Vapour-Liquid-Liquid Equilibria Measurements for the Dehydration of Low Molecular Weight Alcohols Via Heterogeneous Azeotropic Distillation

Total Page:16

File Type:pdf, Size:1020Kb

Vapour-Liquid-Liquid Equilibria Measurements for the Dehydration of Low Molecular Weight Alcohols Via Heterogeneous Azeotropic Distillation Vapour-liquid-liquid equilibria measurements for the dehydration of low molecular weight alcohols via heterogeneous azeotropic distillation by Leanne Brits Thesis presented in partial fulfilment of the requirements for the Degree of MASTER OF ENGINEERING (CHEMICAL ENGINEERING) in the Faculty of Engineering at Stellenbosch University Supervisor Dr CE Schwarz Co-Supervisor Prof AJ Burger March 2015 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. 23 February 2015 Copyright © 2015 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za ABSTRACT The operation and optimisation of a distillation train directly effects the total energy consumption of a typical processing plant. With this in mind, the efficient separation of low molecular weight alcohol azeotropes, using heterogeneous azeotropic distillation, is of great economic and environmental importance. Heterogeneous azeotropic distillation involves the addition of an extraneous component, known as an entrainer, to the mixture to facilitate separation. Benzene has long been replaced as the entrainer of choice, due to its carcinogenic nature, and research into finding a more suitable entrainer has commenced. To determine if an entrainer is suitable for a particular separation, detailed phase behaviour information of the ternary alcohol/entrainer/water system is required; vapour-liquid (VLE), vapour-liquid-liquid (VLLE) equilibria data and the composition of all azeotropes present. This is complicated by the fact that thermodynamic models (like the nonrandom two-liquid (NRTL), universal functional (UNIFAC) and universal quasichemical (UNIQUAC) activity coefficient models) often fail to predict the phase equilibria of ternary systems. The lack of available experimental phase equilibria data, and the inability of thermodynamic models to predict phase equilibria data, has fueled the need for the experimental determination of accurate, repeatable isobaric VLE, VLLE and azeotropic data. With this in mind, this research is focused on the experimental determination of VLE, VLLE and azeotropic data for three low molecular weight alcohol/entrainer/water systems at 101.3 kPa. Following an extensive literature study on azeotropes, applicable separation techniques and available VLE and VLLE data in literature, the ethanol/2-butanone/water, n-propanol/2- butanone/water and iso-propanol/2-butanone/water systems were chosen for experimental investigation. The experimental determination was carried out in a Gillespie type still, equipped with an ultrasonic homogenizer. The temperature and pressure accuracies of the equipment were found to be 0.03°C and 2mbar respectively. The chosen experimental methodology was verified, and its repeatability tested, through the measurement of isobaric VLE and VLLE data of ethanol/isooctane, ethanol/n-butanol/water and n-propanol/isooctane/water systems at 101.3 kPa and subsequent comparison of the measured data with literature data. The compositional error reported, taking into account experimental and analysis effects, is ±0.014 mole fraction. All experimentally determined data sets, verification and new data, were tested for thermodynamic consistency by using the Wisniak modification of the Herrington test, the L/W consistency test, as well as the McDermott-Ellis consistency test, and found to be consistent. The Othmer-Tobias correlation was used to ensure the measured LLE data followed a steady trend, with all R-values larger than 0.910. ii | P a g e Stellenbosch University https://scholar.sun.ac.za For all three of the new systems chosen, the absence of ternary heterogeneous azeotropes was noted. The presence of a ternary homogeneous azeotrope was found for both the ethanol/2-butanone/water and iso-propanol/2-butanone/water systems. No ternary azeotropes are present for the n-propanol/2-butanone/water system. Suitable entrainers were compared to 2-butanone (MEK) by plotting measured data and literature information of five similar alcohol/entrainer/water systems on a ternary phase diagram. It was found that MEK could not be considered as a