BXL Group Meeting 12:4:2019 (Unlayered)

Total Page:16

File Type:pdf, Size:1020Kb

BXL Group Meeting 12:4:2019 (Unlayered) Carbenes: multiplicity and reactivity Beryl X. Li December 4th, 2019 Carbenes: multiplicity and reactivity Introduction + Divalent species, similar to CO and R–CN 2p sp2 2p carbocation sp2 2p 6 C singlet carbene 2 sp Carbon 12.011 2p carbon radical sp2 – 2p triplet carbene sp2 Very reactive: cyclopropanation, dimerization, ylide carbanion formation, X–H bond insertion, among others Anslyn, E.V.; Dougherty, D.A Modern Physical Organic Chemistry, 1st ed; University Science Books, 2006. Carbenes: multiplicity and reactivity A brief history Geuther & Hermann Gomberg Doering & Knox 1954 1855 1900 1953 – CHCl3 + OH CH2N2 + CHBr3 h! – CCl2 + Cl + H2O R R Br first to propose a characterized the first synthesis of Br carbenoid intermediate example of a free radical tropolone derivatives dibromomethylene intermediate Nef common belief Lennard-Jones & Pople Duschenne & Burnelle 1897 1920s and 1930s 1951 1953 Cl N H N H H F H H and singlet H F CCl2 H necessarily triplet similar intermediate in a propose two ground states 2 Ciamician-Dennstedt linear with degenerate CF2 is sp hybridized, with for the CH carbene rearrangement p orbitals 2 a singlet ground state Hopkinson, M.N.; Richter, C.; Schedler, M; Glorius, F. Nature 2014, 510, 485–96. Fremont, P.; Marion, N.; Nolan, S.P. Coord. Chem. 2009, 253, 862–92. Carbenes: multiplicity and reactivity A brief history Fischer numerous research Arduengo 1964 1970s and 1980s 1991 W(CO)5 Ground state: OMe singlet or triplet? N N first metal-carbene mesomeric and inductive stable, isolable complex effects considered N-heterocyclic cabene Hoffman Schrock 1968 1974 present day tBu energy H Carbenes: high energy vs. gap Ta intermediate with tBu tBu tBu comprehensible reactivity 0 min. splitting energy for CH2 first synthesis of a d to have a GS singlet metal-alkylidene complex Hopkinson, M.N.; Richter, C.; Schedler, M; Glorius, F. Nature 2014, 510, 485–96. Fremont, P.; Marion, N.; Nolan, S.P. Coord. Chem. 2009, 253, 862–92. Carbenes: multiplicity and reactivity Multiplicity overview 2p Hypothetically… (as were believed in 1930s) sp degenerate 2p orbitals linear carbenes would have a triplet ground state Today, carbenes are understood to be bent… coulombic repulsion (EC) vs. sp2 – 2p energy difference (!E) Singlet-triplet splitting !GST = EC – !E 2p 2p !E 2 2 sp EC sp singlet carbene triplet carbene Baird, N.C.; Taylor, K.F. J. Am. Chem. Soc. 1978, 100 (5), 1333–8. Carbenes: multiplicity and reactivity Multiplicity overview 2p Hypothetically… (as were believed in 1930s) sp degenerate 2p orbitals linear carbenes would have a triplet ground state Today, carbenes are understood to be (mostly) bent… coulombic repulsion (EC) vs. sp2 –2p energy difference (!E) Singlet-triplet splitting !GST = EC – !E p p !E ! EC ! singlet carbene triplet carbene Baird, N.C.; Taylor, K.F. J. Am. Chem. Soc. 1978, 100 (5), 1333–8. Carbenes: multiplicity and reactivity Multiplicity overview p p "E ! ! singlet carbene triplet carbene ■ Spin quantum number (S) = 1/2 + (–1/2) = 0 ■ Spin quantum number (S) = 1/2 + 1/2 = 1 ■ Multiplicity = 2S + 1 = 1 (hence “singlet”) ■ Multiplicity = 2S + 1 = 3 (hence “triplet”) p p or or ! ! ■ Nucleophile/electrophile ■ Diradicals ■ Chelotropic reactions, stereospecific ■ Stepwise radical additions, potentially stereoselective O O 2 O CH2I2 3 N2 Zn(Cu) H2 I h! Ar Ar C Ar Ar Zn Ar Ar MeO H I MeOH Ar Ar e.g. Simmons-Smith reaction Simmons, H.E.; Smith, R.D. J. Am. Chem. Soc. 