Analysis of Installation of Small Wind Turbine on Premises
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A SOPAC Desktop Study of Ocean-Based, Renewable Energy
A SOPAC Desktop Study of Ocean-Based RENEWABLE ENERGY TECHNOLOGIES SOPAC Miscellaneous Report 701 A technical publication produced by the SOPAC Community Lifelines Programme Acknowledgements Information presented in this publication has been sourced mainly from the internet and from publications produced by the International Energy Agency (IEA). The compiler would like to thank the following for reviewing and contributing to this publication: • Dr. Luis Vega • Anthony Derrick of IT Power, UK • Guillaume Dréau of Société de Recherche du Pacifique (SRP), New Caledonia • Professor Young-Ho Lee of Korea Maritime University, Korea • Professor Chul H. (Joe) Jo of Inha University, Korea • Luke Gowing and Garry Venus of Argo Environmental Ltd, New Zealand SOPAC Miscellaneous Report 701 Pacific Islands Applied Geoscience Commission (SOPAC), Fiji • Paul Fairbairn – Manager Community Lifelines Programme • Rupeni Mario – Senior Energy Adviser • Arieta Gonelevu – Senior Energy Project Officer • Frank Vukikimoala – Energy Project Officer • Koin Etuati – Energy Project Officer • Reshika Singh – Energy Resource Economist • Atishma Vandana Lal – Energy Support Officer • Mereseini (Lala) Bukarau – Senior Adviser Technical Publications Ivan Krishna • Sailesh Kumar Sen – Graphic Arts Officer Compiler First Edition October 2009 Cover Photo Source: HTTP://WALLPAPERS.FREE-REVIEW.NET/42__BIG_WAVE.HTM Back Cover Photo: Raj Singh A SOPAC Desktop Study of Ocean-Based Renewable Energy Technologies SOPAC Miscellaneous Report 701 Ivan Krishna Compiler First Edition -
A Numerical Approach for Estimating the Aerodynamic Characteristics of a Two Bladed Vertical Darrieus Wind Turbine Ervin Amet, Christian Pellone, Thierry Maître
A numerical approach for estimating the aerodynamic characteristics of a two bladed vertical Darrieus wind turbine Ervin Amet, Christian Pellone, Thierry Maître To cite this version: Ervin Amet, Christian Pellone, Thierry Maître. A numerical approach for estimating the aerodynamic characteristics of a two bladed vertical Darrieus wind turbine. 2nd Workshop on Vortex dominated flows, Jul 2006, Bucarest, Romania. hal-00232721 HAL Id: hal-00232721 https://hal.archives-ouvertes.fr/hal-00232721 Submitted on 27 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Scientific Bulletin of the 2nd Workshop on Politehnica University of Timisoara Vortex Dominated Flows Transactions on Mechanics Bucharest, Romania Special issue June 30 – July 1, 2006 A NUMERICAL APPROACH FOR ESTIMATING THE AERODYNAMIC CHARACTERISTICS OF A 2 BLADED VERTICAL DARRIEUS WIND TURBINE Ervin AMET, Phd. Student* Christian PELLONE, Scientist Researcher CNRS Laboratory of Geophysical and Industrial Fluid Laboratory -
Alba Grau Moreso 1A Version
UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de São Carlos – EESC-USP DEPARTAMENTO DE ENGENHARIA AERONÁUTICA ALBA GRAU MORESO FLOW -BODY INTERACTION , SELF -INDUCED RESONANT VIBRATIONS BY VORTEX SHEDDING ON A BLADELESS WIND TURBINE OF MATERIALS WITH HIGH ELECTROMECHANICAL COUPLING SUPERVISOR : PROF . HERNAN CERÓN MUÑOZ SÃO CARLOS - SP 2017 Abstract A theoretical analysis of the bladeless wind turbine, recently invented by Vortex Bladeless S.L., is presented. The aerodynamics and vibrations involved are studied, as well as the function of materials with high electromechanical coupling on this device. The wind turbine studied works thanks to resonant vibrations self-excited by the vortex street developed downwash the structure. The aeroelastic energy absorbed is transformed into electrical energy due to the high electromechanical coupling of the materials the structure is built with. The study begins with the initial vortex generation on the stationary case. The vortex street and the fluid forces on a cylinder are analysed and a simile of the device and the flow around tall buildings is made. The literature available about the Strouhal number on wind turbines is revised and the importance of the wind gradient in wind engineering is also observed. Then the interaction between the vibration of a cylinder and the vortex street generated is studied. The vortices development changes and with that, the fluid forces over the structure too. We study the resonance effect and with it, the aeroelastic instability, flutter, which is the objective of the device in order to maximize the energy absorption. To finish the process, the transformation of the mechanical energy from the oscillation into usable electrical energy is performed through the high electromechanical coupling of the materials of the structure. -
Design & Analysis of Vortex Bladeless Turbine With
DESIGN & ANALYSIS OF VORTEX BLADELESS TURBINE WITH GYRO E-GENERATOR Abhijit Mane1, Manoj Kharade2, Pravin Sonkambale3, Shubham Tapase4 , Sachin S. Kudte5 1,2,3,4B.E Mechanical Students G.S.M.COE Balewadi Pune 5Assistant Professor G.S.M.COE Balewadi Pune ABSTRACT Wind turbines and considered to be only 59 % efficient (Ref :Betz, law) , and more over with large rotors a large area wake formations means that spacing between two turbines has to be kept very large , hence the conventional method of wind power generation has to through of again with an innovative approach. The bladeless vortex turbine is one such concept that uses the principle of aero-elasticity and thereby the variations produced by it to generate electricity. Project work will include the design and development of a vortex wind bladeless turbine and a gyro-action based e-generator to be coupled to it to generate the electricity. Prototype development will be done using 3-D printing for the vortex turbine and the e-generator to make a scaled working model that will demonstrate electricity generation and testing will be done on the same to determine the effect of wind speed on , turbine speed , voltage , current and power generated by the model. I. INTRODUCTION Wind power has become a legitimate source of energy over the past few decades as larger, more efficient turbine designs have produced ever-increasing amounts of power. But even though the industry saw a record 6,730 billion global investment in 2014, turbine growth may be reaching its limits. Bladeless turbines will generate electricity for 40 percent lesser in cost compared with conventional wind turbines. -
