Importance of Acidic, Proline/Serine/Threonine-Rich, And

Total Page:16

File Type:pdf, Size:1020Kb

Importance of Acidic, Proline/Serine/Threonine-Rich, And Proc. Natl. Acad. Sci. USA Vol. 94, pp. 2501–2506, March 1997 Immunology Importance of acidic, prolineyserineythreonine-rich, and GTP- binding regions in the major histocompatibility complex class II transactivator: Generation of transdominant- negative mutants KEH-CHUANG CHIN*†,GEORGE G.-X. LI†‡, AND JENNY P.-Y. TING†‡ *Department of Biochemistry and Biophysics, †Lineberger Comprehensive Cancer Center, and ‡Department of Microbiology–Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295 Communicated by George Stark, Cleveland Clinic Foundation, Cleveland, OH, December 31, 1996 (received for review September 3, 1996) ABSTRACT The class II transactivator (CIITA) is a (11). CIITA was cloned by its ability to complement RJ2.2.5, master transcription regulator of gene products involved in an in vitro-generated MHC class II negative cell derived from the exogenous antigen presentation pathway, including major Raji (11, 18). Several groups, including our own, have shown histocompatibility complex (MHC) class II, invariant chain, that CIITA is induced by IFN-g and that transfection of CIITA and DM. An extensive analysis of the putative functional alone into cells is sufficient to activate MHC class II (19–21), domains of CIITA is undertaken here to explore the action of invariant chain (19, 22), and HLA-DM genes (22). CIITA. Antibodies to CIITA protein were produced to verify A major issue in the field concerns the mode of action of that these mutant proteins are expressed. Both acidic and CIITA. Although CIITA is a strong transactivator, it does not prolineyserineythreonine-rich domains are essential for class bind MHC class II promoter elements, nor does it appear to II MHC promoter activation. In addition, three guanine interact with transcription factors that bind these elements. In nucleotide-binding motifs are essential for CIITA activity. Of this report, we have undertaken an extensive domain analysis these mutants, two exhibited strong transdominant-negative to delineate functional domains of CIITA. The results show functions. These two mutants provide a plausible approach to that the proline-, serine-, and threonine-rich domains are manipulate MHC class II expression and immune responses. critical for function. In addition, a GTP-binding domain consisting of phosphate-, Mg21-, and guanine-binding motifs is Major histocompatibility complex (MHC) gene products DR, crucial for CIITA function, strongly implicating a role for GTP DP, and DQ play a critical role in the presentation of processed binding. Two of the mutants are highly efficient transdomi- exogenous antigen to T cells (1–3). MHC class II molecules are nant-negative molecules that nearly abolished the normal constitutively expressed at high levels in B lymphocytes and function of CIITA. The biological implications of these ob- dendritic cells and are induced in certain cell types such as servations are discussed. macrophages, endothelial cells, astrocytes, and microglia upon treatment with interferon-g (IFN-g). The appropriate consti- MATERIALS AND METHODS tutive and inducible expression of MHC class II molecules is essential for normal immune response, whereas aberrantly Cell Cultures and Transient Transfection. 2fTGH, G3A, high and low expression have been correlated with various Raji, Namalwa, and RJ2.2.5 cells were cultured as previously autoimmune diseases (4, 5) and a type of severe combined described (18, 19, 23). COS-7, a T antigen-transformed mon- immunodeficiency disease, the bare lymphocyte syndrome key kidney cell line, was maintained in DMEM-H medium (BLS), respectively (6, 7). Patients with BLS lack MHC class containing 10% fetal calf serum (GIBCOyBRL). 