1958, 80 (19), 5323–4. Bourisson, D.; Guerret, O.; Gabbais, F.P.; Bertrand, G. Chem. Rev. 2000, 100, 39–91. Carbenes: multiplicity and reactivity Factors that determine multiplicity: parent CH2 Factors ■mesomeric interactions H ■inductive effects H–C–H p H ■hyperconjugation ∡ 102 ° ■steric effects singlet state # EC ■solvent environment Singlet-triplet splitting !GST = EC – !E coulombic repulsion (EC) vs. sp2 / 2p energy difference (!E) H H energyincreases !GST = 9 kcal/mol postive number indicates triplet H p H–C–H is lowest energy ground state H !E ∡ 137 ° # triplet state Hoffman, R. J. Am. Chem. Soc., 1968, 90, 1475–85. Baird, N.C.; Taylor, K.F. J. Am. Chem. Soc. 1978, 100 (5), 1333–8. Carbenes: multiplicity and reactivity Factors that determine multiplicity: mesomeric interactions Factors ■mesomeric interactions Mesomeric effects on carbene ground state multiplicity ■inductive effects hyperconjugation electron donating or withdrawing substituents (essentially resonance) ■ ■steric effects ■solvent environment X-type interactions Z-type interactions C-type interactions p p p ! ! ! "-electron acceptors lower/ conjugated groups lower/ "-electron donors raise p orbital unaffect #–p gap unaffect #–p gap (e.g., –NR2, –OR, –F, –Cl, –Br, –I) (e.g., carbonyls, –SO2R, –NO, –NO2) (e.g., alkenes, alkynes, aryl groups) ground state singlet ground state triplet ground state triplet Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: mesomeric interactions Factors ■mesomeric interactions Mesomeric effects on carbene ground state multiplicity ■inductive effects hyperconjugation electron donating or withdrawing substituents (essentially resonance) ■ ■steric effects ■solvent environment X-type interactions carbenoid species !GST p H 9 kcal/mol H ! HS –28.0 kcal/mol HS negative !GST indicates singlet is lowest energy -electron donors raise p orbital " H2N ground state –52.6 kcal/mol (e.g., –NR2, –OR, –F, –Cl, –Br, –I) H2N ground state singlet Matus, M. H.; Nguyen, M. T.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 8864–71. Alder, R. W.; Blake, M. E.; Oliva, J. M. J. Phys. Chem. A 1999, 103, 11200–11. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: mesomeric interactions Factors ■mesomeric interactions Mesomeric effects on carbene ground state multiplicity ■inductive effects hyperconjugation electron donating or withdrawing substituents (essentially resonance) ■ ■steric effects ■solvent environment X-type interactions Z-type interactions C-type interactions p p p ! ! ! "-electron acceptors lower/ conjugated groups lower/ "-electron donors raise p orbital unaffect #–p gap unaffect #–p gap (e.g., –NR2, –OR, –F, –Cl, –Br, –I) (e.g., carbonyls, –SO2R, –NO, –NO2) (e.g., alkenes, alkynes, aryl groups) ground state singlet ground state triplet ground state triplet Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: mesomeric interactions Factors ■mesomeric interactions Mesomeric effects on carbene ground state multiplicity ■inductive effects hyperconjugation electron donating or withdrawing substituents (essentially resonance) ■ ■steric effects ■solvent environment C-type interactions p " conjugated groups lower/ unaffect !–p gap aryl groups generally stabilize both the singlet state (Esub/S) (e.g., alkenes, alkynes, aryl groups) and the triplet state (Esub/T) ground state triplet Woodcock, H. L.; Moran, D.; Brooks, B. R.; Schleyer, P. v. R.; Schaefer, H. F., III. J. Am. Chem. Soc. 2007, 129, 3763–70. