Distribution of Two Species of <I>Dissodactylus</I> (Brachyura

Total Page:16

File Type:pdf, Size:1020Kb

Distribution of Two Species of <I>Dissodactylus</I> (Brachyura BULLETIN OF MARINE SCIENCE, 28(4): 651~58, 1978 DISTRIBUTION OF TWO SPECIES OF DISSODACTYLUS (BRACHYURA: PINNOTHERIDAE) AMONG THEIR ECHINOID HOST POPULATIONS IN BARBADOS Malcolm Telford ABSTRACT A contribution is made to the biology and behavior of two species of Dissodactyills. The six-lunuled sand dollar, Mellita sexiesperforata (Leske), is a newly discovered host for Dissodactyills crillitichelis Moreira in Barbados. The fourth species of c1ypeasteroid with which this crab is known to associate, from 300/0 to 600/0 of the sand dollars examined housed crabs, which were normally located in the lunules or the food grooves. The fre- quency distribution of crabs on their hosts indicates a degree of aggregation which is probably attributable to sexually mature pairs remaining together and to preferential settlement of megalopae on more shallow burrowing hosts. On exposed beaches the sand dollars burrow more deeply than on sheltered beaches and larger individuals burrow deeper than smaller ones. Depth of burrowing influences host selection by the crabs but, apart from this, size of host (within the sample range) appears to be unimportant. Labora- tory experiments indicate that D. crillitiche/is leaves its host occasionally and may spend Some time away from it. Meoma velltricosa (Lamarck) is the first host to be found for the previously little-known species, Dissodactyills primitivus Bouvier, and is the first non-c1ypeasteroid host for any species of Dissodactylus. From 800/0 to 1000/0 of the M. ventricosa examined were found to house crabs, mostly externally, close to the mouth but several were found inside the esophagus. There are 14 species of Dissodactylus Very little is known about the biology of listed by Schmitt et aI., 1973. Some of these these interesting crabs. They appear to be are very poorly known, from single speci- generally symbiotic with echinoids, perhaps mens or only a small number of them col- exclusively so. The nature of their relation- lected at widely different times and places: ship to their hosts is not clear. The term for example, D. primitivus Bouvier 1917 was "inquilism" was used by Caullery (1952) for known until recently from only a single situations in which an organism was sheltered specimen collected 100 years ago and D. by and obtained at least part of its food from borradailei Rathbun 1918 was known from the host. Cheng (1967) rejected the term en- four specimens collected singly in Florida tirely, preferring to regard the relationship and Jamaica. Dissodactylus borradailei has as parasitic if there was any metabolic de- now been shown to be a junior synonym of pendence on the host. There is some evi- D. primitivus (Telford, 1978), leaving 13 dence that D. lockingtoni Glassell (GlasseIl, species in the genus at present. Seven of cited by Hyman, 1955) feeds on the feces these species are already known to be of its host, Encope emarginata (Leske), in symbionts of echinoids and in this paper the which case it could be regarded as a com- symbiotic relationship between D. primitivus mensal, although hardly in the terms of and a spatangoid urchin, Meoma ventricosa Cheng (1967) ".... literally eating at the (Lamarck), will be added to the list. Of the same table." The entire family Pinnotheridae remaining five species almost nothing is is often regarded as parasitic or at least semi- known except that D. calmani Rathbun has parasitic. The best known species are cer- been collected more than once in the absence tainly established as parasites, for example of an echinoid host. the oyster crab, Pinnotheres ostreum Say 651 652 BULLETIN OF MARINE SCIENCE, VOL. 28, NO.4, 1978 (Stauber, 1945) which shows several struc- ness to move from host to host, as evidenced tural and behavioral specializations for its in laboratory studies is described. particular life style. The genus Dissodactylus is of special interest in this regard because it MATERIALS AND METHODS shows no clearly parasitic modifications and might well be considered to be in an early Dissodactylus crinitichelis and stage of the evolution of the parasitic habit. Mellita sexiesperforata There is some slight evidence that D. Specimens were collected from four areas crinitichelis Moreira might obtain at least of the coast of Barbados, two of which some of its food directly from the food sup- were chosen as the principal sites for study. ply of its host, in which case it could be re- These were the northern end of Discovery garded as parasitic in Cheng's terms. Bay on the west coast and the eastern end The two species discussed in this paper are of Rockley Beach on the south coast. The D. crinitichelis and D. primitivus. The Discovery Bay site was well sheltered and former was described by Moreira in 1901 usually without