2fTGH, II antigen expression on both constitutive and IFN-g-inducible G3A, and RJ2.2.5 cells were transfected as described previ- cells (8, 9). The lack of MHC class II antigen expression on ously (19, 24). cells from group A of type II BLS patients is primarily due to DNA Constructs. The mammalian expression vector, a defect in the transcription factor, class II transactivator pcDNA3.FLAG.CIITA8 (FLAG.CIITA8), contains the (CIITA), initially identified as AIR-1 (10, 11). FLAG epitope (DYKDDDDK) upstream of the first methi- The primary regulation of constitutive and IFN-g-induced onine of CIITA8. All mutant constructs were generated by a MHC class II genes is at the transcriptional level (9, 12, 13). published method (25) from the parental plasmid, FLAG.CI- The MHC class II, invariant chain, and DMAyDMB genes ITA8, with a selection primer, 59-AAATGCTTCAAT- contain three highly conserved DNA cis-acting elements: the gcTAGcgAAAAAGGAAG-39, which mutated a SspItoNheI W, X, and Y boxes (14), also known collectively as the class II restriction site, and a mutagenic primer. All mutants were box. These three elements exhibit conservation in sequence, as initially identified by the presence of an NheI site and later well as spacing constraint and regimented stereospecific align- confirmed by sequencing. ment (15, 16). Construction Of ProlineySerineyThreonine Deletion Mu- The transcription factors that directly bind to the MHC class tants. CIITA(D132–301) was constructed by creating ClaI II promoter elements are well studied (9, 12, 17), but expres- restriction sites at nucleotides 511 (amino acids 132–133) and sion of these proteins is generally ubiquitous and does not 1013 (amino acids 300–301) of CIITA8 using two mutagenic parallel MHC class II gene expression. In contrast, expression primers: 59-533-GCCCAACTTCTGCTGGCATaTCgATAC- of CIITA closely parallels that of MHC class II gene expression TCTCACCGATCAC-493-39 and 59-1036-GAGGTCAGGG- CAGGTTCAtcgATGCTGGGCAGGTCAGTG-997-39. The The publication costs of this article were defrayed in part by page charge mutagenized construct was digested with ClaI to release the payment. This article must therefore be hereby marked ‘‘advertisement’’ in prolineyserineythreonine-containing fragment, and the re- accordance with 18 U.S.C. §1734 solely to indicate this fact. Copyright q 1997 by THE NATIONAL ACADEMY OF SCIENCES OF THE USA Abbreviations: MHC, major histocompatibility complex; IFN-g, in- 0027-8424y97y942501-6$2.00y0 terferon-g; CIITA, class II transactivator; CAT, chloramphenicol PNAS is available online at http:yywww.pnas.org. acetyltransferase. 2501 2502 Immunology: Chin et al. Proc. Natl. Acad. Sci. USA 94 (1997) maining sequence was in the plasmid religated. CIITA(D132– 209) was constructed in the same way as mentioned above with mutagenic primers, 59-533-GCCCAACTTCTGCTGGCATa- TCgATACTCTCACCGATCAC-493-39 and 59-766-CAAC- GAGGAACTGGAGAAAtcgATGGGAATCTGGTCGGT- TTTC-724-39, and it contained a clean deletion of the proliney serine-rich domain. CIITA(D209–301) has deleted threonine- rich domain from amino acid residues of 209–301. This mutant construct was mutagenized with primers: 59-766-CAACGAG- GAACTGGAGAAAtcgATGGGAATCTGGTCGGTTT- TC-724-39 and 59-1036-GAGGTCAGGGCAGGTTCAtcgA- TGCTGGGCAGGTCAGTG-997-39. Construction Of Nucleotide-Binding Motif Mutants. CI- ITA-GTP1(DGK) and CIITA-GTP1(K3E) were mutated in the phosphate-binding motif. CIITA-GTP1(DGK) has a de- letion of two amino acid residues, 420 and 421, by a ‘‘loop out’’ mutagenic primer: 59-1395-CTCTTGCCCTGACCAGCCAC- AGCAATCACTCGTG-1353-39. CIITA-GTP1(K 3 E) has a point mutation at residue 427 from lysine to glutamic acid. The mutagenic primer used to generate this mutant was 59-1408- CCCAGCCCAATAGCTCTcGCCCTGACCAGCTTTGCC- 1373-39. CIITA-GTP2(DDAYG) and