suitable entrainer for heterogeneous azeotropic distillation of ethanol, n-propanol and IPA. This is due to the absence of a ternary heterogeneous azeotrope for the aforementioned alcohol/MEK/water systems. Finally, the ability of thermodynamic models (NRTL, UNIFAC and UNIQUAC) to predict experimental data was determined both visually and through descriptive statistics. This entailed the inspection of ternary phase diagrams and the calculation and evaluation of average absolute deviation (AAD) and and average absolute relative deviation (AARD%) values. The measured data were modelled in Aspen Plus®. It was found that none of the models could predict the ternary systems with acceptable accuracy and the data were regressed. In general, the regressed parameters for the NRTL, UNIFAC and UNIQAC models improved the model predictions when compared to the built-in Aspen parameters. The UNIFAC model predicted the ethanol/MEK/water and n-propanol/MEK/water systems most accurately while none of the models could predict the IPA/MEK/water systems with acceptable accuracy. iii | P a g e Stellenbosch University https://scholar.sun.ac.za OPSOMMING Die ontwerp en optimering van 'n distillasietrein het ‘n duidelike effek op die totale energieverbruik van ‘n tipiese prosesaanleg. Met dit in gedagte, is ‘n meer doeltreffende skeiding van lae molekulêre massa alkohol aseotrope, met behulp van heterogene aseotropiese distillasie, voordelig vir die ekonomie en die omgewing. Heterogene aseotropiese distillasie behels die toevoeging van 'n eksterne komponent, wat bekend staan as 'n skeidingsagent, om uiteindelik die skeiding te fasiliteer deur die komponente se dampdrukke te verander. Benseen was in die verlede ‘n gewilde skeidingsagent, maar dit is a.g.v. sy karsenogeniese eienskappe nie meer aanvaarbaar om te gebruik nie. Nuwe navorsing in hierdie veld fokus dus onder andere op die identifisering van meer geskikte skeidingsagente. Om te bepaal of 'n skeidingsagent geskik is, word indiepte fasegedrag inligting benodig, i.e. damp-vloeistof en damp- vloeistof-vloeistof ewewigsdata en die samestelling van alle aseotrope teenwoordig. Ongelukkig kan termodinamiese modelle dikwels nie die fasegedrag van ternêre stelsels voorspel nie. Dit, sowel as die beperkte beskikbaarheid van eksperimentele ewewigsdata in die literatuur, het dus hierdie navorsing aangevuur. Die projek het gefokus op die experimentele bepaling van damp-vloeistof en damp-vloeistof-vloeistof ewewigsdata en aseotropiese data vir drie alkohol/skeidingsagent/water-stelsels by 101.3 kPa. Na ‘n indiepte literatuurstudie van aseotrope, gepaste skeidingstegnieke en beskikbare damp- vloeistof en damp-vloeistof-vloeistof ewewigsdata, is 2-butanone (MEK) gekies as ‘n moontlike skeidingsagent en die etanol/MEK/water-, n-propanol/MEK/water- en iso-propanol/MEK/water- stelsels gekies vir eksperimentele ondersoek. Die data is met ‘n dinamiese Gillespie eenheid gemeet, toegerus met ‘n ultrasoniese homogeniseerder om vloeistof-vloeistof skeiding te voorkom. Die akkuraatheidsbande van temperatuur- en druk meetinstrumente was 0,03°C en 2 mbar, onderskeidelik. Die eksperimentele metode en die herhaalbaarheid van metings is bevesting, deur die isobariese damp-vloeistof en damp-vloeistof-vloeistof ewewigsdata van etanol/iso-oktaan, etanol/n-butanol/water en n-propanol/iso-oktaan/water te vergelyk met onafhanklike stelle ooreenstemmende data uit die literatuur. Die gesamentlike eksperimentele en analitiese fout wat gemaak kon word tydens bepaling van molfraksie samestellings was ±0.014 molfraksie. Alle gemete eksperimentele data is getoets vir termodinamiese samehang deur middel van beide die L/W en McDermott-Ellis konsekwentheidstoetse. Die Othmer-Tobias korrelasie is gebruik om seker te maak dat die gemete LLE data ‘n konstante tendens volg, met alle R-waardes groter as 0.910. iv | P a g e Stellenbosch University https://scholar.sun.ac.za Vir al drie van die nuwe stelsels wat gekies is, was ‘n drieledige heterogene aseotroop afwesig. Die teenwoordigheid van drieledige homogene aseotrope is egter waargeneem vir die etanol/MEK/water- en IPA/MEK/water-stelsels. Geen drieledige aseotrope is vir die n-propanol/MEK/water-sisteem gevind nie. Alle gemete data, asook literatuur inligting van vyf soortgelyke alkohol/skeidingsagent/water sisteme, is op ‘n drieledige fase diagram voorgestel om die skeidingsagente met mekaar te vergelyk. Hiervolgens word dit getoon dat MEK nie as ‘n gepaste skeidingsagent vir heterogene aseotropiese distillase beskou kan word nie a.g.v. die afwesigheid van ‘n drieledige heterogene aseotroop in die voorgenoemde alkohol/MEK/waterstelsels. Die vermoë van die termodinamiese modelle (NRTL, UNIFAC en UNIQUAC) om die eksperimentele data te voorspel is visueel (per grafiek) sowel as deur beskrywende statistiek bepaal. Dit behels die inspeksie van drieledige fasediagrame en die berekening en evaluasie van die gemiddelde absolute afwyking en gemiddelde absolute relatiewe afwykingswaardes. Hierdie teoretiese data is met Aspen
