Arthur V. Auwers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Handbook of Double Stars, with a Catalogue of Twelve Hundred
The original of this bool< is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924064295326 3 1924 064 295 326 Production Note Cornell University Library pro- duced this volume to replace the irreparably deteriorated original. It was scanned using Xerox soft- ware and equipment at 600 dots per inch resolution and com- pressed prior to storage using CCITT Group 4 compression. The digital data were used to create Cornell's replacement volume on paper that meets the ANSI Stand- ard Z39. 48-1984. The production of this volume was supported in part by the Commission on Pres- ervation and Access and the Xerox Corporation. Digital file copy- right by Cornell University Library 1991. HANDBOOK DOUBLE STARS. <-v6f'. — A HANDBOOK OF DOUBLE STARS, WITH A CATALOGUE OF TWELVE HUNDRED DOUBLE STARS AND EXTENSIVE LISTS OF MEASURES. With additional Notes bringing the Measures up to 1879, FOR THE USE OF AMATEURS. EDWD. CROSSLEY, F.R.A.S.; JOSEPH GLEDHILL, F.R.A.S., AND^^iMES Mt^'^I^SON, M.A., F.R.A.S. "The subject has already proved so extensive, and still ptomises so rich a harvest to those who are inclined to be diligent in the pursuit, that I cannot help inviting every lover of astronomy to join with me in observations that must inevitably lead to new discoveries." Sir Wm. Herschel. *' Stellae fixac, quae in ccelo conspiciuntur, sunt aut soles simplices, qualis sol noster, aut systemata ex binis vel interdum pluribus solibus peculiari nexu physico inter se junccis composita. -
Tales from the Nineteenth-Century Archives
Max Planck Research Library for the History and Development of Knowledge Studies 12 Lorraine Daston: The Accidental Trace and the Science of the Future: Tales from the Nineteenth- Century Archives In: Julia Bärnighausen, Costanza Caraffa, Stefanie Klamm, Franka Schneider, and Petra Wodtke (eds.): Photo-Objects : On the Materiality of Photographs and Photo Archives Online version at http://mprl-series.mpg.de/studies/12/ ISBN 978-3-945561-39-3 First published 2019 by Edition Open Access, Max Planck Institute for the History of Science. Printed and distributed by: PRO BUSINESS digital printing Deutschland GmbH, Berlin http://www.book-on-demand.de/shop/15803 The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de Chapter 4 The Accidental Trace and the Science of the Future: Tales from the NineteenthCentury Archives Lorraine Daston Introduction: glass and paper forever This glass photographic plate of a small square of the night sky, taken on a clear winter’s night in Potsdam in 1894, is one of the around two million such astrophotographic plates stored in observatories all over the world (Lankford 1984, 29) (see Fig. 1). There are ap proximately 600,000 plates at the Harvard College Observatory, 20,000 at the Bologna Uni versity Observatory, 80,000 at the Odessa Astronomical Observatory, to give just a few examples (Hudec 1999). The designation of these collections as “archives” is mostly ret rospective, but the glass plate pictured here was destined from the outset to be part of an archive: the vast astrophotographic survey of the sky as seen from the earth known as the Carte du Ciel. -
Biographical Memoir of Asaph Hall*
BIOGRAPHICAL MEMOIR ASAPH HALL 1829-1907 GEORGE WILLIAM HILL READ HEI-OIIK THE NATION.\I, ACADEMY OF SCIENCES AI-KH> 2:>, loos (25) 241 BIOGRAPHICAL MEMOIR OF ASAPH HALL* Tn commencing the story of a remarkable man of science, it is necessary to say something of his lineage, in spite of the gener- ally held opinion that the details of genealogy make dry read- ing, f ASAPH HALL undoubtedly descended from John Hall, called of New Haven and Wallingford to distinguish him from the other numerous John Halls of early New England (Savage makes no less than seven before 1660), and who arrived at New Haven shortly after June 4, 1639, as he is one of the after-signers of tlie New Haven Planters' Covenant. His movements before his arrival are in some obscurity. From his son Thomas of Wal- lingford receiving a grant of fifty acres of land from the General Court of the Colony at the session of October, 1698, "In consid- eration of his father's services in the Pequot war," it is inferred that he was a dweller in the colony in 1637. At this date there were only four settlements in Connecticut, and it is supposed that the John Hall of New Haven is identical with a John Hall who appears as the holder of lots in Hartford about 1635. The genealogists arc in dispute in the matter. Mr. Shepard sums up thus: John Hall came with the advance Hooker party, in 1632, or perhaps on the Griffin or the Bird (two vessels whose arrival at Massachusetts Bay is mentioned by Winthrop), September 4, 1633. -
