Taxonomy, Ecobiology and Management of Mealybug on Cotton in Pakistan

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy, Ecobiology and Management of Mealybug on Cotton in Pakistan TAXONOMY, ECOBIOLOGY AND MANAGEMENT OF MEALYBUG ON COTTON IN PAKISTAN BY GHULAM ABBAS M.Sc. (Hons) Agri.Entomology A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN AGRICULTURAL ENTOMOLOGY FACULTY OF AGRICULTURE UNIVERSITY OF AGRICULTURE FAISALABAD, PAKISTAN 2010 To : The Controller of Examinations, University of Agriculture, Faisalabad. We, the Supervisory Committee, certify that the contents and form of thesis submitted by Mr. Ghulam Abbas, Regd. No. 83-ag-700 have been found satisfactory and recommend that it be processed for evaluation by the External Examiner (s) for the award of degree. SUPERVISORY COMMITTEE: 1. CHAIRMAN : ------------------------------------------------ (Dr. Muhammad Jalal Arif) 2. MEMBER : ----------------------------------------------- (Dr. Muhammad Ashfaq (TI)) 3. MEMBER : ------------------------------------------------- (Dr. Muhammad Aslam Khan) 4. SPECIAL MEMBER : ------------------------------------------------- (Dr. Shafqat Saeed) ii DEDICATED To My father, Mahr Sharif Muhammad (May his soul rest in heaven) Who had to face the bitter realities of the life in his early childhood. He was unborn when his father died. He was only nine months old when his mother also passed away. As an orphan he was brought up by his grandfather Maher Isa (Jesus). He was an illiterate and self-made person but he educated all his six sons in spite of the hardships of his life as a poor farmer. He is no longer in this world to be congratulated on the success of his son but his greatness is still alive and smiling on the fruit of his ambitions and efforts. iii CONTENTS CHAPTER TITLE PAGE NO. 1 INTRODUCTION 1 2 REVIEW OF LITERATURE 7 3 MATERIALS AND METHODS 25 4 RESULTS AND DISCUSSION 42 5 SUMMARY 125 REFERENCES 129 APPENDIX 140 iv TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................... v LIST OF TABLES ............................................................................................................ ix LIST OF FIGURES ......................................................................................................... xii LIST OF APPENDICES ................................................................................................. xiv LIST OF ANNEXURES .................................................................................................. xv LIST OF ABBREVIATIONS ......................................................................................... xvi ACKNOWLEDGEMENTS .......................................................................................... .xvii Abstract……………………………………………………………………………….xviii Chapter No. 1 INTRODUCTION 1.1 Background……………………………………………………………………………1 1.1.1 Agriculture in Pakistan ............................................................................. 1 1.1.2 The Importance of ...................................................................................... 1 1.1.3 The cotton belt of Pakistan ........................................................................ 3 1.2 The Problem ...................................................................................................... 4 1.3 Objectives of This Work .................................................................................. 6 Chapter No.2 REVIEW OF LITERATURE .......................................................................................... 7 2.1 The Taxonomic Literature on Mealybugs ......................................................... 7 2.1.1 Mealybug Classification .......................................................................... 7 2.1.2 The Identity of Pest Mealybugs in Pakistan ........................................... 8 2.1.3 The Mealybug Genus Phenacoccus ......................................................... 9 2.2 The Economic Importance of Mealybugs ....................................................... 10 2.2.1 Pest Behavior of Phenacoccus Species Other than CMB ...................... 12 2.2.2 The Economic Importance and Spread of Phenacoccus solenopsis ...... 13 2.2.3 The Global Distribution of P. solenopsis ................................................ 15 2.3 The Biology and Ecology of P. solenopsis ..................................................... 17 2.3.1 The Biology of P. solenopsis in Pakistan .............................................. 17 2.3.2 Host Plants of P. solenopsis ................................................................... 18 2.3.3 Insects Associated with Mealybugs ....................................................... 19 2.3.4 Natural Enemies of P. solenopsis ........................................................... 19 2.4 The Management of Pest Mealybugs on Cotton in Pakistan ........................... 20 2.4.1 Principles of Pest Management .............................................................. 20 v 2.4.2 Chemical Control of P. solenopsis ......................................................... 21 2.4.3 Pesticide Hazards and the Loss of Biodiversity ..................................... 22 2.4.4 Biological Control of Mealybugs ........................................................... 22 Chapter No.3 MATERIALS AND METHODS .................................................................................... 25 3.1 Methods Used in Taxonomic Studies ............................................................. 25 3.1.1 Preparation of Mealybugs for Authoritative Identification ................... 25 Table of contents (continued) 3.1.1.1 Collection and Labeling ............................................................... 