Recommended publications
  • The Separation of Three Azeotropes by Extractive Distillation by An-I Yeh A
    The separation of three azeotropes by extractive distillation by An-I Yeh A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Chemical Engineering Montana State University © Copyright by An-I Yeh (1983) Abstract: Several different kinds of extractive distillation agents were investigated to affect the separation of three binary liquid mixtures, isopropyl ether - acetone, methyl acetate - methanol, and isopropyl ether - methyl ethyl ketone. Because of the small size of the extractive distillation column, relative volatilities were assumed constant and the Fenske equation was used to calculate the relative volatilities and the number of minimum theoretical plates. Dimethyl sulfoxide was found to be a good extractive distillation agent. Extractive distillation when employing a proper agent not only negated the azeotropes of the above mixtures, but also improved the efficiency of separation. This process could reverse the relative volatility of isopropyl ether and acetone. This reversion was also found in the system of methyl acetate and methanol when nitrobenzene was the agent. However, normal distillation curves were obtained for the system of isopropyl ether and methyl ethyl ketone undergoing extractive distillation. In the system of methyl acetate and methanol, the relative volatility decreased as the agents' carbon number increased when glycols were used as the agents. In addition, the oxygen number and the locations of hydroxyl groups in the glycols used were believed to affect the values of relative volatility. An appreciable amount of agent must be maintained in the column to affect separation. When dimethyl sulfoxide was an agent for the three systems studied, the relative volatility increased as the addition rate increased.
    [Show full text]
  • Development of a Process for N-Butanol Recovery from Abe
    937 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 74, 2019 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza Copyright © 2019, AIDIC Servizi S.r.l. ISBN 978-88-95608-71-6; ISSN 2283-9216 DOI: 10.3303/CET1974157 Development of a Process for N-Butanol Recovery from Abe Wastewater Streams by Membrane Technology * Marco Stoller , Marco Bravi, Paola Russo, Roberto Bubbico, Barbara Mazzarotta Sapienza University of Rome, Dept. of Chemical Materials Environmental Engineering, Via Eudossiana 18, 00184 Rome, Italy [email protected] The aceton-butyl-ethanolic fermentation process (ABE) is a biotechnological process that leads to the production of acetone, n-butanol and ethanol (ABE compounds) from glucose sources and amides by use of certain biomasses. The process was developed initially during the middle of the last century and suffers from decline due to the greater petrochemical production of products and the lowering of the costs of the sector. Nowadays, the ABE process is regaining great interest because the fraction with the highest concentration, i.e. n-butanol, is an excellent constituent for biofuels. The ABE process has been optimized over time to obtain maximum yields of n-butanol, but the problem of separating and concentrating the butanol in the outlet stream of the ABE process persists. To allow an adequate use, often distillation by use of more columns is required. Moreover, the contained biomasses and suspended solids, in high quantity, must be eliminated, leading to overall high treatment costs. This work will report the main idea and some preliminary experimental results for the development and application of a process based on membrane technologies, to separate and concentrate the butanol from ABE process streams to sensibly reduce the difficulty to perform a final distillation.