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: inductive effects Factors ■mesomeric interactions Inductive effects ■inductive effects inductively electron-donating or -withdrawing groups intereact ■hyperconjugation selectively with carbon orbitals, which changes the !–p gap ■steric effects ■solvent environment 2p p 2p p ! ! 2s 2s !-EWG stabilizes !-nonbonding orbital !-EDG induces a smaller !–p gap, thus increasing !–p gap to favor singlet therefore favoring triplet Irikura, K.K.; Goddard III., W.A.; Beauchamp, J.L. J. Am. Chem. Soc. 1992, 114, 48–51. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: hyperconjugation Factors ■mesomeric interactions Hyperconjugation ■inductive effects ■hyperconjugation Singlets, which are isoelectric with carbocations, are more stabilized ■steric effects by hyperconjugative effects compared to the radical-like triplets ■solvent environment Me Me Me Me carbenoid H Me Me Me species Me H H Me H Me Me Me !GST 9.05 kcal/mol 2.26 kcal/mol –2.47 kcal/mol –0.17 kcal/mol 2.65 kcal/mol more hyperconjugation more steric bulk (favor singlet ground state) (favor triplet ground state) Sulzbach, H. M.; Bolton, E.; Lenoir, D.; Schleyer, P. v. R.; Schaefer, H. F., III. J. Am. Chem. Soc. 1996, 118, 9908–14. Gallo, M. M.; Schaefer, H. F., III. J. Phys. Chem. 1992, 96, 1515–7. Richards, C. A., Jr.; Kim, S.-J.; Yamaguchi, Y.; Schaefer, H. F., III. J. Am. Chem. Soc. 1995, 117, 10104–7. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: steric effects Factors ■mesomeric interactions Steric effects ■inductive effects Large angles favor the triplet state ■hyperconjugation Smaller angles (i.e. bulky substituents) favor the singlet state ■steric effects ■solvent environment H–C–H H H–C–H H ) ∡ 137 ° H ∡ 102 ° H ST G triplet state singlet state " singlet p triplet " relativeenergy ( H–C–H ∡ As the carbon bond angle decreases, the ! orbital gains more s character and moves lower in energy, increasing the !–p gap Sulzbach, H.M.; Bolton, E.; Lenoir, D.; Schyler, P.v.R.; Schaefer, H.F. J. Am. Chem. Soc. 1996, 118 (41), 9908–14. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity
Recommended publications
  • Review Sheet on Determining Term Symbols
    Review Sheet on Determining Term Symbols Term symbols for electronic configurations are useful not only to the spectroscopist but also to the inorganic chemist interested in understanding electronic and magnetic properties of molecules. We will concentrate on the method of Douglas and McDaniel (p. 26ff); however, you may find other treatments equal or superior to the D & M method. Term symbols are a shorthand method used to describe the energy, angular momentum, and spin multiplicity of an atom in any particular state. The general form is a given as Tj where T is a capital letter corresponding to the value of L (the angular momentum quantum number) and may be assigned as S, P, D, F, G, … for |L| = 0, 1, 2, 3, 4, … respectively. The superscript “a” is called the spin multiplicity and can be evaluated as a = 2S +1 where S is the spin quantum number. The subscript “j” is the numerical value of J, a new quantum number defined as: J = l +S, which corresponds to the total orbital and spin angular momentum of the system. The term symbol 3P is read as triplet – Pee state and indicates that there are two unpaired electrons in a state with maximum orbital angular momentum, L=1. The number of microstates (N) of a system corresponds to the total number of distinct arrangements for “e” number of electrons to be placed in “n” number of possible orbital positions. N = # of microstates = n!/(e!(n-e)!) For a set of p orbitals n = 6 since there are 2 positions in each orbital.