noticeable wave action, (Rathbun, 1933) and by Rathbun herself whereas the Rockley Beach site was exposed later in 1901 under the name D. encopei. and subjected to continuous wave action so Both authors found it living with the echinoid that the bottom was always more or less Encope emarginata and suspected that it disturbed. All of the sites had clean sandy lived also with E. michelini Agassiz. It has bottoms. The sand dollars were collected been found with both of these hosts subse- in 3-8 ill of water by free-diving and im- quently (Williams et aI., 1968) and also with mediately placed in individual plastic bags the sea biscuit, Clypeaster subdepressus to avoid loss of the crabs. Diameter of the (Gray) (Wass, 1955). To this list can now be sand dollars was measured to the nearest added the six-lunuled sand dollar, Mellita millimeter along the functional antero- sexiesperforata (Leske), in Barbados. The posterior axis. The depth to which they bur- previously known specimens of D. primitivus rowed was measured to the apex of the test, were taken singly in dredges with no indica- taking care not to move them as they were tion of a possible host. Its rediscovery in located by hand. 1974 as a symbiont of M. ventricosa thus The extent to which the crabs would move provides the first host record. However, from one sand dollar to another was investi- Chesher (1969) reported the occurrence of gated in the laboratory water table. These an unidentified species of Dissodactylus on experiments lasted 4 or 5 days each. In the M. ventricosa. From his description and first, four sand dollars with identifying photographs there is every reason to suppose scratches in the petalloids were placed in a that it was, indeed, D. primitivus. glass dish which allowed limited movement; one sand dollar was carrying six crabs, the The only published data on the distribu- others none. At 24-h intervals the positions tion of any species of Dissodactylus within its of these crabs were noted. The second and host population is that of Gray et aI., (1968). third experiments were conducted with the They examined the activity of a "host factor" host echinoids free to move in the water which attracts D. mellitae Rathbun to the table. In one instance, one of the four sand five-Iunuled sand dollar, Mellita quinques- dollars started with five crabs; in the other perforata (Leske). At the same time they experiment five crabs were released 2.5 ill reported the incidence of the crab-host asso- away from the nearest host. The fourth ciations in a few small collections of sand experiment used nine sand dollars restricted dollars. In this paper the distributions of D. from free movement in individual petri dish crinitichelis and D. primitivus within their lids placed in a 90 em grid located in a slow host populations is examined and their readi- current by the water table outlet. These sand TELFORD: TWO SPECIES OF DISSODACTYLUS 653 dollars were given different numbers of collected was 0.4 and per host which actually symbiotic crabs at the outset, in an attempt had the symbionts, 1.4. The maximum to determine how they would move with number per host found here was three. At respect to the current and the presence of two other sites where smaller numbers of crabs on the other hosts. sand dollars were collected similar degrees of infestations (36% and 50%) were found Dissodactylus primitivus and and the mean number of crabs per infested Meoma ventricosa sand dollar was 1.3. The frequency distribution of D. crinitich- The spatangoid urchins were found in elis on M. sexiesperforata at Discovery Bay areas where a considerable amount of mud gave a poor fit to the Poisson distribution was mixed with sand. They were collected (P < 0.02) and an acceptable fit to the during scuba dives, 15-20 m deep, in negative binomial (P = 0.18). The Rockley Speightstown Harbour on the west coast. population did not fit either distribution well Each specimen was immediately placed in an (P = 0.001 and 0.02 respectively). Ac- individual plastic bag and tied. The actual 10- cording to Bliss (1953) the classes in the cations of the crabs on their hosts was re- tails should be pooled so that no expected corded underwater as they were collected. frequency is less than five. When that was Size of the host was measured to the nearest done the Rockley population gave a good millimeter excluding spines, along the longi- fit to the negative binomial. Too small a tudinal axis. Several specimens of M. ventri- sample was collected at each of the other cosa with their symbionts were maintained in sites to give a reliable fit to these distribu- the water table. tions. Inspection of the data for the Rockley The observed distributions of the crabs site showed that there were almost twice as were fitted to the Poisson distribution fol- many sand dollars housing two crabs as the lowing the method in Stanley (1963) and fitted distribution predicted.
