The Implications of Behavioral Antitrust
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H
University of Baltimore Law ScholarWorks@University of Baltimore School of Law All Faculty Scholarship Faculty Scholarship 2000 The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H. Lande University of Baltimore School of Law, [email protected] Howard P. Marvel Ohio State University, [email protected] Follow this and additional works at: http://scholarworks.law.ubalt.edu/all_fac Part of the Antitrust and Trade Regulation Commons, and the Law and Economics Commons Recommended Citation The Three Types of Collusion: Fixing Prices, Rivals, and Rules, 2000 Wis. L. Rev. 941 (2000) This Article is brought to you for free and open access by the Faculty Scholarship at ScholarWorks@University of Baltimore School of Law. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of ScholarWorks@University of Baltimore School of Law. For more information, please contact [email protected]. ARTICLES THE THREE TYPES OF COLLUSION: FIXING PRICES, RIVALS, AND RULES ROBERTH. LANDE * & HOWARDP. MARVEL** Antitrust law has long held collusion to be paramount among the offenses that it is charged with prohibiting. The reason for this prohibition is simple----collusion typically leads to monopoly-like outcomes, including monopoly profits that are shared by the colluding parties. Most collusion cases can be classified into two established general categories.) Classic, or "Type I" collusion involves collective action to raise price directly? Firms can also collude to disadvantage rivals in a manner that causes the rivals' output to diminish or causes their behavior to become chastened. This "Type 11" collusion in turn allows the colluding firms to raise prices.3 Many important collusion cases, however, do not fit into either of these categories. -
Collusion Constrained Equilibrium
Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K. -
Interim Correlated Rationalizability
Interim Correlated Rationalizability The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dekel, Eddie, Drew Fudenberg, and Stephen Morris. 2007. Interim correlated rationalizability. Theoretical Economics 2, no. 1: 15-40. Published Version http://econtheory.org/ojs/index.php/te/article/view/20070015 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3196333 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Theoretical Economics 2 (2007), 15–40 1555-7561/20070015 Interim correlated rationalizability EDDIE DEKEL Department of Economics, Northwestern University, and School of Economics, Tel Aviv University DREW FUDENBERG Department of Economics, Harvard University STEPHEN MORRIS Department of Economics, Princeton University This paper proposes the solution concept of interim correlated rationalizability, and shows that all types that have the same hierarchies of beliefs have the same set of interim-correlated-rationalizable outcomes. This solution concept charac- terizes common certainty of rationality in the universal type space. KEYWORDS. Rationalizability, incomplete information, common certainty, com- mon knowledge, universal type space. JEL CLASSIFICATION. C70, C72. 1. INTRODUCTION Harsanyi (1967–68) proposes solving games of incomplete -
Tacit Collusion in Oligopoly"
Tacit Collusion in Oligopoly Edward J. Green,y Robert C. Marshall,z and Leslie M. Marxx February 12, 2013 Abstract We examine the economics literature on tacit collusion in oligopoly markets and take steps toward clarifying the relation between econo- mists’analysis of tacit collusion and those in the legal literature. We provide examples of when the economic environment might be such that collusive pro…ts can be achieved without communication and, thus, when tacit coordination is su¢ cient to elevate pro…ts versus when com- munication would be required. The authors thank the Human Capital Foundation (http://www.hcfoundation.ru/en/), and especially Andrey Vavilov, for …nancial support. The paper bene…tted from discussions with Roger Blair, Louis Kaplow, Bill Kovacic, Vijay Krishna, Steven Schulenberg, and Danny Sokol. We thank Gustavo Gudiño for valuable research assistance. [email protected], Department of Economics, Penn State University [email protected], Department of Economics, Penn State University [email protected], Fuqua School of Business, Duke University 1 Introduction In this chapter, we examine the economics literature on tacit collusion in oligopoly markets and take steps toward clarifying the relation between tacit collusion in the economics and legal literature. Economists distinguish between tacit and explicit collusion. Lawyers, using a slightly di¤erent vocabulary, distinguish between tacit coordination, tacit agreement, and explicit collusion. In hopes of facilitating clearer communication between economists and lawyers, in this chapter, we attempt to provide a coherent resolution of the vernaculars used in the economics and legal literature regarding collusion.1 Perhaps the easiest place to begin is to de…ne explicit collusion. -
Imbalanced Collusive Security Games