A Topical Index to the Main Articles in Mercury Magazine (1972 – 2019) Compiled by Andrew Fraknoi (U
A Topical Index to the Main Articles in Mercury Magazine (1972 – 2019) Compiled by Andrew Fraknoi (U. of San Francisco) [Mar. 9, 2020] Note: This index, organized by subject matter, only covers the longer articles in the Astronomical Society of the Pacific’s popular-level magazine; it omits news notes, regular columns, Society doings, etc. Within each subject category, articles are listed in chronological order starting with the most recent one. Table of Contents Impacts Amateur Astronomy Infra-red Astronomy Archaeoastronomy Interdisciplinary Topics Asteroids Interstellar Matter Astrobiology Jupiter Astronomers Lab Activities Astronomy: General Light in Astronomy Binary Stars Light Pollution Black Holes Mars Comets Mercury Cosmic Rays Meteors and Meteorites Cosmology Moon Distances in Astronomy Nebulae Earth Neptune Eclipses Neutrinos Education in Astronomy Particle Physics & Astronomy Exoplanets Photography in Astronomy Galaxies Pluto Galaxy (The Milky Way) Pseudo-science (Debunking) Gamma-ray Astronomy Public Outreach Gravitational Lenses Pulsars and Neutron Stars Gravitational Waves Quasars and Active Galaxies History of Astronomy Radio Astronomy Humor in Astronomy Relativity and Astronomy 1 Saturn Sun SETI Supernovae & Remnants Sky Phenomena Telescopes & Observatories Societal Issues in Astronomy Ultra-violet Astronomy Solar System (General) Uranus Space Exploration Variable Stars Star Clusters Venus Stars & Stellar Evolution X-ray Astronomy _______________________________________________________________________ Amateur Astronomy Hostetter, D. Sidewalk Astronomy: Bridge to the Universe, 2013 Winter, p. 18. Fienberg, R. & Arion, D. Three Years after the International Year of Astronomy: An Update on the Galileoscope Project, 2012 Autumn, p. 22. Simmons, M. Sharing Astronomy with the World [on Astronomers without Borders], 2008 Spring, p. 14. Williams, L. Inspiration, Frame by Frame: Astro-photographer Robert Gendler, 2004 Nov/Dec, p. -
Sirius Brightest Diamond in the Night Sky Jay B
Sirius Brightest Diamond in the Night Sky Jay B. Holberg Sirius Brightest Diamond in the Night Sky Published in association with 4y Sprringei i Praxis Publishing Chichester, UK Dr Jay B. Holberg Senior Research Scientist Lunar and Planetary Laboratory University of Arizona Tucson Arizona U.S.A. SPRINGER-PRAXIS BOOKS IN POPULAR ASTRONOMY SUBJECT ADVISORY EDITOR: John Mason B.Sc, M.Sc, Ph.D. ISBN 10: 0-387-48941-X Springer Berlin Heidelberg New York ISBN 13: 978-0-387-48941-4 Springer Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2006938990 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. © Praxis Publishing Ltd, Chichester, UK, 2007 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Project management: Originator Publishing Services, -
THE THIRD REDUCTION of GIUSEPPE PIAZZI's STAR CATALOGUE Abstract
THE THIRD REDUCTION OF GIUSEPPE PIAZZI'S STAR CATALOGUE E. Proverbio Astronomical Observatory - Cagliari, Italy Abstract The star observations carried out by Giuseppe Piazzi with Rams- den's large altazimuth circle, which he began in 1792, led to the rea- lization of a 1st and 2nd Catalogue, published by Piazzi in Palermo in 1803 and 1814. During 1845, the original astronomical observations in Piazzi's catalogue, included in "La storia celeste of the Palermo Observatory from 1792 to 1814", which had been kept at the Brera Observatory in Milan, were published in Vienna. The publication of these observational data revealed a series of errors, real or presumed, which cast doubt on the reliability of the Palermo