CIITA-GTP3(DSKAD) have deletions in the Mg21- and guanine-binding motifs, respectively. CIITA-GTP2(DDAYG) was created by a loop out primer: 59-1522-GAGCAGATCCTGCAGCCCCG- GACGGTTCAAG-1480-39. Mutagenic primer used to con- struct GTP3(DSKAD) was 59-1813-CAGCTCAAAT- AGGGCCAGGCTCTGGACCAG-1777-39. Generation of Stable Transfectants Expressing Cell Surface MHC Class II Antigen with FLAG.CIITA8 Expression Vector. Ten micrograms of FLAG.CIITA8 plasmid was transfected into G3A cell. The stable transfectants expressing cell surface MHC class II antigens were selected by the immunomagnetic selection, according to manufacturer is protocol (Dynal, Oslo). The cells underwent immunoselection three times for the next 4 weeks. Cells expressing MHC class II antigens were con- firmed by fluorescence-activated cell sorting analysis (19). Anti-CIITA (a-CIITA) Antibody Production. Anti-human CIITA antibody was raised against a peptide, 726GEIKD- KELPQYLALTPR742, crosslinked to KLH (keyhole limpet FIG. 1. The FLAG foreign epitope did not alter CIITA activity. (A) hemocyanin; Pierce). The antiserum was tested after numer- FLAG.CIITA8 activated the DRA promoter in G3A cells. G3A cells ous injections of the rabbit with the antigen. were cotransfected with the pDRA300CAT construct and an empty Western Blot. Raji, Namalwa, and RJ2.2.5 nuclear extracts vector (lane 1), CIITA expression vector (lane 2), or FLAG.CIITA8 were prepared according to Dignam et al. (26). Whole cell (lanes 3 and 4). The cells were harvested and analyzed for CAT activity extract was prepared as described (27). The samples were 48 h after transfection. (B) FLAG.CIITA8 induces HLA-DRA ex- analyzed by immunoblotting with a-FLAG (10 mgyml; IBI– pression on the MHC class II-negative G3A mutant cells. 2fTGH cells Kodak) or a-CIITA (1.5 mgyml) antibodies using standard (Ba and Bb), G3A (Bc and Bd), and G3A (Be and Bf) stably integrated techniques (27). Immunoblots were detected by enhanced with FLAG.CIITA8 were not treated (Left) or treated (Right) with 500 unitsyml of IFN-g for 72 h. The cells were
Recommended publications
  • Metabolic Engineering of Escherichia Coli for Poly(3-Hydroxybutyrate)
    Lin et al. Microb Cell Fact (2015) 14:185 DOI 10.1186/s12934-015-0369-3 RESEARCH Open Access Metabolic engineering of Escherichia coli for poly(3‑hydroxybutyrate) production via threonine bypass Zhenquan Lin1,2,3†, Yan Zhang1,2,3†, Qianqian Yuan1,2,3,4, Qiaojie Liu1,2,3, Yifan Li1,2,3, Zhiwen Wang1,2,3, Hongwu Ma4*, Tao Chen1,2,3,5* and Xueming Zhao1,2,3 Abstract Background: Poly(3-hydroxybutyrate) (PHB), have been considered to be good candidates for completely biode- gradable polymers due to their similar mechanical properties to petroleum-derived polymers and complete biodeg- radability. Escherichia coli has been used to simulate the distribution of metabolic fluxes in recombinant E. coli pro- ducing poly(3-hydroxybutyrate) (PHB). Genome-scale metabolic network analysis can reveal unexpected metabolic engineering strategies to improve the production of biochemicals and biofuels. Results: In this study, we reported the discovery of a new pathway called threonine bypass by flux balance analysis of the genome-scale metabolic model of E. coli. This pathway, mainly containing the reactions for threonine synthesis and degradation, can potentially increase the yield of PHB and other acetyl-CoA derived products by reutilizing the CO2 released at the pyruvate dehydrogenase step. To implement the threonine bypass for PHB production in E. coli, we deregulated the threonine and serine degradation pathway and enhanced the threonine synthesis, resulting in 2.23-fold improvement of PHB titer. Then, we overexpressed glyA to enhance the conversion of glycine to serine and activated transhydrogenase to generate NADPH required in the threonine bypass.