Imbalanced Collusive Security Games Han-Ching Ou, Milind Tambe, Bistra Dilkina, and Phebe Vayanos Computer Science Department, University of Southern California {hanchino,tambe,dilkina,phebe.vayanos }@usc.edu Abstract. Colluding adversaries is a crucial challenge for defenders in many real-world applications. Previous literature has provided Collusive Security Games (COSG) to model colluding adversaries, and provided models and algorithms to generate defender strategies to counter colluding adversaries, often by devising strategies that inhibit collusion [6]. Unfortunately, this previous work focused exclusively on situations with perfectly matched adversaries, i.e., where their rewards were symmetrically distributed. In the real world, however, defenders often face adversaries where their rewards are asymmetrically distributed. Such inherent asymmetry raises a question as to whether human adversaries would at- tempt to collude in such situations, and whether defender strategies to counter such collusion should focus on inhibiting collusion. To address these open ques- tions, this paper: (i) explores and theoretically analyzes Imbalanced Collusive Security Games (ICOSG) where defenders face adversaries with asymmetrically distributed rewards; (ii) conducts extensive experiments of three different adver- sary models involving 1800 real human subjects and (iii) derives novel analysis of the reason behind why bounded rational attackers models outperform perfectly rational attackers models. The key principle discovered as the result of our -
Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Stähler, Frank Working Paper — Digitized Version Markov perfection and cooperation in repeated games Kiel Working Paper, No. 760 Provided in Cooperation with: Kiel Institute for the World Economy (IfW) Suggested Citation: Stähler, Frank (1996) : Markov perfection and cooperation in repeated games, Kiel Working Paper, No. 760, Kiel Institute of World Economics (IfW), Kiel This Version is available at: http://hdl.handle.net/10419/46946 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Kieler Arbeitspapiere Kiel Working Papers Kiel Working Paper No. 760 Markov perfection and cooperation in repeated games by Frank Stahler August 1996 Institut fur Weltwirtschaft an der Universitat Kiel The Kiel Institute of World Economics ISSN 0342 - 0787 The Kiel Institute of World Economics Diisternbrooker Weg 120 D-24105Kiel, FRG Kiel Working Paper No. -
Collusion and Heterogeneity of Firms∗
Collusion and Heterogeneity of Firms∗ Ichiro Obaray Federico Zincenko z June 13, 2016 Abstract We examine the impact of heterogeneous discounting on collusion in dynamic Bertrand competition. We show exactly when collusion can be sustained and how collusion would be organized efficiently with heterogeneous discounting. First we show that collusion is possible if and only if the average discount factor exceeds a certain threshold, with or without capacity constraints. Next we identify a dynamic pattern of market share that characterizes efficient collusion and obtain the unique long-run prediction despite the presence of multiple equilibria. In the long run, the most patient firm and the most impatient firm tend to dominate the market. JEL Classification: C72, C73, D43. Keywords: Bertrand Competition, Capacity Constraint, Collusion, Repeated Game, Subgame Perfect Equilibrium. Unequal Discounting. ∗This article was developed from the second chapter (co-authored with I. Obara) of Zincenko's doctoral dissertation at UCLA. We would like to thank the editor and anonymous referees for their useful comments. We also like to thank the participants at many seminars at various universities, 2011 Asian Meeting of the Econometric Society at Korea University, 2012 Southwest Economic Theory Conference at UC San Diego, and 2013 North American Summer Meeting of the Econometric Society at USC. All remaining errors are ours. yUniversity of California, Los Angeles; [email protected]. zUniversity of Pittsburgh; [email protected]. 1 1 Introduction To understand when and how collusion arises with heterogeneous discounting, we study a dynamic Bertrand competition model, in which firms discount future profits at different discount rates, and examine the impact of heterogeneous discounting on collusion. -
Game Playing
Game Playing Philipp Koehn 29 September 2015 Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Outline 1 ● Games ● Perfect play – minimax decisions – α–β pruning ● Resource limits and approximate evaluation ● Games of chance ● Games of imperfect information Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 2 games Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Games vs. Search Problems 3 ● “Unpredictable” opponent ⇒ solution is a strategy specifying a move for every possible opponent reply ● Time limits ⇒ unlikely to find goal, must approximate ● Plan of attack: – computer considers possible lines of play (Babbage, 1846) – algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944) – finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950) – first Chess program (Turing, 1951) – machine learning to improve evaluation accuracy (Samuel, 1952–57) – pruning to allow deeper search (McCarthy, 1956) Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Types of Games 4 deterministic chance perfect Chess Backgammon information Checkers Monopoly Go Othello imperfect battleships Bridge information Blind Tic Tac Toe Poker Scrabble Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Game Tree (2-player, Deterministic, Turns) 5 Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Simple Game Tree 6 ● 2 player game ● Each player has one move ● You move first ● Goal: optimize your payoff (utility) Start Your move Opponent -
Efficient Algorithms for Computing Approximate Equilibria in Bimatrix