Experimental Investigation of Helical Cross-Flow Axis Hydrokinetic Turbines, Including Effects of Waves and Turbulence
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2011 Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence Peter Bachant University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Bachant, Peter, "Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence" (2011). Master's Theses and Capstones. 649. https://scholars.unh.edu/thesis/649 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. EXPERIMENTAL INVESTIGATION OF HELICAL CROSS-FLOW AXIS HYDROKINETIC TURBINES, INCLUDING EFFECTS OF WAVES AND TURBULENCE BY PETER BACHANT BSME, University of Massachusetts Dartmouth, 2008 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering September, 2011 UMI Number: 1504939 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 1504939 Copyright 2011 by ProQuest LLC. All rights reserved. -
Ocean Energy Task Force Final Report, 2009
Final Report of the Ocean Energy Task Force to Governor John E. Baldacci December 2009 Photo credits (clockwise from top center): Solberg/Statoil; Maine Coastal Program; Ocean Renewable Power Company; Principle Power; Blue H. Center photo: Global Marine Systems, Ltd. Final Report of the Ocean Energy Task Force to Governor John E. Baldacci December 2009 Financial assistance for this document was provided by a grant from the Maine Coastal Program at the Maine State Planning Office, through funding provided by the U.S. Department of Commerce, Office of Ocean and Coastal Resource Management under the Coastal Zone Management Act of 1972, as amended. Additional financial assistance was provided by the Efficiency Maine Trust (Efficiency Maine Trust is a statewide effort to promote the more efficient use of electricity, help Maine residents and businesses reduce energy costs, and improve Maine’s environment), and by the American Recovery and Reinvestment Act of 2009. This publication was produced under appropriation number 020-07B-008205 Final Report of the Ocean Energy Task Force TABLE OF CONTENTS Acknowledgements.....................................................................................................................................ii Executive Summary ...................................................................................................................................iii Summary of Recommendations..............................................................................................................vii Overview -
Cal Poly Nano Hydro
Cal Poly Nano Hydro By Brandon N. Fujio Alex J. Sobel Andrew F. Del Prete Mechanical Engineering Department California Polytechnic State University San Luis Obispo 2013 Statement of Disclaimer Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project. Table of Contents Executive Summary ....................................................................................................................................... 1 Chapter 1: Introduction ................................................................................................................................ 5 1.1 Background and Needs ....................................................................................................................... 5 1.2 Problem Definition .............................................................................................................................. 6 1.3 Objective/Specification Development ................................................................................................ 6 1.4 Project Management ......................................................................................................................... -
University of Kwazulu-Natal Design of a Novel Hydrokinetic Turbine for Ocean Current Power Generation
UNIVERSITY OF KWAZULU-NATAL COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE DESIGN OF A NOVEL HYDROKINETIC TURBINE FOR OCEAN CURRENT POWER GENERATION Kumaresan Cunden Dissertation submitted in fulfilment of the academic requirements for the degree of Master of Science in Mechanical Engineering Supervisor: Dr Freddie L. Inambao October 2014 “As the candidate’s Supervisor I agree/do not agree to the submission of this dissertation”. The supervisor must sign all copies after deleting which is not applicable. Dr Freddie L. Inambao NAME OF SUPERVISOR SIGNATURE I Form EX1-5 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE DECLARATION 1 - PLAGIARISM I, Kumaresan Cunden, declare that: 1. The research reported in this dissertation, except where otherwise indicated, is my original research. 2. This dissertation has not been submitted for any degree or examination at any other university. 3. This dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This dissertation does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This dissertation does not contain text, graphics or tables copied and pasted -
Vortex Bladeless Wind Turbine ISSN 2395-1621
