ABSTRACTS Silicia Hazard in Arc Furnace Construction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chloracne: from Clinic to Research
DERMATOLOGICA SINICA 30 (2012) 2e6 Contents lists available at SciVerse ScienceDirect Dermatologica Sinica journal homepage: http://www.derm-sinica.com REVIEW ARTICLE Chloracne: From clinic to research Qiang Ju 1, Kuochia Yang 2, Christos C. Zouboulis 3, Johannes Ring 4, Wenchieh Chen 4,* 1 Department of Dermatology, Shanghai Skin Disease and STD Hospital, Shanghai, People’s Republic of China 2 Department of Dermatology, Changhua Christian Hospital, Changhua, Taiwan 3 Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany 4 Department of Dermatology and Allergy, Technische Universität München, Munich, Germany article info abstract Article history: Chloracne is the most sensitive and specific marker for a possible dioxin (2,3,7,8-tetrachlorodibenzo-p- Received: Oct 31, 2011 dioxin) intoxication. It is clinically characterized by multiple acneiform comedone-like cystic eruptions Revised: Nov 9, 2011 mainly involving face in the malar, temporal, mandibular, auricular/retroauricular regions, and the Accepted: Nov 9, 2011 genitalia, often occurring in age groups not typical for acne vulgaris. Histopathology is essential for adefinite diagnosis, which exhibits atrophy or absence of sebaceous glands as well as infundibular Keywords: dilatation or cystic formation of hair follicles, hyperplasia of epidermis, and hyperpigmentation of aryl hydrocarbon receptor stratum corneum. The appearance of chloracne and its clinical severity does not correlate with the blood chloracne “ ” 2,3,7,8-tetrachlorodibenzo-p-dioxin levels of dioxins. Pathogenesis of chloracne remains largely unclear. An aryl hydrocarbon receptor - polyhalogenated aromatic hydrocarbons mediated signaling pathway affecting the multipotent stem cells in the pilosebaceous units is probably sebaceous gland the major molecular mechanism inducing chloracne. -
درمان و تشخیص نامه شیوه کلرین گاز با مسمومیت Medical Guideline For
شیوه نامه تشخیص و درمان مسمومیت با گاز کلرین Medical Guideline for Chlorine Gas Poisoning اداره کل پدافند غیرعامل وزارت بهداشت، درمان و آموزش پزشکی مرداد 6931 فهرست مطالب عنوان صفحه 1- مشخصات کلی ....................................................................................................................................... 1 1 ....................................................................................................................... Threshold Limit Values; 2- ویژگیها ............................................................................................................................................... 2 2-1: مکانیسم اثر ...................................................................................................................................... 2 3- نحوه مواجهه و تماس ............................................................................................................................... 3 3-1- مواجهه حاد تنفسی ............................................................................................................................ 4 3-2- مواجهه حاد پوستی ـ مخاطی ................................................................................................................ 4 3-3- مواجهه حاد گوارشی .......................................................................................................................... 5 4- عﻻیم و نشانه های مسمومیت ...................................................................................................................... 5 4-1- عﻻیم مواجهه حاد تنفسی -
Toxicological Profile for Chlorine
CHLORINE 25 3. HEALTH EFFECTS 3.1 INTRODUCTION The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective on the toxicology of chlorine. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE To help public health professionals and others address the needs of persons living or working near hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, oral, and dermal) and then by health effect (death, systemic, immunological, neurological, reproductive, developmental, genotoxic, and carcinogenic effects). These data are discussed in terms of three exposure periods: acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). Levels of significant exposure for each route and duration are presented in tables and illustrated in figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress or death). "Less serious" effects are those that are not expected to cause significant dysfunction or death, or those whose significance to the organism is not entirely clear. -
Neurotoxicity: Identifying and Controlling Poisons of the Nervous System
Index -i abused drugs activities of, 33, 81, 88, 322 addiction, 6, 52,74, 75 aldicarb, 47, 173,251 designer drugs, 51 aldrin, 250,252,292 effects on nervous system, 6,9, 51–53, 71 allyl chloride, 303 health costs of, 20,53,232 aluminum, 48 psychoactive drugs, 6, 10,27,44,50 and Alzheimer’s disease, 54-55 withdrawal from, 74 oxide, 14, 136 see also specific drugs Alzheimer’s disease academic research effects on hippocampus, 71 cooperative agreements with government, 94 environmental cause, 3, 6, 54-55, 70, 72 factors influencing directions of, 92-94 research on, 259 acetaldehyde, 297 American Academy of Pediatrics, 189 acetone, 14, 136,296, 297,303 American Conference of Governmental Industrial Hygienists, acetylcholine, 26, 66, 109, 124,294, 336 28, 151, 185, 186,203,302-303 acetylcholinesterase, 11,50,74,84,187,203, 289,290-292,336 American National Standards Institute, 185 acetylethyl tetramethyl tetralin (AETT) ammonia, 14, 136 exposure route, 108 amphetamines, 74 incidents of poisoning, 47, 54 amyotrophic lateral sclerosis neurological effects of, 54 characteristics of, 54 acrylamide, 73, 120 environmental cause, 3, 6, 54-55, 70, 72 neurotoxicity testing, 166, 175 incidence of, 54, 55 regulation for neurotoxicity, 178 research on, 259 risk assessment approaches, 150, 151,216 anencephaly, 70 research on neurotoxicity, 258 anilines and substituted anilines, 179 acrylates, 175 animal tests, 13 acrylonitrile, 203 accuracy and reliability, 106, 115 neurotoxicity testing, 166, 173 advantages and limitations of, 105, 106, 111, 112, 114, -
