination has become a very useful tool in the design and optimization of bioactive small molecules ranging from pesticides to pharmaceuticals. Its small size allows a sterically conservative substitution for a hydrogen or hydroxyl, thus maintaining the overall size and shape of a molecule. However, the extreme electronegativity of fluorine can dramatically alter other properties of the molecule. As a result, the development of new methods for fluorine incorporation is currently a major focus in synthetic chemistry. It is our goal to use a complementary biosynthetic approach to use enzymes for the regio-selective incorporation of fluorine into complex natural product scaffolds through the fluoroacetate building block.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • Table 4.3 Enzyme Activities and Glycerol Utilization and Ethanol Synthesis Fluxes for Wild-Type MG1655 and Strains Overexpressing Glycerol Utilization Enzymes
    Abstract Understanding Fermentative Glycerol Metabolism and its Application for the Production of Fuels and Chemicals by James M. Clomburg Due to its availability, low-price, and higher degree of reduction than lignocellulosic sugars, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. However, this high degree of reduction of carbon atoms in glycerol also results in significant challenges in regard to its utilization under fermentative conditions. Therefore, in order to unlock the full potential of microorganisms for the fermentative conversion of glycerol into fuels and chemicals, a detailed understanding of the anaerobic fermentation of glycerol is required. The work presented here highlights a comprehensive experimental investigation into fermentative glycerol metabolism in Escherichia coli, which has elucidated several key pathways and mechanisms. The activity of both the fermentative and respiratory glycerol dissimilation pathways was found to be important for maximum glycerol utilization, a consequence of the metabolic cycle and downstream effects created by the essential involvement of PEP-dependent dihydroxyacetone kinase (DHAK) in the fermentative glycerol dissimilation pathway. The decoupling of this cycle is of central importance during fermentative glycerol metabolism, and while multiple decoupling mechanisms were identified, their relative inefficiencies dictated not only their level of involvement, but also iii implicated the activity of other pathways/enzymes, including fumarate reductase and pyruvate kinase. The central role of the PEP-dependent DHAK, an enzyme whose transcription was found to be regulated by the cyclic adenosine monophosphate (cAMP) receptor protein (CRP)-cAMP complex, was also tied to the importance of multiple fructose 1,6-bisphosphotases (FBPases) encoded by fbp, glpX, and yggF.
    [Show full text]