Recommended publications
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Dissodactylus Crinitichelismoreira, 1901 and Leodia Sexiesperforata
    Nauplius 19(1): 63-70, 2011 63 Dissodactylus crinitichelis Moreira, 1901 and Leodia sexiesperforata (Leske, 1778): first record of this symbiosis in Brazil Vinicius Queiroz, Licia Sales, Elizabeth Neves and Rodrigo Johnsson LABIMAR (Crustacea, Cnidaria & Fauna Associada), Universidade Federal da Bahia. Avenida Adhemar de Barros s/nº, Campus Ondina. CEP 40170- 290. Salvador, BA, Brazil. E-mail: (VQ) [email protected]; (LS) [email protected]; (EN) [email protected]; (RJ) [email protected] Abstract The crabs of the genusDissodactylus are well known as ectosymbionts of irregular echinoids belonging to Clypeasteroida and Spatangoida. Dissodactylus crinitichelis is the only species of the genus reported in Brazil. The pea crab species has been already recorded associated with four species of echinoids in Brazilian waters. This paper reviews the known hosts for D. crinitichelis and registers for the first time the association between the pea crab and the sand dollar Leodia sexiesperforata increasing to five the number of known hosts for the crab. Key Words: Ecological association, ectosymbiont, Pinnotheridae. Introduction includes about 302 species of little crabs (Ng et al., 2008) highly specialized in living The diversity of the marine environment, in close association with other invertebrates. specially the benthic substratum is commonly The family is known for their association reflected by many interactions among with various invertebrate taxa, such as organisms, even free living ones. Such event molluscs, polychaetes, ascidians, crustaceans is quite common since many of these species or echinoderms (holothurians and irregular act as substratum or environment for others. echinoids) (Schmitt et al., 1973; Powers, 1977; The existence of many organisms living in Williams, 1984; Takeda et al., 1997; Thoma association and their close relation allows for et al., 2005, 2009; Ahyong and Ng, 2007).
    [Show full text]
  • Essential Fish Habitat Assessment
    APPENDIX L ESSENTIAL FISH HABITAT (PHYSICAL HABITAT) JACKSONVILLE HARBOR NAVIGATION (DEEPENING) STUDY DUVAL COUNTY, FLORIDA THIS PAGE LEFT INTENTIONALLY BLANK ESSENTIAL FISH HABITAT ASSESSMENT JACKSONVILLE HARBOR NAVIGATION STUDY DUVAL COUNTY, FL Final Report January 2011 Prepared for: Jacksonville District U.S. Army Corps of Engineers Prudential Office Bldg 701 San Marco Blvd. Jacksonville, FL 32207 Prepared by: Dial Cordy and Associates Inc. 490 Osceola Avenue Jacksonville Beach, FL 32250 TABLE OF CONTENTS Page LIST OF TABLES ................................................................................................................. III LIST OF FIGURES ............................................................................................................... III 1.0 INTRODUCTION ............................................................................................................ 1 2.0 ESSENTIAL FISH HABITAT DESIGNATION ................................................................. 6 2.1 Assessment ........................................................................................................... 6 2.2 Managed Species .................................................................................................. 8 2.2.1 Penaeid Shrimp .................................................................................................. 9 2.2.1.1 Life Histories ............................................................................................... 9 2.2.1.1.1 Brown Shrimp ......................................................................................