Chlorine and Hydrogen Chloride
This report contains the collective views of an nternational group of experts and does not xcessarily represent the decisions or the stated 1 icy of the United Nations Environment Pro- '€mme, the International Labour Organisation, or the World Health Organization. Environmental Health Criteria 21 CHLORINE AND HYDROGEN CHLORIDE 'ublished under the joint sponsorship of Ic United Nations Environment Programme. the International Labour Organisation, and the World Health Organization / \r4 ( o 4 UI o 1 o 'T F- World Health Organization kz Geneva, 1982 The International Programme on Chemical Safety (IPCS) is a joint ven- ture of the United Nations Environment Programme. the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the environment. Supporting activities include the development of epidemiological, experi- mental laboratory, and risk assessment methods that could produce interna- tionally comparable results, and the development of manpower in the field of toxicology. Other relevant activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals. ISBN 92 4 154081 8 World Health Organization 1982 Publications of the World Health Organization enjoy copyright protec- tion in accordance with the provisions of Protocol 2 of the Universal Copy- right Convention. For rights of reproduction or translation of WHO publica- tions, in part or in loto, application should be made to the Office of Publica- tions, World Health Organization, Geneva. Switzerland. The World Health Organization welcomes such applications. -
Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves. -
Drug-Induced Cutaneous Toxicity
ProvisionalChapter chapter 1 Drug-Induced Cutaneous Toxicity Katsuhiko Yoshizawa, Michiko Yuki and Katsuhiko Yoshizawa, Michiko Yuki and Airo Tsubura Airo Tsubura Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/64473 Abstract The skin is the largest organ in the body and is continually exposed to external stimuli, such as chemical and environmental substances. Cutaneous toxicity can be broadly classified according to the mechanism of onset, namely: contact dermatitis, i.e., damage resulting from contact with a substance (irritant dermatitis, allergic contact dermatitis, chemical burns); photosensitivity, i.e., caused by combined effects of a substance and ultraviolet light (phototoxic dermatitis, photoallergic contact dermatitis); contact urticaria; chemical-induced acne; pigmentary disturbance; drug rash; hair disturbance; nail disturbance; or tumor-induced. This review outlines the function and structure of the skin, outlining characteristics of these types of cutaneous toxicity. In recent years, advances have been made in the development of pharmaceutical products targeting specific molecules or genes and nanotechnology-based pharmaceutical products, raising concerns about the onset of toxicity by novel mechanisms involving new pharmaceutical products. Therefore, it is important to understand the basic toxicity-related changes described herein. Keywords: cutaneous toxicity, drugs, chemicals, toxicity studies 1. Introduction Cutaneous adverse drug or chemical reactions in patients are not common. Among hospitalized patients, the incidence of adverse drug reactions concerning the skin ranges from 1% to 3%; however, the actual prevalence is much higher, as many mild forms of cutaneous adverse reactions are not reported [1]. -
Nureg/Cr-5669 Pnl-7522
NUREG/CR-5669 PNL-7522 Evaluation of Exposure Limits to Toxic Gases for Nuclear Reactor Control Room Operators Prepared by D. D. Mahlum, L. B. Sasser Pacific Northwest Laboratory Operated by Battelle Memorial Institute Prepared for U.S. Nuclear Regulatory Commission -C -- AVAILABIUTY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited In NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555 2. The Superintendent of Documents. U.S. Government Printing Office, P.O. Box 37082. Washington, DC 20013-7082 3. The National Technical Information Service, Springfield, VA 22161 Although the listing that follows represents the majority of documents cited In NRC publications, It Is not Intended to be exhaustive. Referenced documents available for Inspection and copying for a fee from the NRC Public Document Room Include NRC correspondence and Internal NRC memoranda: NRC bulletins. circulars, Information notices, Inspection and Investigation notices; licensee event reports; vendor reports and correspondence; Commis- sion papers; and applicant and licensee documents and correspondence. The following documents In the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations In the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commis- sion, forerunner agency to the Nuclear Regulatory Commission. -
Ecairdiac Poisons