26 3.1.1.2 Preservation ................................................................................... 27 3.1.1.3 Maceration .................................................................................... 27 3.1.1.4 Staining ......................................................................................... 27 3.1.1.5 Dehydration ................................................................................... 28 3.1.1.6 De-waxing and Clearing ............................................................... 28 3.1.1.7 Slide-mounting Adult Female Mealybugs .................................... 29 3.1.1.8 Drying Canada Balsam Slide Mounts ........................................... 30 3.1.2 Observation and Description .................................................................. 30 3.1.3 Identification .......................................................................................... 30 3.2 Methods Used in Ecobiology Studies ............................................................. 30 3.2.1 Life Span and Life Cycle ....................................................................... 31 3.2.2 Sex Ratio Study .................................................................................. 31 3.2.3 Reproduction and Developmental Stages .......................................... 32 3.2.4 Fecundity............................................................................................. 33 3.2.5 Effect of Host-Plant Species on Fecundity ......................................... 34 3.2.6 Alternate Host Plants ......................................................................... 35 3.2.7 Distribution and Dispersal ................................................................. 37 3.2.8 Overwintering and Carry Over of the Pest ........................................ 37 3.2.9 Recording Natural Enemies of CMB ................................................... 38 3.3 Methods Used in CMB Management Studies ............................................... 38 3.3.1 Host-Plant Resistance to CMB ........................................................... 38 3.3.2 The Impact of Narrow-Spectrum Pesticides and IGRs .......................... 39 3.3.3 The Optimum Volume of Sprayable Material ................................... 40 3.3.4 The Effects of Additives in Sprayable Material ................................ 40 Chapter No.4 RESULTS AND DISCUSSION: 4.1 TAXONOMY ……………………………………………………………………...42 4.1.1 The Identification Problem ........................................................................ 42 4.1.2. Diagnosis of the Family Pseudococcidae ............................................ 43 4.1.3 Records of Phenacoccus Species on Malvaceae ................................. 43 4.1.4 Morphological Description of the Cotton Mealybug in Pakistan ........ 44 4.1.5 Morphological Variation Between Samples of P. solenopsis .............. 45 vi 4.1.6 Biological Differences Between P. gossypiphilus and P. solenopsis .. 47 Taxonomic Discussion ....................................................................................... 47 4.2 ECOBIOLOGY.......................................................................................................... 49 4.2.1 Biology ........................................................................................................ 49 4.2.1.1 The Life Cycle of CMB ...................................................................... 49 4.2.1.2 The Reproduction of CMB ................................................................. 50 4.2.1.3 The Crawler and Wax Secretions ....................................................... 51 4.2.1.4 Mortality of CMB .................................................................................. 52 4.2.1.5 The Instar Durations of CMB ............................................................. 53 4.2.1.6 The Life Span of CMB ......................................................................
Recommended publications
  • (Coccomorpha: Pseudococcidae) on Succulent Plants (Crassulaceae) from Korea
    Journal of Asia-Pacific Biodiversity xxx (xxxx) xxx Contents lists available at ScienceDirect Journal of Asia-Pacific Biodiversity journal homepage: http://www.elsevier.com/locate/japb Short Communication Two new records of mealybugs (Coccomorpha: Pseudococcidae) on succulent plants (Crassulaceae) from Korea Jinyeong Choi a, Young-Su Lee b, Hee-A Lee b, Seunghwan Lee a,c,* a Insect Biosystematics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea b Gyeonggi-do Agricultural Research and Extension Services, Hwaseong 18338, Republic of Korea c Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea article info abstract Article history: Phenacoccus solani Ferris, 1918 and Vryburgia distincta (De Lotto, 1964) are herein reported occurring on Received 26 January 2021 succulent plants (Echeveria spp.) in South Korea. Both species have not been documented from South Received in revised form Korea except for quarantine inspection reports. In this study, diagnoses, descriptions, and photographs of 19 May 2021 the two species are provided with general information about their host plants and distributions. Accepted 8 June 2021 Ó 2021 National Science Museum of Korea (NSMK) and Korea National Arboretum (KNA), Publishing Available online xxx Services by Elsevier. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). Keywords: New records Phenacoccus solani Succulent plants Taxonomy Vryburgia distincta Introduction species, most of which are serious pests in agriculture and/or hor- ticulture, such as Ferrisia virgata (Cockerell), Maconellicoccus hir- Succulents generally refer to plants with large living cells inside sutus (Green), Planococcus citri (Risso), Pseudococcus viburni their leaves, roots, and/or stems for water storage.