    [Show full text]
  • Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007
    Baran Group Meeting Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007 Ernst Otto Fischer (1918 - ) Other Types of Stabilized Carbenes: German inorganic chemist. Born in Munich Schrock carbene, named after Richard R. Schrock, is nucleophilic on November 10, 1918. Studied at Munich at the carbene carbon atom in an unpaired triplet state. Technical University and spent his career there. Became director of the inorganic Comparision of Fisher Carbene and Schrock carbene: chemistry institute in 1964. In the 1960s, discovered a metal alkylidene and alkylidyne complexes, referred to as Fischer carbenes and Fischer carbynes. Shared the Nobel Prize in Chemistry with Geoffery Wilkinson in 1973, for the pioneering work on the chemistry of organometallic compounds. Schrock carbenes are found with: Representatives: high oxidation states Isolation of first transition-metal carbene complex: CH early transition metals Ti(IV), Ta(V) 2 non pi-acceptor ligands Cp2Ta CH N Me LiMe Me 2 2 non pi-donor substituents CH3 (CO) W CO (CO)5W 5 (CO)5W A.B. Charette J. Am. Chem. Soc. 2001, 123, 11829. OMe O E. O. Fischer, A. Maasbol, Angew. Chem. Int. Ed., 1964, 3, 580. Persistent carbenes, isolated as a crystalline solid by Anthony J. Arduengo in 1991, can exist in the singlet state or the triplet state. Representative Fischer Carbenes: W(CO) Cr(CO) 5 5 Fe(CO)4 Mn(CO)2(MeCp) Co(CO)3SnPh3 Me OMe Ph Ph Ph NEt2 Ph OTiCp2Cl Me OMe Foiled carbenes were defined as "systems where stabilization is Fischer carbenes are found with : obtained by the inception of the facile reaction which is foiled by the impossibility of attaining the final product geometry".
    [Show full text]
  • States of Oxygen Liquid and Singlet Oxygen Photodynamic Therapy
    Oxygen States of Oxygen As far as allotropes go, oxygen as an element is fairly uninteresting, with ozone (O3, closed-shell and C2v symmetric like SO2) and O2 being the stable molecular forms. Most of our attention today will be devoted to the O2 molecule that is so critically connected with life on Earth. 2 2 2 4 2 O2 has the following valence electron configuration: (1σg) (1σu) (2σg) (1πu) (1πg) . It is be- cause of the presence of only two electrons in the two π* orbitals labelled 1πg that oxygen is paramagnetic with a triplet (the spin multiplicity \triplet" is given by 2S+1; here S, the total spin quantum number, is 0.5 + 0.5 = 1). There are six possible ways to arrange the two electrons in the two degenerate π* orbitals. These different ways of arranging the electrons in the open shell are called \microstates". Further, because there are six microstates, we can say that the total degeneracy of the electronic states 2 3 − arising from (1πg) configuration must be equal to six. The ground state of O2 is labeled Σg , the left superscript 3 indicating that this is a triplet state. It is singly degenerate orbitally and triply degenerate in terms of spin multiplicity; the total degeneracy (three for the ground state) is given by the spin times the orbital degeneracy. 1 The first excited state of O2 is labeled ∆g, and this has a spin degeneracy of one and an orbital degeneracy of two for a total degeneracy of two. This state corresponds to spin pairing of the electrons in the same π* orbital.
    [Show full text]
  • N-Heterocyclic Carbenes (Nhcs)
    Baran Lab N - H e t e r o c y c l i c C a r b e n e s ( N H C s ) K. J. Eastman An Introduction to N-heterocyclic Carbenes: How viable is resonance contributer B? Prior to 1960, a school of thought that carbenes were too reactive to be smaller isolated thwarted widespread efforts to investigate carbene chemistry. base ! N N N N R R R R Perhaps true for the majority of carbenes, this proved to be an inaccurate X- assessment of the N-heterocyclic carbenes. H longer Kirmse, W. Angerw. Chem. Int. Ed. 2004, 43, 1767-1769 In the early 1960's Wanzlick (Angew. Chem. Int. Ed. 1962, 1, 75-80) first investigated the reactivity and stability of N-heterocyclic carbenes. Attractive Features of NHCs as Ligands for transition metal catalysts: Shortly thereafter, Wanzlick (Angew. Chem. Int. Ed. 1968, 7, 141-142) NHCs are electron-rich, neutral "#donor ligands (evidenced by IR frequency of reported the first application of NHCs as ligands for metal complexes. CO/metal/NHC complexes). Surprisingly, the field of of NHCs as ligands in transition metal chemistry Electron donating ability of NHCs span a very narrow range when compared to remained dormant for 23 years. phosphine ligands In 1991, a report by Arduengo and co-workers (J. Am. Chem. Soc. 1991, Electronics can be altered by changing the nature of the azole ring: 113, 361-363) on the extraodinary stability, isolation and storablility of benzimidazole<imidazole<imidazoline (order of electron donating power). crystalline NHC IAd. NHC-metal complex stability: NaH, DMSO, MeOH N N N N + H2 + NaCl NHCs form very strong bonds with the majority of metals (stronger than Cl- phosphines!) H IAd N-heterocyclic carbenes are electronically (orbital overlap) and sterically (Me vs.