Catalogue. Towards the end of the last century, upon the suggestion of Gio- vanni Schiaparelli, work on the reduction of Piazzi's catalogue was once again taken up for the purpose of producing an independent cata- logue based on the original observations. This work, carried out by Francesco Porro, led to the production of a corrected catalogue purged of systematic and accidental errors. The third fundamental star catalogue of Palermo may represent the basis for the final reduction of the great Palermo Catalogue of 7646 stars. G. Piazzi's 1st and 2nd Catalogues In the second half of the 18th century, if we exclude Tobias Ma- yer's brilliant activity, positional astronomy and research for the realization of fixed star catalogues were basically dominated by the English and French schools. It is no accident that Giuseppe Piaz- zi(l), during his visit to France and England between 1787 and 1789 for the purpose of improving his knowledge in the field of practical astronomy commissioned the famous Ramsden to build for him a 5 foot 75 S. -
The Venus Transit 2004 the 1882 Transit of Venus As Seen from Chile
The Venus Transit 2004 ... Extended InfoSheet F7 The 1882 Transit of Venus as Seen from Chile [1] On April 28, 1883, a few months after the latest Venus transit, the illustrated newspaper Harpers Review published a picture showing a few youngsters watching the sun through a piece of blackened glass (Janiczek 1983). Its caption was taken from an article in Nature: "What will be the state of science when the next transit season arrives, God only knows. Not even our childrens' children will live to take part in the astronomy of that day..." (Harkness 1882) We, the great-grandchildren of these youngsters, have the privilege to use the fancy telescopes to take part in the astronomy of today. And we also have the privilege to see the next transit of Venus: this year, on June 8, Venus will pass in front of the solar disk. The complete transit, which will take 7 1/3 hours, can be seen from Europe. Only 8 years later, on June 5, 2012, another Venus transit will be visible from Chile. We take the opportunity of the 2004 transit to recall the previous one of December 6, 1882, which was completely visible in the western hemisphere. Why are Venus transits interesting? One of the goals of astronomers of the 18th and 19th centuries was to determine the distance from the earth to the sun (the astronomical unit), or, alternatively, the solar parallax, being the angular diameter of the earth's semi-major equatorial axis as seen from the sun's center. The astronomical unit is the baseline for stellar parallax determinations, and is thus the first step of the cosmic distance scale. -
Robert Grant Aitken
NATIONAL ACADEMY OF SCIENCES R O B E R T G R A N T A ITKEN 1864—1951 A Biographical Memoir by W I L L I A M H. V A N D E N B O S Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1958 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. ROBERT GRANT AITKEN December 31, 1864—October 29, 795/ BY WILLEM H. VAN DEN BOS OBERT GRANT AITKEN was born on December 31, 1864, in Jackson, R.California, and died on October 29,1951, in Berkeley, California. His father, Robert Aitken, came to America from Scotland and his mother, Wilhelmina Depinau, was the daughter of German im- migrants. His early education followed classical rather than scientific lines, as his mother wished him to enter the ministry. In 1880 he entered the Oakland High School and in 1883 Williams College, still with the ministry in view. However, he also took courses in biology and astronomy and did some work in the observatory under Truman Safrord. He graduated in 1887, but as a result of his reading he felt —though he remained a deeply religious man to the end of his days —that he could not become a preacher of the orthodox, doctrinaire theology of the day. He accepted a position as house master in the Hopkins Academy, Oakland. In 1888 Aitken married his high school classmate, Jessie L. Thomas, and accepted a position as head teacher in Livermore Col- lege, where he stayed until 1891, when he was appointed professor of mathematics in the (then) University of the Pacific. -
How Is the Reference Axis for Precession and Nutation Defined ?