    [Show full text]
  • The Role of Some of the Krebs Cycle Reactions in the Biosynthetic Functions of Thiobacillus Thioparus
    AN ABSTRACT OF THE THESIS OF Gerald G. Still for the PhD in Chemistry (Name) (Degree) (Major) Date thesis is presented May 14, 1965 Title THE ROLE OF SOME OF THE KREBS CYCLE REACTIONS IN THE BIOSYNTHETIC FUNCTIONS OF THIOBACILLUS THIOPARUS Abstract approved Redacted for Privacy (Major professor) Aseptic radiorespirometry has been used to examine the utilization of external carbon sources by proliferat- ing Thiobacillus thioparus cells. These studies reveal that glucose, galactose, mannose, fructose, ribose, DL- glutamate, and L- aspartate were not utilized by this chemoautotrophic organism. However, it has been shown that trace amounts of acetate, glycine, DL- serine, DL- alanine, succinate and fumarate can be utilized by T. thioparus cells. To elucidate the nature of the biosynthetic pathways operative in this bacteria, proliferating cell cultures were allowed to metabolize specifically 14C labeled substrates. The resulting 14C labeled cells were sub- sequently hydrolyzed, their amino acids isolated and subjected to degradation experiments. Examination of the respective fates of the label in DL- alanine- 2 -14C, acetate- 1 -14C, or acetate -2 -14C in the cellular metabolism revealed that the Krebs Cycle path- way is not functioning as a respiratory mechanism in T. thioparus. However, most of the reactions of the Krebs Cycle pathway are involved in the biosynthesis of carbon skeletons for various amino acids. A CO2 fixa- tion pathway of the C3 +C1 type is instrumental in provid- ing C4 dicarboxylic acids and those amino acids derived therefrom. Acetate can be incorporated into a -keto- glutarate and those amino acids derived therefrom, but cannot be incorporated into the C4 dicarboxylic acids.
    [Show full text]
  • Solutions to 7.012 Problem Set 1
    MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups.
    [Show full text]
  • Biomoleculesbiomolecules
    1414Unit Objectives BiomoleculesBiomolecules After studying this Unit, you will be able to • explain the characteristics of “It is the harmonious and synchronous progress of chemical biomolecules like carbohydrates, reactions in body which leads to life”. proteins and nucleic acids and hormones; • classify carbohydrates, proteins, A living system grows, sustains and reproduces itself. nucleic acids and vitamins on the The most amazing thing about a living system is that it basis of their structures; is composed of non-living atoms and molecules. The • explain the difference between pursuit of knowledge of what goes on chemically within DNA and RNA; a living system falls in the domain of biochemistry. Living • describe the role of biomolecules systems are made up of various complex biomolecules in biosystem. like carbohydrates, proteins, nucleic acids, lipids, etc. Proteins and carbohydrates are essential constituents of our food. These biomolecules interact with each other and constitute the molecular logic of life processes. In addition, some simple molecules like vitamins and mineral salts also play an important role in the functions of organisms. Structures and functions of some of these biomolecules are discussed in this Unit. 14.114.114.1 Carbohydrates Carbohydrates are primarily produced by plants and form a very large group of naturally occurring organic compounds. Some common examples of carbohydrates are cane sugar, glucose, starch, etc. Most of them have a general formula, Cx(H2O)y, and were considered as hydrates of carbon from where the name carbohydrate was derived. For example, the molecular formula of glucose (C6H12O6) fits into this general formula, C6(H2O)6. But all the compounds which fit into this formula may not be classified as carbohydrates.