    [Show full text]
  • An Investigation of N-Heterocyclic Carbene Carboxylates
    AN INVESTIGATION OF N-HETEROCYCLIC CARBENE CARBOXYLATES: INSIGHT INTO DECARBOXYLATION, A TRANSCARBOXYLATION REACTION, AND SYNTHESIS OF HYDROGEN BONDING PRECURSORS by Bret Ryan Van Ausdall A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry The University of Utah May 2012 Copyright © Bret Ryan Van Ausdall 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Bret Ryan Van Ausdall has been approved by the following supervisory committee members: Janis Louie , Chair 7-8-2011 Date Approved Cynthia Burrows , Member 7-8-2011 Date Approved Thomas Richmond , Member 7-8-2011 Date Approved Matthew S. Sigman , Member 7-8-2011 Date Approved Debra Mascaro , Member 7-8-2011 Date Approved and by Henry S. White , Chair of the Department of Chemistry and by Charles A. Wight, Dean of The Graduate School. ABSTRACT A series of 1,3-disubstituted-2-imidazolium carboxylates, an adduct of CO2 and N-heterocyclic carbenes, was synthesized and characterized using single crystal X-ray, thermogravimetric, IR, and NMR analysis. The TGA analysis of the imidazolium carboxylates shows that as steric bulk on the N-substituent increases, the ability of the NHC-CO2 to decarboxylate increases. Single crystal X-ray analysis shows that the torsional angle of the carboxylate group and the C-CO2 bond length with respect to the imidazolium ring is dependent on the steric bulk of the N-substituent. Rotamers in the t unit cell of a single crystal of I BuPrCO2 (2f) indicate that the C-CO2 bond length increases as the N-substituents rotate toward the carboxylate moiety, which suggests that rotation of the N-substituents through the plane of the C-CO2 bond may be involved in the bond breaking event to release CO2.
    [Show full text]
  • Photochemical and Magnetic Properties of Complex and Nuclear Chemistry
    • Programme: MSc in Chemistry • Course Code: MSCHE2001C04 • Course Title: Photochemical and magnetic properties of complex and nuclear chemistry • Unit: Electronic spectra of coordination compounds • Course Coordinator: Dr. Jagannath Roy, Associate Professor, Department of Chemistry, Central University of South Bihar Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data/figures/materials are taken from text books, e-books, research articles, wikipedia and other online resources. 1 Course Objectives: 1. To make students understand structure and propeties of inorganic compounds 2. To accuaint the students with the electronic spectroscopy of coordination compounds 3. To introduce the concepts of magnetochemistry among the students for analysing the properties of complexes. 4. To equip the students with necessary skills in photochemical reaction transition metal complexes 5. To develop knowledge among the students on nuclear and radio chemistry Learning Outcomes: After completion of the course, learners will be able to: 1. Analyze the optical/electronic spectra of coordination compounds 2. Make use of the photochemical behaviour of complexes in designing solar cells and other applications. 3. Design and perform photochemical reactions of transition metal complexes 4. Analyze the magnetic properties of complexes 5. Explain the various phenomena taking place in the nucleus 6. Understand the working of nuclear reactors 2 Lecture-1 Lecture Topic- Introduction to the Electronic Spectra of Transition Metal complexes 3 Crystal field theory (CFT) is ideal for d1 (d9) systems but tends to fail for the more common multi- electron systems. This is because of electron-electron repulsions in addition to the crystal field effects on the repulsion of the metal electrons by the ligand electrons.