Apparent Places of Fundamental Stars (APFS) Past and present status Preview: Early astronomical ephemerides Predecessors of APFS (1776 – 1959) The "early years" of APFS (1960 – 1983): FK3 and FK4 A time of change (1984 – 1988): IAU 1976 System of Astronomical Constants, 1980 Theory of Nutation, FK5, Celestial Ephemeris Pole (CEP) New theories and concepts in astrometry (2000 – 2006): Adoption of the ICRS instead of FK5-System, IAU 2000/2006 nutation theory, Celestial Intermediate Pole (CIP) and Celestial Intermediate Origin (CIO) APFS today Early astronomical ephemerides "Connaissance des temps ou des mouvements celestes", 1679, published by Jean Picard, France "Astronomische Ephemeriden", 1757, published by Maximilian Hell, Austria "Nautical Almanac",1767, published by the Astronomer Royal Nevil Maskelyne, U.K. "Berliner Astronomisches Jahrbuch", 1776, more details subsequently "Almanaque Nautico" ,1792, San Fernando (Cadiz), Spain Predecessors of APFS Berliner Astronomisches Jahrbuch (1776 – 1959). First Volume: "Astronomisches Jahrbuch oder Ephemeriden für das Jahr 1776". Edited 1774 in Berlin by Johann Elert Bode (1747 – 1826), who became 1786 director of the "Berliner Sternwarte" Berliner Astronomisches Jahrbuch BAJ 1776 From preface BAJ 1776: "Es erscheinet hiermit der erste Jahrgang der Ephemeriden welche nach dem von der Königl. Preussischen Akademie der Wissenschaften gefassten Beschlusse und unter ihrer Aufsicht jährlich herauskommen sollen. Die Veranlassung dazu war vielfach und ungezwungen." Attempt of a translation: "Hereby appears the first volume of ephemerides which shall be published annually according to the decision of (and supervised by) the Royal Prussion Academy of Sciences. The motive was manifold and informal." BAJ 1776 The first volume contained the ephemerides of 280 stars for January 1, 1776. -
The Source of Solar Energy, Ca. 1840-1910: from Meteoric Hypothesis to Radioactive Speculations
1 The Source of Solar Energy, ca. 1840-1910: From Meteoric Hypothesis to Radioactive Speculations Helge Kragh Abstract: Why does the Sun shine? Today we know the answer to the question and we also know that earlier answers were quite wrong. The problem of the source of solar energy became an important part of physics and astronomy only with the emergence of the law of energy conservation in the 1840s. The first theory of solar heat based on the new law, due to J. R. Mayer, assumed the heat to be the result of meteors or asteroids falling into the Sun. A different and more successful version of gravitation-to-heat energy conversion was proposed by H. Helmholtz in 1854 and further developed by W. Thomson. For more than forty years the once so celebrated Helmholtz-Thomson contraction theory was accepted as the standard theory of solar heat despite its prediction of an age of the Sun of only 20 million years. In between the gradual demise of this theory and the radically different one based on nuclear processes there was a period in which radioactivity was considered a possible alternative to gravitational contraction. The essay discusses various pre- nuclear ideas of solar energy production, including the broader relevance of the question as it was conceived in the Victorian era. 1 Introduction When Hans Bethe belatedly was awarded the Nobel Prize in 1967, the presentation speech was given by Oskar Klein, the eminent Swedish theoretical physicist. Klein pointed out that Bethe’s celebrated theory of 1939 of stellar energy production had finally solved an age-old riddle, namely “how it has been possible for the sun to emit light and heat without exhausting its source.”1 Bethe’s theory marked indeed a watershed in theoretical astrophysics in general and in solar physics in particular. -