    [Show full text]
  • Antagonistic Interactions Between the African Weaver Ant Oecophylla
    Article Antagonistic Interactions between the African Weaver Ant Oecophylla longinoda and the Parasitoid Anagyrus pseudococci Potentially Limits Suppression of the Invasive Mealybug Rastrococcus iceryoides Chrysantus M. Tanga 1,2, Sunday Ekesi 1,*, Prem Govender 2,3, Peterson W. Nderitu 1 and Samira A. Mohamed 1 Received: 7 August 2015; Accepted: 7 December 2015; Published: 23 December 2015 Academic Editors: Michael J. Stout, Jeff Davis, Rodrigo Diaz and Julien M. Beuzelin 1 International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya; [email protected] (C.M.T.); [email protected] (P.W.N.); [email protected] (S.A.M.) 2 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; [email protected] 3 Faculty of Health Sciences, Sefako Makgatho Health Sciences University (SMU), P.O. Box 163, Ga-Rankuwa 0221, South Africa * Correspondence: [email protected]; Tel.: +254-20-863-2150; Fax: +254-20-863-2001 or +254-20-863-2002 Abstract: The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter’s infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on “ant-excluded” treatments (86.6% ˘ 1.27%) compared to “ant-tended” treatments (51.4% ˘ 4.13%). The low female-biased sex-ratio observed in the “ant-tended” treatment can be attributed to ants’ interference during the oviposition phase, which disrupted parasitoids’ ability to fertilize eggs.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Local and Regional Influences on Arthropod Community
    LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Phylogeny of Ladybirds (Coleoptera: Coccinellidae): Are the Subfamilies Monophyletic?
    Molecular Phylogenetics and Evolution 54 (2010) 833–848 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of ladybirds (Coleoptera: Coccinellidae): Are the subfamilies monophyletic? A. Magro a,b,1, E. Lecompte b,c,*,1, F. Magné b,c, J.-L. Hemptinne a,b, B. Crouau-Roy b,c a Université de Toulouse, ENFA, EDB (Laboratoire Evolution et Diversité Biologique), 2 route de Narbonne, F-31320 Castanet Tolosan, France b CNRS, EDB (Laboratoire Evolution et Diversité Biologique), F-31062 Toulouse, France c Université de Toulouse, UPS, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France article info abstract Article history: The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known Received 20 April 2009 because of their use as biocontrol agents, and are the subject of many ecological studies. However, little Revised 15 October 2009 is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is Accepted 16 October 2009 needed for the family. This paper provides the first phylogenetic reconstruction of the relationships Available online 10 November 2009 within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relation- Keywords: ships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), Phylogeny and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference Coccinellidae Partitioned analyses with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae Evolution is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic.
    [Show full text]
  • Coleoptera: Coccinellidae): Influence of Subelytral Ultrastructure
    Experimental & Applied Acarology, 23 (1999) 97–118 Review Phoresy by Hemisarcoptes (Acari: Hemisarcoptidae) on Chilocorus (Coleoptera: Coccinellidae): influence of subelytral ultrastructure M.A. Houck* Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409–3131, USA (Received 9 January 1997; accepted 17 April 1998) ABSTRACT The non-phoretic stages of mites of the genus Hemisarcoptes are predators of the family Diaspididae. The heteromorphic deutonymph (hypopus) maintains a stenoxenic relationship with beetles of the genus Chilocorus. The mites attach to the subelytral surface of the beetle elytron during transport. There is variation in mite density among species of Chilocorus. Both Hemisarcoptes and Chilocorus have been applied to biological control programmes around the world. The objective of this study was to determine whether subelytral ultrastructure (spine density) plays a role in the evolution of symbiosis between the mite and the beetle. The subelytral surfaces of 19 species of Chilocorus and 16 species of Exochomus were examined. Spine density was determined for five subelytral zones: the anterior pronotal margin, medial central region, caudoventral tip, lateral distal margin and epipleural region. Spine density on the subelytral surface of Chilocorus and Exochomus was inversely correlated with the size of the elytron for all zones except the caudoventral tip. This suggests that an increase in body size resulted in a redistribution of spines and not an addition of spines. The pattern of spine density in Exochomus and Chilocorus follows a single size–density trajectory. The pattern of subelytral ultrastructure is not strictly consistent with either beetle phylogeny or beetle allometry. The absence of spines is not correlated with either beetle genus or size and species of either Chilocorus or Exochomus may be devoid of spines in any zone, irrespective of body size.