    [Show full text]
  • The Chemistry of Carbene-Stabilized
    THE CHEMISTRY OF CARBENE-STABILIZED MAIN GROUP DIATOMIC ALLOTROPES by MARIHAM ABRAHAM (Under the Direction of Gregory H. Robinson) ABSTRACT The syntheses and molecular structures of carbene-stabilized arsenic derivatives of 1 1 i 1 1 AsCl3 (L :AsCl3 (1); L : = :C{N(2,6- Pr2C6H3)CH}2), and As2 (L :As–As:L (2)), are presented herein. The potassium graphite reduction of 1 afforded the carbene-stabilized diarsenic complex, 2. Notably, compound 2 is the first Lewis base stabilized diatomic molecule of the Group 13–15 elements, in the formal oxidation state of zero, in the fourth period or lower of the Periodic Table. Compound 2 contains one As–As σ-bond and two lone pairs of electrons on each arsenic atom. In an effort to study the chemistry of the electron-rich compound 2, it was combined with an electron-deficient Lewis acid, GaCl3. The addition of two equivalents of GaCl3 to 2 resulted in one-electron oxidation of 2 to 1 1 •+ – •+ – give [L :As As:L ] [GaCl4] (6 [GaCl4] ). Conversely, the addition of four equivalents of GaCl3 to 2 resulted in two- electron oxidation of 2 to give 1 1 2+ – 2+ – •+ [L :As=As:L ] [GaCl4 ]2 (6 [GaCl4 ]2). Strikingly, 6 represents the first arsenic radical to be structurally characterized in the solid state. The research project also explored the reactivity of carbene-stabilized disilicon, (L1:Si=Si:L1 (7)), with borane. The reaction of 7 with BH3·THF afforded two unique compounds: one containing a parent silylene (:SiH2) unit (8), and another containing a three-membered silylene ring (9).
    [Show full text]
  • Photochemical Generation of Carbenes and Ketenes from Phenanthrene-Based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene
    Colby College Digital Commons @ Colby Honors Theses Student Research 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene Tarini S. Hardikar Student Tarini Hardikar Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Organic Chemistry Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Hardikar, Tarini S. and Hardikar, Tarini, "Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene" (2017). Honors Theses. Paper 948. https://digitalcommons.colby.edu/honorstheses/948 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR A Thesis Presented to the Department of Chemistry, Colby College, Waterville, ME In Partial Fulfillment of the Requirements for Graduation With Honors in Chemistry SUBMITTED MAY 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR Approved: (Mentor: Dasan M. Thamattoor, Professor of Chemistry) (Reader: Rebecca R. Conry, Associate Professor of Chemistry) “NOW WE KNOW” - Dasan M. Thamattoor Vitae Tarini Shekhar Hardikar was born in Vadodara, Gujarat, India in 1996. She graduated from the S.N.
    [Show full text]
  • Carbene Metal Amide Photoemitters: Tailoring Conformationally Flexible Amides for Full Color Range Emissions Including White-Emi
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Carbene metal amide photoemitters: tailoring conformationally flexible amides for full color Cite this: Chem. Sci., 2020, 11,435 † All publication charges for this article range emissions including white-emitting OLED have been paid for by the Royal Society a b b of Chemistry Alexander S. Romanov, * Saul T. E. Jones, Qinying Gu, Patrick J. Conaghan, b Bluebell H. Drummond, b Jiale Feng, b Florian Chotard, a Leonardo Buizza, b Morgan Foley, b Mikko Linnolahti, *c Dan Credgington *b and Manfred Bochmann *a Conformationally flexible “Carbene–Metal–Amide” (CMA) complexes of copper and gold have been developed based on a combination of sterically hindered cyclic (alkyl)(amino)carbene (CAAC) and 6- and 7-ring heterocyclic amide ligands. These complexes show photoemissions across the visible spectrum with PL quantum yields of up to 89% in solution and 83% in host-guest films. Single crystal X-ray diffraction and photoluminescence (PL) studies combined with DFT calculations indicate the important Creative Commons Attribution 3.0 Unported Licence. role of ring structure and conformational flexibility of the amide ligands. Time-resolved PL shows efficient delayed emission with sub-microsecond to microsecond excited state lifetimes at room Received 12th September 2019 À temperature, with radiative rates exceeding 106 s 1. Yellow organic light-emitting diodes (OLEDs) based Accepted 12th November 2019 on a 7-ring gold amide were fabricated by thermal vapor deposition, while the sky-blue to warm-white DOI: 10.1039/c9sc04589a mechanochromic behavior of the gold phenothiazine-5,5-dioxide complex enabled fabrication of the rsc.li/chemical-science first CMA-based white light-emitting OLED.