Bibliography
BIBLIOGRAPHY [Airy, 1834] Airy, G. B. (1834). Gravitation: an elementary explanation of the principal pertur- bations in the solar system. Charles Knight, London. Second edition: Macmillan, London 1884. [Andrewes, 1996] Andrewes, W. J. H., editor (1996). The Quest for Longitude: The Proceedings of the Longitude Symposium, Cambridge, Mass. Collection of Historical Scientific Instruments, Harvard University. [Auwers, 1894] Auwers, A. (1894). Tobias Mayer’s Sternverzeichniss: nach den Beobachtungen auf der Göttinger Sternwarte in den Jahren 1756 bis 1760. Neu bearbeitet von Arthur Auwers. Engelmann, Leipzig. (not seen). [Baasner, 1987] Baasner, R. (1987). Das Lob der Sternkunst: Astronomie in der deutschen Aufk- lärung. Vandenhoeck & Ruprecht, Göttingen. [Baily, 1835] Baily, F., editor (1835). An Account of the Revd. John Flamsteed, the first Astronomer- Royal: compiled from his own manuscripts, and other authentic documents, never before pub- lished. London. reprinted Dawson, London, 1966. [Beer and Beer, 1976] Beer, A. and Beer, P., editors (1976). The origins, achievement and influence of the Royal Observatory, Greenwich: 1675–1975. Proceedings of the Symposium held at the National Maritime Museum, Greenwich, 13–18 july 1975. Vistas in Astronomy, Vol. 20. [Bohnenberger, 1795] Bohnenberger, J. (1795). Anleitung zur Geographischen Ortsbestimmung vorzüglich vermittelst des Spiegelsextanten. Vandenhoeck und Ruprecht, Göttingen. Revised by G. A. Jahn, 1852. [Brouwer and Clemence, 1961] Brouwer, D. and Clemence, G. M. (1961). Methods of Celestial Mechanics. Academic Press, New York & London. [Brown, 1896] Brown, E. W. (1896). An Introductory Treatise on the Lunar Theory. Cambridge University Press, Cambridge. [Buchwald, 2006] Buchwald, J. Z. (2006). Discrepant Measurements and Experimental Knowledge in the Early Modern Era. Archive for History of Exact Sciences, 60:565–649. -
Solar Astrophysical Fundamental Parameters Mustapha Meftah, Abdanour Irbah, Alain Hauchecorne
Solar astrophysical fundamental parameters Mustapha Meftah, Abdanour Irbah, Alain Hauchecorne To cite this version: Mustapha Meftah, Abdanour Irbah, Alain Hauchecorne. Solar astrophysical fundamental parameters. Proc. SPIE 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Jun 2014, Montréal, Canada. pp.91431R, 10.1117/12.2050136. hal-01070129 HAL Id: hal-01070129 https://hal.archives-ouvertes.fr/hal-01070129 Submitted on 30 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Solar astrophysical fundamental parameters M. Meftaha,*,A.Irbaha,A.Hauchecornea and the PICARD team a Universit´eVersailles St-Quentin; Sorbonne Universit´es, UPMC Univ. Paris 06; CNRS/INSU, LATMOS-IPSL, 11 Boulevard d’Alembert, 78280 Guyancourt, France ABSTRACT The accurate determination of the solar photospheric radius has been an important problem in astronomy for many centuries. From the measurements made by the PICARD spacecraft during the transit of Venus in 2012, we obtained a solar radius of 696,156 ±145 kilometres. This value is consistent with recent measurements carried out atmosphere. This observation leads us to propose a change of the canonical value obtained by Arthur Auwers in 1891. An accurate value for total solar irradiance (TSI) is crucial for the Sun-Earth connection, and represents another solar astrophysical fundamental parameter.