    [Show full text]
  • Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat
    Pediat. Res. 6: 713-719 (1972) Amino acid neonate intestine transport, amino acid Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat J. F. FITZGERALD1431, S. REISER, AND P. A. CHRISTIANSEN Departments of Pediatrics, Medicine, and Biochemistry, and Gastrointestinal Research Laboratory, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana, USA Extract The activity of amino acid transport pathways in the small intestine of the 2-day-old rat was investigated. Transport was determined by measuring the uptake of 1 mM con- centrations of various amino acids by intestinal segments after a 5- or 10-min incuba- tion and it was expressed as intracellular accumulation. The neutral amino acid transport pathway was well developed with intracellular accumulation values for leucine, isoleucine, valine, methionine, tryptophan, phenyl- alanine, tyrosine, and alanine ranging from 3.9-5.6 mM/5 min. The intracellular accumulation of the hydroxy-containing neutral amino acids threonine (essential) and serine (nonessential) were 2.7 mM/5 min, a value significantly lower than those of the other neutral amino acids. The accumulation of histidine was also well below the level for the other neutral amino acids (1.9 mM/5 min). The basic amino acid transport pathway was also operational with accumulation values for lysine, arginine and ornithine ranging from 1.7-2.0 mM/5 min. Accumulation of the essential amino acid lysine was not statistically different from that of nonessential ornithine. Ac- cumulation of aspartic and glutamic acid was only 0.24-0.28 mM/5 min indicating a very low activity of the acidic amino acid transport pathway.
    [Show full text]
  • Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes
    molecules Article Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes Piotr Minkiewicz * , Małgorzata Darewicz , Anna Iwaniak and Marta Turło Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszy´nski1, 10-726 Olsztyn-Kortowo, Poland; [email protected] (M.D.); [email protected] (A.I.); [email protected] (M.T.) * Correspondence: [email protected]; Tel.: +48-89-523-3715 Abstract: Phosphorylation represents one of the most important modifications of amino acids, peptides, and proteins. By modifying the latter, it is useful in improving the functional properties of foods. Although all these substances are broadly annotated in internet databases, there is no unified code for their annotation. The present publication aims to describe a simple code for the annotation of phosphopeptide sequences. The proposed code describes the location of phosphate residues in amino acid side chains (including new rules of atom numbering in amino acids) and the diversity of phosphate residues (e.g., di- and triphosphate residues and phosphate amidation). This article also includes translating the proposed biological code into SMILES, being the most commonly used chemical code. Finally, it discusses possible errors associated with applying the proposed code and in the resulting SMILES representations of phosphopeptides. The proposed code can be extended to describe other modifications in the future. Keywords: amino acids; peptides; phosphorylation; phosphate groups; databases; code; bioinformatics; cheminformatics; SMILES Citation: Minkiewicz, P.; Darewicz, M.; Iwaniak, A.; Turło, M. Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using 1. Introduction Biological and Chemical Codes.
    [Show full text]
  • Amino Acid Degradation
    BI/CH 422/622 OUTLINE: OUTLINE: Protein Degradation (Catabolism) Digestion Amino-Acid Degradation Inside of cells Protein turnover Dealing with the carbon Ubiquitin Fates of the 29 Activation-E1 Seven Families Conjugation-E2 nitrogen atoms in 20 1. ADENQ Ligation-E3 AA: Proteosome 2. RPH 9 ammonia oxidase Amino-Acid Degradation 18 transamination Ammonia 2 urea one-carbon metabolism free transamination-mechanism to know THF Urea Cycle – dealing with the nitrogen SAM 5 Steps Carbamoyl-phosphate synthetase 3. GSC Ornithine transcarbamylase PLP uses Arginino-succinate synthetase Arginino-succinase 4. MT – one carbon metabolism Arginase 5. FY – oxidase vs oxygenase Energetics Urea Bi-cycle 6. KW – Urea Cycle – dealing with the nitrogen 7. BCAA – VIL Feeding the Urea Cycle Glucose-Alanine Cycle Convergence with Fatty acid-odd chain Free Ammonia Overview Glutamine Glutamate dehydrogenase Overall energetics Amino Acid A. Concepts 1. ConvergentDegradation 2. ketogenic/glucogenic 3. Reactions seen before The SEVEN (7) Families B. Transaminase (A,D,E) / Deaminase (Q,N) Family C. Related to biosynthesis (R,P,H; C,G,S; M,T) 1.Glu Family a. Introduce oxidases/oxygenases b. Introduce one-carbon metabolism (1C) 2.Pyruvate Family a. PLP reactions 3. a-Ketobutyric Family (M,T) a. 1-C metabolism D. Dedicated 1. Aromatic Family (F,Y) a. oxidases/oxygenases 2. a-Ketoadipic Family (K,W) 3. Branched-chain Family (V,I,L) E. Convergence with Fatty Acids: propionyl-CoA 29 N 1 Amino Acid Degradation • Intermediates of the central metabolic pathway • Some amino acids result in more than one intermediate. • Ketogenic amino acids can be converted to ketone bodies.