    [Show full text]
  • Evaluation of Azeotropic Dehydration for the Preservation of Shrimp. James Edward Rutledge Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 Evaluation of Azeotropic Dehydration for the Preservation of Shrimp. James Edward Rutledge Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Rutledge, James Edward, "Evaluation of Azeotropic Dehydration for the Preservation of Shrimp." (1969). LSU Historical Dissertations and Theses. 1689. https://digitalcommons.lsu.edu/gradschool_disstheses/1689 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 70-9089 microfilmed exactly as received RUTLEDGE, James Edward, 1941- EVALUATION OF AZEOTROPIC DEHYDRATION FOR THE PRESERVATION OF SHRIMP. The Louisiana State University and Agricultural and Mechanical College, PhJD., 1969 Food Technology University Microfilms, Inc., Ann Arbor, Michigan Evaluation of Azeotropic Dehydration for the Preservation of Shrimp A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Food Science and Technology by James Edward Rutledge B.S., Texas A&M University, 1963 M.S., Texas A&M University, 1966 August, 1969 ACKNOWLEDGMENT The author wishes to express his sincere appreciation to his major professor, Dr, Fred H. Hoskins, for the guidance which he supplied not only in respect to this dissertation but also in regard to the author’s graduate career at Louisiana State University, Gratitude is also extended to Dr.
    [Show full text]
  • FUGACITY It Is Simply a Measure of Molar Gibbs Energy of a Real Gas
    FUGACITY It is simply a measure of molar Gibbs energy of a real gas . Modifying the simple equation for the chemical potential of an ideal gas by introducing the concept of a fugacity (f). The fugacity is an “ effective pressure” which forces the equation below to be true for real gases: θθθ f µµµ ,p( T) === µµµ (T) +++ RT ln where pθ = 1 atm pθθθ A plot of the chemical potential for an ideal and real gas is shown as a function of the pressure at constant temperature. The fugacity has the units of pressure. As the pressure approaches zero, the real gas approach the ideal gas behavior and f approaches the pressure. 1 If fugacity is an “effective pressure” i.e, the pressure that gives the right value for the chemical potential of a real gas. So, the only way we can get a value for it and hence for µµµ is from the gas pressure. Thus we must find the relation between the effective pressure f and the measured pressure p. let f = φ p φ is defined as the fugacity coefficient. φφφ is the “fudge factor” that modifies the actual measured pressure to give the true chemical potential of the real gas. By introducing φ we have just put off finding f directly. Thus, now we have to find φ. Substituting for φφφ in the above equation gives: p µ=µ+(p,T)θ (T) RT ln + RT ln φ=µ (ideal gas) + RT ln φ pθ µµµ(p,T) −−− µµµ(ideal gas ) === RT ln φφφ This equation shows that the difference in chemical potential between the real and ideal gas lies in the term RT ln φφφ.φ This is the term due to molecular interaction effects.