Efficient Algorithms for Computing Approximate Equilibria in Bimatrix, Polymatrix and Lipschitz Games Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Argyrios Deligkas July 2016 Abstract In this thesis, we study the problem of computing approximate equilibria in sev- eral classes of games. In particular, we study approximate Nash equilibria and approximate well-supported Nash equilibria in polymatrix and bimatrix games and approximate equilibria in Lipschitz games, penalty games and biased games. We construct algorithms for computing approximate equilibria that beat the cur- rent best algorithms for these problems. In Chapter 3, we present a distributed method to compute approximate Nash equilibria in bimatrix games. In contrast to previous approaches that analyze the two payoff matrices at the same time (for example, by solving a single LP that combines the two players' payoffs), our algorithm first solves two independent LPs, each of which is derived from one of the two payoff matrices, and then computes an approximate Nash equilibrium using only limited communication between the players. In Chapter 4, we present an algorithm that, for every δ in the range 0 < δ ≤ 0:5, finds a (0:5+δ)-Nash equilibrium of a polymatrix game in time polynomial in 1 the input size and δ . Note that our approximation guarantee does not depend on the number of players, a property that was not previously known to be achievable for polymatrix games, and still cannot be achieved for general strategic-form games. In Chapter 5, we present an approximation-preserving reduction from the problem of computing an approximate Bayesian Nash equilibrium (-BNE) for a two-player Bayesian game to the problem of computing an -NE of a polymatrix game and thus show that the algorithm of Chapter 4 can be applied to two-player Bayesian games. -
Direct Tests of Cumulative Prospect Theory⇤
Direct Tests of Cumulative Prospect Theory⇤ B. Douglas Bernheim † Charles Sprenger‡ Stanford University and NBER UC San Diego First Draft: December 1, 2014 This Version: November 8, 2016 Abstract Cumulative Prospect Theory (CPT), the leading behavioral account of decision making under uncertainty, assumes that the probability weight applied to a given outcome depends on its ranking. This assumption is needed to avoid the violations of dominance implied by Prospect Theory (PT). We devise a simple test involving three-outcome lotteries, based on the implication that compensating adjustments to the payo↵s in two states should depend on their rankings compared with payo↵s in a third state. In an experiment, we are unable to find any support for the assumption of rank dependence. We separately elicit probability weighting functions for the same subjects through conventional techniques involving binary lotteries. These functions imply that changes in payo↵rank should change the compensating adjustments in our three-outcome lotteries by 20-40%, yet we can rule out any change larger than 7% at standard confidence levels. Additional tests nevertheless indicate that the dominance patterns predicted by PT do not arise. We reconcile these findings by positing a form of complexity aversion that generalizes the well-known certainty e↵ect. JEL classification: D81, D90 Keywords:ProspectTheory,CumulativeProspectTheory,RankDependence,CertaintyEquiv- alents. ⇤We are grateful to Ted O’Donoghue, Colin Camerer, Nick Barberis, Kota Saito, and seminar participants at Cornell, Caltech, and Gary’s Conference (UC Santa Barbara) for helpful and thoughtful discussions. Fulya Ersoy, Vincent Leah-Martin, Seung-Keun Martinez, and Alex Kellogg all provided valuable research assistance. -
Judgment Under Uncertainty: Heuristics and Biases Author(S): Amos Tversky and Daniel Kahneman Source: Science, New Series, Vol
Judgment under Uncertainty: Heuristics and Biases Author(s): Amos Tversky and Daniel Kahneman Source: Science, New Series, Vol. 185, No. 4157, (Sep. 27, 1974), pp. 1124-1131 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/1738360 Accessed: 15/04/2008 14:50 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=aaas. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. http://www.jstor.org occupation from a list of possibilities (for example, farmer, salesman, airline pilot, librarian, or physician)? How do people order these occupations from most to least likely? In the representa- Judgment under Uncertainty: tiveness heuristic, the probability that Steve is a librarian, for example, is Heuristics and Biases assessed by the degree to which he is representative of, or similar to, the stereotype of a librarian. -
THE HUMAN SIDE of MECHANISM DESIGN a Tribute to Leo Hurwicz and Jean-Jacque Laffont
THE HUMAN SIDE OF MECHANISM DESIGN A Tribute to Leo Hurwicz and Jean-Jacque Laffont Daniel McFadden Department of Economics University of California, Berkeley December 4, 2008 [email protected] http://www.econ.berkeley.edu/~mcfadden/index.shtml ABSTRACT This paper considers the human side of mechanism design, the behavior of economic agents in gathering and processing information and responding to incentives. I first give an overview of the subject of mechanism design, and then examine a pervasive premise in this field that economic agents are rational in their information processing and decisions. Examples from applied mechanism design identify the roles of perceptions and inference in agent behavior, and the influence of systematic irrationalities and sociality on agent responses. These examples suggest that tolerance of behavioral faults be added to the criteria for good mechanism design. In principle-agent problems for example, designers should consider using experimental treatments in contracts, and statistical post-processing of agent responses, to identify and mitigate the effects of agent non-compliance with contract incentives. KEYWORDS: mechanism_design, principal-agent_problem, juries, welfare_theory JEL CLASSIFICATION: D000, D600, D610, D710, D800, C420, C700 THE HUMAN SIDE OF MECHANISM DESIGN A Tribute to Leo Hurwicz and Jean-Jacque Laffont Daniel McFadden1 1. Introduction The study of mechanism design, the systematic analysis of resource allocation institutions and processes, has been the most fundamental development