    [Show full text]
  • Metabolic Classification of the Amino Acids
    Metabolic Classification of the Amino Acids *Essential and Non -essential * Glucogenic and Ketogenic 1 Essential Amino Acids • Of the 20 amino acids that make up proteins 10 of them can be synthesized by the human body • The other 10 amino acids must be acquired from food sources. These amino acids are known as essential amino acids 2 Essential Amino Acids Complete protein Incomplete protein • Contains all 10 Lack one of more of the essential amino acids essential amino acids • Proteins derived from Most vegetable proteins animal sources are are incomplete proteins complete proteins Beans are an exception to • Beans contain some this generalizations complete protein as well 3 Essential Amino Acids in Humans • Required in diet • Humans incapable of forming requisite carbon skeleton • Arginine* • Lysine • Histidine* • Methionine • Isoleucine • Threonine • Leucine • Phenylalanine • Valine • Tryptophan * Essential in children, not in adults 4 Non-Essential Amino Acids in Humans • Not required in diet • Can be formed from ααα-keto acids by transamination and subsequent reactions • Alanine • Glycine • Asparagine • Proline • Aspartate • Serine • Glutamate • Cysteine (from Met *) • Glutamine • Tyrosine (from Phe *) * Essential amino acids 5 Essential and Nonessential Amino Acids Nonessential Essentia l Alanine Arginine * Asparagine Histidine * Aspartate Isoleucine Cysteine Leucine Glutamate Lysine Glutamine Methionine Glycine Phenylalanine Proline Threonine Serine Tyrptophan Tyrosine Valine Amino acids are classified as glucogenic or ketogenic
    [Show full text]
  • Amino Acid Catabolism
    Amino Acid Catabolism • Dietary Proteins • Turnover of Protein • Cellular protein • Deamination • Urea cycle • Carbon skeletons of amino acids Amino Acid Metabolism •Metabolism of the 20 common amino acids is considered from the origins and fates of their: (1) Nitrogen atoms (2) Carbon skeletons •For mammals: Essential amino acids must be obtained from diet Nonessential amino acids - can be synthesized Amino Acid Catabolism • Amino acids from degraded proteins or from diet can be used for the biosynthesis of new proteins • During starvation proteins are degraded to amino acids to support glucose formation • First step is often removal of the α-amino group • Carbon chains are altered for entry into central pathways of carbon metabolism Dietary Proteins • Digested in intestine • by peptidases • transport of amino acids • active transport coupled with Na+ Protein Turnover • Proteins are continuously synthesized and degraded (turnover) (half-lives minutes to weeks) • Lysosomal hydrolysis degrades some proteins • Some proteins are targeted for degradation by a covalent attachment (through lysine residues) of ubiquitin (C terminus) • Proteasome hydrolyzes ubiquitinated proteins Turnover of Protein • Cellular protein • Proteasome degrades protein with Ub tags • T 1/2 determined by amino terminus residue • stable: ala, pro, gly, met greater than 20h • unstable: arg, lys, his, phe 2-30 min Ubibiquitin • Ubiquitin protein, 8.5 kD • highly conserved in yeast/humans • carboxy terminal attaches to ε-lysine amino group • Chains of 4 or more Ub molecules
    [Show full text]
  • Faculty of Engineering & Technology
    FACULTY OF ENGINEERING & TECHNOLOGY Dr. NIHARIKA SINGH Assistant Professor Dept. of Biotechnology Course: B. Sc Biotechnology Semester: 3rd Sub Code: CBBS-303 Sub Name: Biochemistry and Metabolism LECTURE 1 Dr. NIHARIKA SINGH Assistant Professor Dept. of Biotechnology INTRODUCTION Amino acids are a group of organic compounds containing two functional groups-amino and carboxyl. The amino group (-NH) is basic while the carboxyl group – (-COOH) is acidic in nature. General structure of amino acids: The amino acids are termed as α-amino acids, if both the carboxyl and amino groups are attached to the same carbon atom. The α-carbon atom binds to a side chain represented by R which is different for each of the 20 amino acids found in proteins. The amino acids mostly exist in the ionized form in the biological system. https://www.docsity.com/es/amimoacidos/3979454/ HISTORY The first amino acid which was discovered is Asparagine in 1806. Threonine was the last amino acid to be found in the year 1938. All the amino acids have trivial or common name from which they were first isolated. Asparagine was found in asparagus and glutamine was found in wheat gluten: tyrosine was first isolated from cheese and glycine (greek glykos means sweet) was so named because of the sweet taste. CLASSIFICATION OF AMINO ACID A. Nutritional classification of amino acid B. Classification of amino acid based on polarity C. Amino acid classification based on their metabolic fate D. Amino acid classification based on the structure E. Two main groups of amino acids 1. Essential or indispensable amino acid A.