    [Show full text]
  • Alembic Pot Still
    ALEMBIC POT STILL INSTRUCTION MANUAL CAN BE USED WITH THE GRAINFATHER OR T500 BOILER SAFETY Warning: This system produces a highly flammable liquid. PRECAUTION: • Always use the Alembic Pot Still System in a room with adequate ventilation. • Never leave the Alembic Pot Still system unattended when operating. • Keep the Alembic Pot Still system away from all sources of ignition, including smoking, sparks, heat, and open flames. • Ensure all other equipment near to the Alembic Pot Still system or the alcohol is earthed. • A fire extinguishing media suitable for alcohol should be kept nearby. This can be water fog, fine water spray, foam, dry powder, carbon dioxide, sand or dolomite. • Do not boil dry. In the event the still is boiled dry, reset the cutout button under the base of the still. In the very unlikely event this cutout fails, a fusible link gives an added protection. IN CASE OF SPILLAGE: • Shut off all possible sources of ignition. • Clean up spills immediately using cloth, paper towels or other absorbent materials such as soil, sand or other inert material. • Collect, seal and dispose accordingly • Mop area with excess water. CONTENTS Important points before getting started ............................................................................... 3 Preparing the Alembic Pot Still ................................................................................................. 5 Distilling a Whiskey, Rum or Brandy .......................................................................................7 Distilling neutral
    [Show full text]
  • Review of Extractive Distillation. Process Design, Operation
    Review of Extractive Distillation. Process design, operation optimization and control Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, Xinqiang You To cite this version: Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, et al.. Review of Extractive Distillation. Process design, operation optimization and control. Chemical Engineering Research and Design, Elsevier, 2019, 141, pp.229-271. 10.1016/j.cherd.2018.09.020. hal-02161920 HAL Id: hal-02161920 https://hal.archives-ouvertes.fr/hal-02161920 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/239894 Official URL: https://doi.org/10.1016/j.cherd.2018.09.020 To cite this version: Gerbaud, Vincent and Rodríguez-Donis, Ivonne and Hegely, Laszlo and Láng, Péter and Dénes, Ferenc and You, Xinqiang Review of Extractive Distillation. Process design, operation optimization and control. (2018) Chemical Engineering Research and Design, 141.
    [Show full text]
  • 2019 Scotch Whisky
    ©2019 scotch whisky association DISCOVER THE WORLD OF SCOTCH WHISKY Many countries produce whisky, but Scotch Whisky can only be made in Scotland and by definition must be distilled and matured in Scotland for a minimum of 3 years. Scotch Whisky has been made for more than 500 years and uses just a few natural raw materials - water, cereals and yeast. Scotland is home to over 130 malt and grain distilleries, making it the greatest MAP OF concentration of whisky producers in the world. Many of the Scotch Whisky distilleries featured on this map bottle some of their production for sale as Single Malt (i.e. the product of one distillery) or Single Grain Whisky. HIGHLAND MALT The Highland region is geographically the largest Scotch Whisky SCOTCH producing region. The rugged landscape, changeable climate and, in The majority of Scotch Whisky is consumed as Blended Scotch Whisky. This means as some cases, coastal locations are reflected in the character of its many as 60 of the different Single Malt and Single Grain Whiskies are blended whiskies, which embrace wide variations. As a group, Highland whiskies are rounded, robust and dry in character together, ensuring that the individual Scotch Whiskies harmonise with one another with a hint of smokiness/peatiness. Those near the sea carry a salty WHISKY and the quality and flavour of each individual blend remains consistent down the tang; in the far north the whiskies are notably heathery and slightly spicy in character; while in the more sheltered east and middle of the DISTILLERIES years. region, the whiskies have a more fruity character.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,586,922 B2 Wood Et Al
    USOO9586922B2 (12) United States Patent (10) Patent No.: US 9,586,922 B2 Wood et al. (45) Date of Patent: Mar. 7, 2017 (54) METHODS FOR PURIFYING 9,388,150 B2 * 7/2016 Kim ..................... CO7D 307/48 5-(HALOMETHYL)FURFURAL 9,388,151 B2 7/2016 Browning et al. 2007/O161795 A1 7/2007 Cvak et al. 2009, 0234142 A1 9, 2009 Mascal (71) Applicant: MICROMIDAS, INC., West 2010, 0083565 A1 4, 2010 Gruter Sacramento, CA (US) 2010/0210745 A1 8/2010 McDaniel et al. 2011 O144359 A1 6, 2011 Heide et al. (72) Inventors: Alex B. Wood, Sacramento, CA (US); 2014/01 00378 A1 4/2014 Masuno et al. Shawn M. Browning, Sacramento, CA 2014/O1878O2 A1 7/2014 Mikochik et al. (US);US): Makoto N. Masuno,M. s Elk Grove, s 2015/02668432015,0203462 A1 9/20157/2015 CahanaBrowning et etal. al. CA (US); Ryan L. Smith, Sacramento, 2016/0002190 A1 1/2016 Browning et al. CA (US); John Bissell, II, Sacramento, 2016,01681 07 A1 6/2016 Masuno et al. CA (US) 2016/02O7897 A1 7, 2016 Wood et al. (73) Assignee: MICROMIDAS, INC., West FOREIGN PATENT DOCUMENTS Sacramento, CA (US) CN 101475544. A T 2009 (*) Notice: Subject to any disclaimer, the term of this N 1939: A 658 patent is extended or adjusted under 35 DE 635,783 C 9, 1936 U.S.C. 154(b) by 0 days. EP 291494 A2 11, 1988 EP 1049657 B1 3, 2003 (21) Appl. No.: 14/852,306 GB 1220851 A 1, 1971 GB 1448489 A 9, 1976 RU 2429234 C2 9, 2011 (22) Filed: Sep.