    [Show full text]
  • Management Options for Mealybug in Persimmon
    Scoping study: management options for mealybug in persimmon Dr Lara Senior The Department of Agriculture, Fisheries and Forestry, QLD Project Number: PR11000 PR11000 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the persimmon industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the persimmon industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 3021 X Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright 2012 Scoping study: management options for mealybug in persimmon (FINAL REPORT) Project Number: PR11000 (1st December 2012) Dr Lara Senior Queensland Department of Agriculture, Fisheries and Forestry Scoping study: management options for mealybug in persimmon HAL Project Number: PR11000 1st December 2012 Project leader: Dr Lara Senior Entomologist Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Gatton Research Station Locked Bag 7, Mail Service 437 Gatton, QLD 4343 Tel: 07 5466 2222 Fax: 07 5462 3223 Email: [email protected] Key personnel: Grant Bignell1, Bob Nissen2, Greg Baker3 1. 1 Department of Agriculture, Fisheries and Forestry, Nambour Qld 2.
    [Show full text]
  • Integrated Pest Management of Mango Mealybug (Drosicha Mangiferae) in Mango Orchards
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 08–167/VBQ/2009/11–1–81–84 http://www.fspublishers.org Full Length Article Integrated Pest Management of Mango Mealybug (Drosicha mangiferae) in Mango Orchards HAIDER KARAR, M. JALAL ARIF1†, HUSSNAIN ALI SAYYED‡, SHAFQAT SAEED¶, GHULAM ABBAS¶¶ AND M. ARSHAD† Entomological Research Sub-station, Multan, Pakistan †Department of Agri. Entomology, University of Agriculture, Faisalabad, Pakistan ‡Department of Biochemistry, University of Sussex, UK ¶Department of Agri. Entomology, University College of Agriculture, B. Z. University, Multan, Pakistan ¶¶Pest warning and Quality Control of Pesticides, Punjab, Lahore-Pakistan 1Corresponding author’s e-mail: [email protected] ABSTRACT An experiment was conducted to destroy the eggs and management of nymphs through different IPM components. The mango orchards were visited and it was found that maximum number of females were exposed from the roots of host plants in the field (1.9 m2) and minimum numbers of females were recorded from the cracks of trees, sides of kacha roads, soil under tree canopy (0.16 m-2). The data revealed that the treatment with three measures (cultural, mechanical & chemical) were combined had maximum effect in reducing the population i.e., 98.46%. It was also concluded from the results that the measures in integrated form gave better results than the single treatment. Key Words: Mango; Drosicha mangiferae; Hibernation places; IPM INTRODUCTION solution. In general, the insecticides are considered to be the quick method for the control of insect pests but dependence Mango (Mangifera indica L.) a member of family on the pesticides has its own complications as WTO pointed Anacardiaceae is known as king of fruits for its sweetness, out, Phytosanitory standards, admissible limits of residues excellent flavor, delicious taste and high nutritive value by World Health Organization and many management (Singh, 1968; Litz, 1997).