www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 53-57, 2020 ISSN 2395-1621 Vortex Bladeless Wind Turbine ISSN 2395-1621 Priyanka Chavan, Prajakta Jadhav, M.P.Gajare [email protected] [email protected] Electronics and Telecommunication Department, AISSMS Institute of Information Technology, Pune. India ABSTRACT ARTICLE INFO The formation of electricity by the use of wind source makes use of especially new Article History access to produce wind electricity. The energy vortices will be captured in the Received: 8th March 2020 atmosphere due to the flow of air. When the wind eludes over a propylene sheet the potency will get transferred to the spring. In this manner it will strive to apply the Received in revised form : force in the internal path. These forces are acted at the magnet and coil which can be 8th March 2020 setup underneath the propylene sheet. The structure is not as same as conventional windmill. The system will consist of mast which will be stable, a propylene sheet, Accepted: 10th March 2020 magnet & coil. The investment, operating and manufacturing cost is reduced as the system will have of no blades in comparison to standard technologies. The Published online : experimental measures will be carried out after which the results and conclusion will 11th March 2020 be portrayed. Keyword – Mast, Rod, Generating system, Foundation, Inverter, Piezoelectric sensor, Propylene sheet. may be representative and this system can be helpful to I. INTRODUCTION design a tool to extract useful electricity from VIV. In present time, India is stepping towards spiralling into international anticyclone in terms of energy. -
Design and Analysis of Run-Of-River Water Turbine by Muhammad Afif Bin Ilham Dissertation Submitted in Partial Fulfilment Of
Design and Analysis of Run-of-River Water Turbine By Muhammad Afif bin Ilham Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) Mechanical Engineering SEPTEMBER 2011 Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan CERTIFICATION OF APPROVAL Design and Analysis of Run-of-River Water Turbine By Muhammad Afif bin Ilham A project dissertation submitted to the Mechanical Engineering Programme UniversitiTeknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING) Approved by, ___________________________ (Mohd Faizari Mohd Nor) Project Supervisor Universiti Teknologi PETRONAS Tronoh, Perak Sept 2011 CERTIFICATION OF ORIGINALITY This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons. ___________________________ Muhammad Afif bin Ilham ABSTRACT This paper discussed on the project entitled, “Design and analysis of run-of-river water turbine”. It consists of project background, objectives, problem statements, and the relevance of the project, literature reviews, and the methodology which is the flow of the project and finally the result and discussion before the conclusion. In this project the author design a run of river water turbine and analyze the power that can be generated by the turbine. The study is about gathering all possible information about river water turbine for further studies which will lead to the result of the design of the water turbine and the power generated by the turbine. -
A Review of Vortex Bladeless Wind Turbine and Vorticity Effects
8 XI November 2020 https://doi.org/10.22214/ijraset.2020.32113 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue XI Nov 2020- Available at www.ijraset.com A Review of Vortex Bladeless Wind Turbine and Vorticity Effects Nivedhitha A1, Satheeshkumar K R P2 1Final Year Student, ME Structural Engineering, Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore. 2Assistant Professor II, Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore. Abstract: Vortex Bladeless is an innovative to harness energy from wind, with different and exciting characteristics which makes it a revolution in alternative energy generation. Vortex technology harvest energy from a fluid when it passes through the surface i.e vortex shedding phenomenon, creating an aeroelastic oscillation movement on the device. It is eco-friendly, it does not include blades like Horizontal axis turbine, therefore effects spacing between each turbine. This Study is to understand about the impacts of vortex bladeless turbine and the vorticity street phenomenon behind the innovation. Keywords: Bladeless Wind Turbine, Vortex Phenomenon, Vorticity, Vortex Shedding, Vortex induced Vibration I. INTRODUCTION Wind Turbine is a device that converts K.E. from wind to electricity. Generally used Wind Turbines are Horizontal Axis Wind Turbine (HAWT) also known as the Conventional Wind Turbine, it is highly used for commercial purpose. Another one is Vertical Axis turbine (VAWT) . But HAWT is used worldwide and is better compared to VAWT as it is prone to less wear and tear thereby the reducing the maintenance than VAWT. -
Final Report of the Ocean Energy Task Force to Governor John E. Baldacci
Final Report of the Ocean Energy Task Force to Governor John E. Baldacci December 2009 Photo credits (clockwise from top center): Solberg/Statoil; Maine Coastal Program; Ocean Renewable Power Company; Principle Power; Blue H. Center photo: Global Marine Systems, Ltd. Final Report of the Ocean Energy Task Force to Governor John E. Baldacci December 2009 Financial assistance for this document was provided by a grant from the Maine Coastal Program at the Maine State Planning Office, through funding provided by the U.S. Department of Commerce, Office of Ocean and Coastal Resource Management under the Coastal Zone Management Act of 1972, as amended. Additional financial assistance was provided by the Efficiency Maine Trust (Efficiency Maine Trust is a statewide effort to promote the more efficient use of electricity, help Maine residents and businesses reduce energy costs, and improve Maine’s environment), and by the American Recovery and Reinvestment Act of 2009. This publication was produced under appropriation number 020-07B-008205 Final Report of the Ocean Energy Task Force TABLE OF CONTENTS Acknowledgements.....................................................................................................................................ii Executive Summary ...................................................................................................................................iii Summary of Recommendations..............................................................................................................vii Overview