    [Show full text]
  • Hydro-Distillation and Steam Distillation from Aromatic Plants
    Hydro-distillation and steam distillation from aromatic plants Sudeep Tandon Scientist Chemical Engineering Division CIMAP, Lucknow HISTORY Written records of herbal distillation are found as early as the first century A.D., and around 1000 A.D., the noted Arab physician and naturalist Ibn Sina also known as Avicenna described the distillation of rose oil from rose petals The ancient Arabian people began to study the chemical properties of essential oils & developed and refined the distillation process Europeans began producing essential oils in the 12th century 1 DISTILLATION ? A process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat. In simple terms distillation of aromatic herbs implies vaporizing or liberating the oils from the trichomes / plant cell membranes of the herb in presence of high temperature and moisture and then cooling the vapour mixture to separate out the oil from water. It is the most popular widely used and cost effective method in use today for producing majority of the essential oils throughout the world Distillation is an art and not just a “Chemical" process that is reliant upon many factors for successful quality oil production. BASIC SCIENTIFIC PRINCIPLES INVOLVED IN THE PROCESS To convert any liquid into a vapour we have to apply energy in form of heat called as latent heat of vaporization A liquid always boils at the temperature at which its vapour pressure equals the atmospheric / surrounding pressure For two immiscible liquids the total vapour pressure of the mixture is always equal to the sum of their partial pressures The composition of the mixture will be determined by the concentration of the individual components into its partial pressure As known the boiling point of most essential oil components exceeds that of water and generally lies between 150 – 300oC 2 If a sample of an essential oil having a component ‘A’ having boiling point for example 190oC and the boiling point of the water is 100oC.
    [Show full text]
  • By a 965% ATT'ys
    July 19, 1960 A. WATZL ETAL 2,945,788 PROCESS FOR THE PURIFICATION OF DIMETHYLTEREPHTHALATE Filed Nov. 19, l956 AZEOTROPE DISTILLATE CONDENSER CONDENSED WACUUM DISTILLATE DRY DISTILLATION MXTURE N2 COLUMN MPURE - SOD WACUUMFILTER ETHYLENE DMETHYL DMETHYL GLYCOL TEREPHTHALATE TEREPHTHALATE ETHYLENE GLYCOL INVENTORS: ANTON WATZL by aERHARD 965% SIGGEL ATT'YS 2,945,788 Patented July 19, 1960 2 phthalate is immediately suitable for reesterification or Subsequent polycondensation to polyethylene terephthal 2,945,788 ate. There are gained polycondensates of high degree of PROCESS FOR THE PURIFICATION OF viscosity with K values from 50 to 57. DMETHYLTEREPHTHALATE The best mode contemplated for practicing the inven Anton Watz, Kleinwallstadt (Ufr), and Erhard Siggel, tion involves the use of ethylene glycol as the aliphatic Laudenbach (Main), Germany, assignors to Vereinigte glycol. The following is a specific illustration thereof. Glanzstoff-Fabriken A.G., Wuppertal-Elberfeld, Ger Example many Thirty grams of crude dimethylterephthalate are mixed Filed Nov.19, 1956, Ser. No. 622,778 in a flask with 270 grams of ethylene glycol and azeo tropically distilled with the introduction of dry nitrogen 4 Claims. (C. 202-42) in a column of 30 cm. at about 44 Torr (1 Torr equals 1 mm. Hg). The azeotrope goes over at about 120° C. i This invention, in general, relates to production of into a cooled condenser. The dimethylterephthalate dimethylterephthalate and more particularly to the puri 5 separated from the glycol by vacuum filtering can be fication thereof. used immediately for reesterification or for polyconden The purification of dimethylterephthalate can be car sation. This process is illustrated in the flow sheet of ried out either by distillation or by recrystallization from the accompanying drawing.