CHAPTER 36 ECAIRDIAC POISONS NICOTIANA TABACUM : All parts are FATAL DOSE: 50 to 100 rug, of nicotine. It rivals poisonous except the ripe seeds. The dried leaves cyanide as a poison capable of producing rapid death; (tobacco, lanthaku) contain one to eight percent of 15 to 30 g. of crude tobacco. nicotine and are used in the form of smoke or snuff FATAL PERIOD: Five to 15 minutes. or chewed. The leaves contain active principles, which TREATMENT: (I) Wash the stomach with warm are the toxic alkaloids nicotine and anabasine (which water containing charcoal, tannin or potassium are equall y toxic); nornicotine (less toxic). Nicotine permanganate. (2) A purge and colonic wash-out. (3) is a colourless, volatile, hitter, hygroscopic liquid Mecamylamine (Inversine) is a specific antidote given alkaloid. It is used extensively in agricultural and orally (4) Protect airway. (5) Oxygen. (6) horticultural work, for fumigating and spraying, as Symptomatic. insecticides, worm powders, etc. POST-MORTEM APPEARANCES: They are those ABSORPTION ANT) EXCRETION : Each of asphyxia. Brownish froth at mouth and nostrils, cigarette contains about IS to 20 mg. of nicotine of haemorrhagic congestion of Cl tract, and pulmonary which I to 2 rug, is absorbed by smoking; each cigar oedema are seen. Stomach may contain fragments of contains 15 to 40 mg. Nicotine is rapidly absorbed from leaves or may smell of tobacco. all mucous membranes, lungs and the skin. 80 to. 90 THE CIRCUMSTANCES OF POISONING: (1) percent is metabolised by the liver, but some may be Accidental poisoning results due to ingestion, excessive metabolised in the kidneys and the lungs. -
Chlorine Gas Poisoning
CHLORINE GAS POISONING Adnan M. Ammoura, MD*, Samih S. Aqqad, MD*, Aya T. Hamdan, MD* ABSTRACT Objective: To describe a chlorine gas poisoning accident with regards to rapid diagnosis, proper treatment, prognosis, and outcome. Methods: At King Hussein Air College, during Summer August 1999, the water supply unit was using chlorine gas pressurized in cylinders for decontamination of water. Sixteen patients were brought to the emergency room at King Hussein Air College medical clinic concomitantly, during a period of 2 hours, complaining of eye irritation, sneezing with nasal watery discharge, and difficulty in breathing, after exposure to chlorine gas leaking from cylinder. A specially designed record form was used containing patients complete history, physical examination, and initiation of treatment with oxygen mask and follow up of patients. Results: All patients were exposed to chlorine gas prior to initiation of symptoms, the most common presenting symptoms were, eye irritation, and sneezing in 75% of patients (n=12), where the least common symptom was vomiting in 12.5% of patients (n=2). Remarkable improvement was obtained using humidified oxygen mask in 50% of patients (n=8), eight patients required bronchodilator nebulizer and four of them were given intravenous hydrocortisone that accounted for (25%) of cases. Follow up of all patients after 3 days in the chest clinic (King Hussein Hospital) showed that only 12.5% of patients (n=2) were found to have obstructive pattern of lung disease. Conclusion: Workers in water supply units must be instructed about the dangers of chlorine gas leakage, the value of using protective masks, and follow the proper management of leaking cylinders. -
12.2% 116000 125M Top 1% 154 4300
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,300 116,000 125M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com ProvisionalChapter chapter 4 Occupational Acne Occupational Acne Betul Demir and Demet Cicek Betul Demir and Demet Cicek Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/64905 Abstract Occupational and environmental acne is a dermatological disorder associated with industrial exposure. Polyhalogenated hydrocarbons, coal tar and products, petrol, and other physical, chemical, and environmental agents are suggested to play a role in the etiology of occupational acne. The people working in the field of machine, chemistry, and electrical industry are at high risk. The various occupational acne includes chloracne, coal tar, and oil acne. The most common type in clinic is the comedones, and it is also seen as papule, pustule, and cystic lesions. Histopathological examination shows epidermal hyperplasia, while follicular and sebaceous glands are replaced by keratinized epidermal cells. Topical or oral retinoic acids and oral antibiotics could be used in treatment. The improvement in working conditions, taking preventive measures, and education of the workers could eliminate occupational acne as a problem. -
The Periodic Table of Danger Michael Hal Sosabowski, Michael Stephens and John Emsley
The periodic table The periodic table of danger Michael Hal Sosabowski, Michael Stephens and John Emsley Abstract Society at large often incorrectly thinks that the word ‘chemicals’ implies danger, when of course all matter can be described as a chemical. In this article we define what precisely we mean by ‘hazard’, risk’ and ‘danger’; we then consider selected elements from the periodic table that are noteworthy because of their dangerous characteristics. The terms ‘hazard’, ‘risk’ and ‘danger’ are commonly be changed. The risk, or probability, of being exposed to used terms that are equally commonly misunderstood, arsenic and therefore poisoned depends on how that risk used interchangeably or simply misused. The title of this is controlled. If our arsenic is kept in a sealed container article, ‘The periodic table of danger’ therefore requires and under lock and key, although it still possesses its us to offer a short explanation of, and differentiation hazardous property, there is no probability or risk of between, these terms. exposure and therefore it presents no danger. The word hazard has its origins in the Old French word hasard, which means dice game; it is derived from Antimony the Arabic az-zahr, which means the gaming die (see Websites 1). It means a condition or set of circumstances Antimony is a silver-white, crystalline metalloid and is that present a risk or threat to an individual’s life, prop- naturally occurring in the Earth’s crust. It is generally erty or health. It is something that does not exist but found as the sulfide mineral stibnite.