    [Show full text]
  • Of Thrs Expression Following Threonine Starvation In
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 6992-6997, July 1996 Biochemistry Processing of the leader mRNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis (mRNA processing/threonyl tRNA synthetase/mRNA stability/antitermination) CIARA&N CONDON, HARALD PUTZER*, AND MARIANNE GRUNBERG-MANAGO Unite Propre de Recherche 9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France Contributed by Marianne Grunberg-Manago, April 1, 1996 ABSTRACT The threonyl-tRNA synthetase gene, thrS, is Changing the specifier codon in the tyrosyl-tRNA synthetase a member of a family of Gram-positive genes that are induced gene, tyrS, from UAC to UUC, switches the specificity of following starvation for the corresponding amino acid by a regulation from tyrosine to phenylalanine (4). Similarly, transcriptional antitermination mechanism involving the cog- changing the UUC codon of the phenylalanyl-tRNA syn- nate uncharged tRNA. Here we show that an additional level thetase gene to ACC permits induction ofpheS by starvation of complexity exists in the control of the thrS gene with the for threonine (8). A second interaction occurs between the mapping of an mRNA processing site just upstream of the NCCA-3' end of the acceptor arm of the uncharged tRNA and transcription terminator in the thrS leader region. The pro- a complementary sequence (UGGN'), which is part of the cessed RNA is significantly more stable than the full-length T-box and is bulged out of the antiterminator structure (4, 5, transcript. Under nonstarvation conditions, or following star- 8). Although the formation of these two interactions is likely vation for an amino acid other than threonine, the full-length to be the critical element in the stabilization of the antitermi- thrS mRNA is more abundant than the processed transcript.
    [Show full text]
  • Name: Proteins Activity Amino Acids, Building Blocks of Proteins Proteins
    Name: Proteins Activity Amino Acids, Building Blocks of Proteins Proteins are complex molecules made up of smaller molecules called amino acids. There are about twenty different amino acids found in nature. The element nitrogen (N) is present in all amino acids. Examine the structural formulas of the four representative amino acids shown in the figure below. Answer the following questions on your answer sheet. 1. Name the four elements present in these four amino acids ______________________ 2. What is the molecular formula for the following amino acids: glycine C __ H __ O __ N __ alanine C __ H __ O __ N __ valine C __ H __ O __ N __ threonine C __ H __ O __ N __ 3. How do the molecular formulas for the amino acids differ? _____________________ Note the upper right corner of each amino acid. These ends have a special arrangement of carbon, oxygen, and hydrogen atoms. This end arrangement is called a carboxyl group and looks like: Note the upper left corner of each amino acid. These ends have a special arrangement of nitrogen and hydrogen atoms. The end arrangement is called an amine group and looks like: In a previous activity, you studied carbohydrates… 4. Do carbohydrates have carboxyl groups? ___________________________________ 5. Do carbohydrates have amine groups? _____________________________________ 6. How does the number of hydrogen atoms compare to the number of oxygen atoms in each amino acid? _____________________________________________________ Combining Amino Acids to Form Protein Amino acids are not protein molecules. They are only the “building blocks” of protein. Several amino acids must be chemically joined in a chain to form a protein molecule.
    [Show full text]