    [Show full text]
  • Halona2021r.Pdf
    Terrestrial Arthropod Survey of Hālona Valley, Joint Base Pearl Harbor-Hickam, Naval Magazine Lualualei Annex, August 2020–November 2020 Neal L. Evenhuis, Keith T. Arakaki, Clyde T. Imada Hawaii Biological Survey Bernice Pauahi Bishop Museum Honolulu, Hawai‘i 96817, USA Final Report prepared for the U.S. Navy Contribution No. 2021-003 to the Hawaii Biological Survey EXECUTIVE SUMMARY The Bishop Museum was contracted by the U.S. Navy to conduct surveys of terrestrial arthropods in Hālona Valley, Naval Magazine Lualualei Annex, in order to assess the status of populations of three groups of insects, including species at risk in those groups: picture-winged Drosophila (Diptera; flies), Hylaeus spp. (Hymenoptera; bees), and Rhyncogonus welchii (Coleoptera; weevils). The first complete survey of Lualualei for terrestrial arthropods was made by Bishop Museum in 1997. Since then, the Bishop Museum has conducted surveys in Hālona Valley in 2015, 2016–2017, 2017, 2018, 2019, and 2020. The current survey was conducted from August 2020 through November 2020, comprising a total of 12 trips; using yellow water pan traps, pitfall traps, hand collecting, aerial net collecting, observations, vegetation beating, and a Malaise trap. The area chosen for study was a Sapindus oahuensis grove on a southeastern slope of mid-Hālona Valley. The area had potential for all three groups of arthropods to be present, especially the Rhyncogonus weevil, which has previously been found in association with Sapindus trees. Trapped and collected insects were taken back to the Bishop Museum for sorting, identification, data entry, and storage and preservation. The results of the surveys proved negative for any of the target groups.
    [Show full text]
  • Phylogeny and Classification of Cucujoidea and the Recognition of A
    Systematic Entomology (2015), 40, 745–778 DOI: 10.1111/syen.12138 Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia) JAMES A. ROBERTSON1,2,ADAM SL´ I P I NS´ K I3, MATTHEW MOULTON4, FLOYD W. SHOCKLEY5, ADRIANO GIORGI6, NATHAN P. LORD4, DUANE D. MCKENNA7, WIOLETTA TOMASZEWSKA8, JUANITA FORRESTER9, KELLY B. MILLER10, MICHAEL F. WHITING4 andJOSEPH V. MCHUGH2 1Department of Entomology, University of Arizona, Tucson, AZ, U.S.A., 2Department of Entomology, University of Georgia, Athens, GA, U.S.A., 3Australian National Insect Collection, CSIRO, Canberra, Australia, 4Department of Biology and M. L. Bean Museum, Brigham Young University, Provo, UT, U.S.A., 5Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 6Faculdade de Ciências Biológicas, Universidade Federal do Pará, Altamira, Brasil, 7Department of Biological Sciences, University of Memphis, Memphis, TN, U.S.A., 8Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland, 9Chattahoochee Technical College, Canton, GA, U.S.A. and 10Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, U.S.A. Abstract. A large-scale phylogenetic study is presented for Cucujoidea (Coleoptera), a diverse superfamily of beetles that historically has been taxonomically difficult. This study is the most comprehensive analysis of cucujoid taxa to date, with DNA sequence data sampled from eight genes (four nuclear, four mitochondrial) for 384 coleopteran taxa, including exemplars of 35 (of 37) families and 289 genera of Cucujoidea. Maximum-likelihood analyses of these data present many significant relationships, some proposed previously and some novel.
    [Show full text]
  • Phenotypic Variation and Identification of Phenacoccus Solenopsis Tinsley (Hemiptera: Pseudococcidae) in China
    Zootaxa 3802 (1): 109–121 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3802.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:B27857E3-9162-402F-A7A0-42967080A201 Phenotypic variation and identification of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) in China JING ZHAO1, GILLIAN W. WATSON2, YANG SUN1, YONGAN TAN1, LIUBIN XIAO1 & LIXIN BAI1, 3 1Institute of Plant Protection Room 305, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China. E-mail [email protected] 2Plant Pest Diagnostic Center, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, California 95832, U.S.A. E-mail [email protected] 3Corresponding author. E-mail: [email protected] Abstract Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is an invasive mealybug that seriously damages cotton and other important crops. In previous studies in China, the presence of two submedian longitudinal lines of pigmented spots on the dorsum of adult females frequently has been used to identify this species. However, the present study records the occasional absence of pigmented spots in a sample from Guangxi province, China. Specimens without pigmented spots showed all the molecular and morphological characters that separate P. solenopsis from the similar species P. solani Ferris, especially the distribution of multilocular disc pores. In different geographic populations of P. solenopsis in China, mito- chondrial COI and nuclear 28SrDNA genes are very similar (99.8–100%), indicating that they are conspecific. For COI, the genetic distance between P. solenopsis and P.
    [Show full text]