    [Show full text]
  • Heterogeneous Azeotropic Distillation
    PROSIMPLUS APPLICATION EXAMPLE HETEROGENEOUS AZEOTROPIC DISTILLATION EXAMPLE PURPOSE This example illustrates a high purity separation process of an azeotropic mixture (ethanol-water) through heterogeneous azeotropic distillation. This process includes distillation columns. Additionally these rigorous multi- stage separation modules are part of a recycling stream, demonstrating the efficiency of ProSimPlus convergence methods. Specifications are set on output streams in order to insure the required purity. This example illustrates the way to set "non-standard" specifications in the multi-stage separation modules. Three phase calculations (vapor-liquid- liquid) are done with the taken into account of possible liquid phase splitting. ACCESS Free-Internet Restricted to ProSim clients Restricted Confidential CORRESPONDING PROSIMPLUS FILE PSPS_EX_EN-Heterogeneous-Azeotropic-Distillation.pmp3 . Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example. Copyright © 2009 ProSim, Labège, France - All rights reserved www.prosim.net Heterogeneous azeotropic distillation Version: March, 2009 Page: 2 / 12 TABLE OF CONTENTS 1. PROCESS MODELING 3 1.1. Process description 3 1.2. Process flowsheet 5 1.3. Specifications 6 1.4. Components 6 1.5. Thermodynamic model 7 1.6. Operating conditions 7 1.7. "Hints and Tips" 9 2. RESULTS 9 2.1. Comments on results 9 2.2. Mass and energy balances 10 2.3.
    [Show full text]
  • Distillation ­ Accessscience from Mcgraw­Hill Education
    6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Distillation Article by: King, C. Judson University of California, Berkeley, California. Last updated: 2014 DOI: https://doi.org/10.1036/1097­8542.201100 (https://doi.org/10.1036/1097­8542.201100) Content Hide Simple distillations Fractional distillation Vapor­liquid equilibria Distillation pressure Molecular distillation Extractive and azeotropic distillation Enhancing energy efficiency Computational methods Stage efficiency Links to Primary Literature Additional Readings A method for separating homogeneous mixtures based upon equilibration of liquid and vapor phases. Substances that differ in volatility appear in different proportions in vapor and liquid phases at equilibrium with one another. Thus, vaporizing part of a volatile liquid produces vapor and liquid products that differ in composition. This outcome constitutes a separation among the components in the original liquid. Through appropriate configurations of repeated vapor­liquid contactings, the degree of separation among components differing in volatility can be increased manyfold. See also: Phase equilibrium (/content/phase­equilibrium/505500) Distillation is by far the most common method of separation in the petroleum, natural gas, and petrochemical industries. Its many applications in other industries include air fractionation, solvent recovery and recycling, separation of light isotopes such as hydrogen and deuterium, and production of alcoholic beverages, flavors, fatty acids, and food oils. Simple distillations The two most elementary forms of distillation are a continuous equilibrium distillation and a simple batch distillation (Fig. 1). http://www.accessscience.com/content/distillation/201100 1/10 6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education Fig. 1 Simple distillations. (a) Continuous equilibrium distillation.
    [Show full text]