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • The Behavior of the Pea Crab Fabia Subquadrata in Relation to Its Mussel Host, Mytilus Californianus
    AN ABSTRACT OF THE THESIS OF Joseph Stanley Lidrich for the Doctor of Philosophy (Name) (Degree) in Zoology presented on otta 0\-)\(1 (Major) (Rate) Title:THE BEHAVIOR OF THE PEA CRAB FABIASUBQUADRATA IN RELATION TO ITS MUSSEL HOST, MYTILUS CALIFORNIANUS Redacted for privacy Abstract approved: UJohn A. Wiens The pea crab Fabia subquadrata is frequently found as a sym- biont of mussels, living within the mantle cavity.This study exam- ined the nature of this symbiotic relationship by recording the pattern of distribution of individuals in a mussel bed, testing responsiveness to host secretions, and observing the feeding mechanics and behavior of Fabia. Individual pea crabs were unevenly distributed in an intertidal bed of Mytilus californianus at Yaquina Head, near Newport, Oregon. The greatest degree of infestation (25%) was in the largest mussels which were subjected to the most nearly continuous water cover. This pattern of distribution was attributed to a combination of the feeding behavior of the crab and the effects of tidal level. The responsiveness of Fabia to chemical secretions of the mussels was tested by presenting liberated crabs with a choice between sea water conditioned by live mussels and water drawn direct ly from Yaquina Bay.Tests were conducted to determine the role of sex and maturation, by dividing the pea crabs into three groups: im- mature females, adult females, and adult males.The effects of light, darkness, and deprivation of its habitat (the host) were also tested. Under these various test conditions, Fabia showed no measurable response to any host factor from Mytilus. When the crab was inside the mussel it faced the posterior and fed by intercepting the major mucus strand in the food groove of a ctenida.This behavior took full advantage of the feeding tracts of the mussel.
    [Show full text]
  • Crustacea: Brachyura: Pinnotheridae
    r PTACEA LIBRARY < , ,30NIAN INSTITUTION BULLETIN OF MARINE SCIENCE, 40(3): 397-422, 1987 RETURN TO W-119 ' TAXONOMY OF THE GENUS DISSODACTYLUS (CRUSTACEA: BRACHYURA: PINNOTHERIDAE) WITH DESCRIPTIONS OF THREE NEW SPECIES Hugh Griffith ABSTRACT Several taxonomic problems within the genus Dissodactylus (Crustacea: Pinnotheridae) are resolved. Dissodactylus alcocki Rathbun, 1918 is a junior synonym of D. juvenilis Bouvier, 1917. D. meyerabichi Bott, 1955 is a junior synonym of D. nitidus Smith, 1870. D. smithi Rioja, 1944 is a junior synonym of D. lockingtoni Glassell, 1935 and not of D. nitidus, as previously described. Three new species, D. latus, D. schmittiandD. ususfructus, are described, and D. stebbingi is redescribed, accompanied by a description of the first zoeal stage. Thirteen species are currently recognized, and host and distributional data are given for each. A key to the species of Dissodactylus is provided. Crabs of the genus Dissodactylus (Brachyura: Pinnotheridae: Pinnotherinae) are ectosymbiotic on irregular echinoids. Morphological characters supporting the monophyly of the genus include bifid dactyls of the ambulatory legs and fused first and second and third through sixth male abdominal segments. Dissodactylus was erected by Smith (1870) by monotypy for the species D. nitidus. Schmitt et al. (1973) listed 14 species of Dissodactylus: D. alcocki Rathbun, 1918; D. borradailei Rathbun, 1918; D. calmani Rathbun, 1918; D. crinitichelis Moreira, 1901;/). glasselli Rioja, 1944; D. juvenilis Bouvier, 1917; D. lockingtoni Glassell, 1935; D. mellitae (Rathbun, 1900); D. meyerabichi Bott, 1955; D. nitidus Smith, 1870; D. primitivus Bouvier, 1917; D. rugatus Bouvier, 1917; D. stebbingi Rathbun, 1918 and D. xantusi Glassell, 1936. The number of species has since been reduced to 12.
    [Show full text]
  • Brachyura: Pinnotheridae)
    BULLETIN OF MARINE SCIENCE. 32(2): 584-594, 1982 CORAL REEF PAPER ECHINODERM SPINE STRUCTURE, FEEDING AND HOST RELA TrONSHIPS OF FOUR SPECIES OF DISSODACTYLUS (BRACHYURA: PINNOTHERIDAE) Malcolm Telford ABSTRACT Stomach contents of four species of Dissodactylus living on different host echinoids were examined. Estimates were made of the relative degrees of host dependence of these crabs. Dissodactylus primitivus, collected on the spatangoid urchins, Meoma ventricosa and Plagiobrissus grandis, takes about 50 to 60% of its food from the hosts. Both D. crinitichelis and D. mellitae, symbiotic with the c1ypeastroids Mellita sexiesperforata and M. quin- quiesperforata respectively, obtain over 80% of their food from host tissues whilst D. cal- mani appears to feed exclusively on the tissues of its c1ypeasteroid host, Clypeaster rosa- ceus. Differences in behavior and feeding habits can be attributed partly to the structure of host spines, Allometric analysis and scanning electron microscopy indicate that the spines of C. rosaceus are less porous than those of the other species examined. The spines of Mellita are significantly more porous than others, and those of Plagiobrissus grandis are hollow. On host species with porous spines, considerable areas are denuded by the feeding activity of the crabs. Morphometry of crab chelae is clearly related to feeding activity. Dissodactylus calmani, with slender claws, has not been found with spines in the stomach whereas D. me/litae has relatively small but very robust chelae and was always found to include spines in its diet. Differences in feeding habits, morphometry and life cycles indicate that D. primitivus is truly primitive, D. calmani the most specialized, and that D.
    [Show full text]
  • Download Publication
    Pinnotheridae de Haan, 1833 Juan Ignacio González-Gordillo and Jose A. Cuesta Leaflet No. 191 I April 2020 ICES IDENTIFICATION LEAFLETS FOR PLANKTON FICHES D’IDENTIFICATION DU ZOOPLANCTON ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Series editor: Antonina dos Santos and Lidia Yebra Prepared under the auspices of the ICES Working Group on Zooplankton Ecology (WGZE) This leaflet has undergone a formal external peer-review process Recommended format for purpose of citation: González-Gordillo, J. I., and Cuesta, J. A. 2020. Pinnotheridae de Haan, 1833. ICES Identification Leaflets for Plankton No. 191. 17 pp. http://doi.org/10.17895/ices.pub.5961 The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. This document is the product of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council.
    [Show full text]
  • Distribution of Decapod Crustacea Off Northeastern United States Based on Specimens at the Northeast Fisheries Center, Woods Hole, Massachusetts
    NOAA Technical Report NMFS Circular 407 Distribution of Decapod Crustacea Off Northeastern United States Based on Specimens at the Northeast Fisheries Center, Woods Hole, Massachusetts Austin B. Williams and Roland L. Wigley December 1977 U.S. DEPARTMENT OF COMMERCE Juanita M, Kreps, Secretary National Oceanic and Atmospheric Administrati on Richard A. Frank, Administrator National Marine Fisheries Service Robert W, Schoning, Director The National Marine Fisheries Service (NMFS) does not approve, rec­ ommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales pro­ motion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication. '0. TE~TS IntroductIOn .... Annotated heckli, t A knowledgments Literature cited .. Figure l. Ranked bathymetrIc range of elected Decapoda from the nort hat ('rn l mt d 2. Ranked temperature range of elected Decapoda from the nort hea tern Table 1. A ociation of elected Decapoda with ix type, of ub. trat III Distribution of Decapod Crustacea ff orth rn United States Based on Specimens at th o t Fisheries Center, Woods HoI, a a hu AI)."II.'H.\ ILLIA~1.· AndH)[' J) r,. \\ j( LE,'1 AB,"I RA CI DiHlributional and l'n\ ironmrntal ummane are gl\rn In an .wno by ('hart , graph, and table, for 1:11 P(>('l(> of mannr d(>"apod l ru \II( INTROD TI N This report presents distrihutl!ll1al data for l:n species of manne dpcapod rrustacea (11 Pena idea, t 1 raridea.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Benthic Invertebrate Species Richness & Diversity At
    BBEENNTTHHIICC INVVEERTTEEBBRRAATTEE SPPEECCIIEESSRRIICCHHNNEESSSS && DDIIVVEERRSSIITTYYAATT DIIFFFFEERRENNTTHHAABBIITTAATTSS IINN TTHHEEGGRREEAATEERR CCHHAARRLLOOTTTTEE HAARRBBOORRSSYYSSTTEEMM Charlotte Harbor National Estuary Program 1926 Victoria Avenue Fort Myers, Florida 33901 March 2007 Mote Marine Laboratory Technical Report No. 1169 The Charlotte Harbor National Estuary Program is a partnership of citizens, elected officials, resource managers and commercial and recreational resource users working to improve the water quality and ecological integrity of the greater Charlotte Harbor watershed. A cooperative decision-making process is used within the program to address diverse resource management concerns in the 4,400 square mile study area. Many of these partners also financially support the Program, which, in turn, affords the Program opportunities to fund projects such as this. The entities that have financially supported the program include the following: U.S. Environmental Protection Agency Southwest Florida Water Management District South Florida Water Management District Florida Department of Environmental Protection Florida Coastal Zone Management Program Peace River/Manasota Regional Water Supply Authority Polk, Sarasota, Manatee, Lee, Charlotte, DeSoto and Hardee Counties Cities of Sanibel, Cape Coral, Fort Myers, Punta Gorda, North Port, Venice and Fort Myers Beach and the Southwest Florida Regional Planning Council. ACKNOWLEDGMENTS This document was prepared with support from the Charlotte Harbor National Estuary Program with supplemental support from Mote Marine Laboratory. The project was conducted through the Benthic Ecology Program of Mote's Center for Coastal Ecology. Mote staff project participants included: Principal Investigator James K. Culter; Field Biologists and Invertebrate Taxonomists, Jay R. Leverone, Debi Ingrao, Anamari Boyes, Bernadette Hohmann and Lucas Jennings; Data Management, Jay Sprinkel and Janet Gannon; Sediment Analysis, Jon Perry and Ari Nissanka.
    [Show full text]
  • On the Pea Crabs Found in the Chiton Tonicia Chilensis
    Zootaxa 4434 (2): 385–390 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4434.2.11 http://zoobank.org/urn:lsid:zoobank.org:pub:8DC83B97-DA38-4024-A610-7EA6357031DF On the pea crabs found in the chiton Tonicia chilensis (Frembly, 1827) (Mollusca, Polyplacophora: Chitonidae) identified as “Orthotheres sp.” by Melzer & Schwabe (2008), and its reassignment to Calyptraeotheres Campos, 1990 (Crustacea: Pinnotheridae) ERNESTO CAMPOS Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, México. E-mail: [email protected] Crabs of the family Pinnotheridae have been considered a phylogenetically heterogeneous group and taxonomically problematic (Palacios-Theil 2009, 2016; Tsang et al. 2018). The lack of knowledge of sexual dimorphism and morphological variation throughout the life history for many species have complicated its taxonomy and has resulted in errors in its classification (Campos 1989, 1993, 2016). Consequently, if the taxonomy of these symbiotic crabs had been based on juveniles and undeveloped character states, the problems get even more serious (Campos 1989, 1993). Melzer & Schwabe (2008) studied three juvenile crabs living in the chiton Tonicia chilensis (Frembly, 1827) (Polyplacophora: Chitonidae) collected in Muelle Dichato, Chile, and they identified them as the putative invasive stage of a species of Orthotheres Sakai, 1969. The crabs are of the typical juvenile pinnotherid form with a masculine habitus, including a suborbicular carapace, large eyes and a slender pleon (= abdomen) with the telson well defined (Ocampo et al. 2017). Unpublished observations on juveniles and adults of several species of pinnotherid crabs by the author, for example, Juxtafabia muliniarum (Rathbun, 1918), Dissodactylus lockingtoni Glassell, 1935, D.
    [Show full text]