    [Show full text]
  • Chemical Shift (Δ)
    Chapter 9 ● Nuclear Magnetic Resonance Ch. 9 - 1 1. Introduction Classic methods for organic structure determination ● Boiling point ● Refractive index ● Solubility tests ● Functional group tests ● Derivative preparation ● Sodium fusion (to identify N, Cl, Br, I & S) ● Mixture melting point ● Combustion analysis ● Degradation Ch. 9 - 2 Classic methods for organic structure determination ● Require large quantities of sample and are time consuming Ch. 9 - 3 Spectroscopic methods for organic structure determination a) Mass Spectroscopy (MS) ● Molecular Mass & characteristic fragmentation pattern b) Infrared Spectroscopy (IR) ● Characteristic functional groups c) Ultraviolet Spectroscopy (UV) ● Characteristic chromophore d) Nuclear Magnetic Resonance (NMR) Ch. 9 - 4 Spectroscopic methods for organic structure determination ● Combination of these spectroscopic techniques provides a rapid, accurate and powerful tool for Identification and Structure Elucidation of organic compounds ● Rapid ● Effective in mg and microgram quantities Ch. 9 - 5 General steps for structure elucidation 1. Elemental analysis ● Empirical formula ● e.g. C2H4O 2. Mass spectroscopy ● Molecular weight ● Molecular formula ● e.g. C4H8O2, C6H12O3 … etc. ● Characteristic fragmentation pattern for certain functional groups Ch. 9 - 6 General steps for structure elucidation 3. From molecular formula ● Double bond equivalent (DBE) 4. Infrared spectroscopy (IR) ● Identify some specific functional groups ● e.g. C=O, C–O, O–H, COOH, NH2 … etc. Ch. 9 - 7 General steps for structure elucidation 5. UV ● Sometimes useful especially for conjugated systems ● e.g. dienes, aromatics, enones 6. 1H, 13C NMR and other advanced NMR techniques ● Full structure determination Ch. 9 - 8 Electromagnetic spectrum cosmic X-rays ultraviolet visible infrared micro- radio- & γ-rays wave wave λ: 0.1nm 200nm 400nm 800nm 50µm IR X-Ray UV NMR Crystallography 1Å = 10-10m 1nm = 10-9m 1µm = 10-6m Ch.
    [Show full text]
  • On the Road to Carbene and Carbyne Complexes
    ON THE ROAD TO CARBENE AND CARBYNE COMPLEXES Nobel Lecture, 11 December 1973 by ERNST OTTO FISCHER Inorganic Chemistry Laboratory, Technical University, Munich, Federal Republic of Germany Translation from the German text INTRODUCTION In the year 1960, I had the honour of giving a talk at this university* about sandwich complexes on which we were working at that time. I think I do not have to repeat the results of those investigations today. I would like to talk instead about a field of research in which we have been intensely interested in recent years: namely, the field of carbene complexes and, more recently, carbyne complexes. If we substitute one of the hydrogen atoms in a hydrocarbon of the alkane type - for example, ethane - by a metal atom, which can of course bind many more ligands, we arrive at an organometallic compound in which the organic radical is bound to the metal atom by a σ-bond (Fig. la). The earliest compounds of this kind were prepared more than a hundred years ago; the first was cacodyl, prepared by R. Bunsen (1), and then zinc dialkyls were prepared by E. Frankland (2). Later V. Grignard was able to synthesise alkyl magnesium halides by treating magnesium with alkyl halides (3). Grignard was awarded the Nobel Prize in 1912 for this effort. We may further recall the organo-aluminium compounds (4) of K. Ziegler which form the basis for the low pressure polymerisation, for example of ethylene. Ziegler and G. Natta were together honoured with the Nobel Prize in 1963 for their work on organometallic compounds.
    [Show full text]
  • Carbene Rearrangements: Intramolecular Interaction of a Triple Bond with a Carbene Center
    An Abstract OF THE THESIS OF Jose C. Danino for the degree of Doctor of Philosophy in Chemistry presented on _Dcc, Title: Carbene RearrangementE) Intramolecular Interaction of a Triple Bond with aCarbene Center Redacted for Privacy Abstract approved: Dr. Vetere. Freeman The tosylhydrazones of2-heptanone, 4,4-dimethy1-2- heptanone, 6-heptyn-2-one and 4,4-dimethy1-6-heptyn-2- one were synthesizedand decomposed under a varietyof reaction conditions:' drylithium and sodium salt pyrolyses, sodium methoxide thermolysesin diglyme and photolyses of the lithium salt intetrahydrofuran. The saturated ana- logues 2-heptanone tosylhydrazoneand its 4,4-dimethyl isomer afforded the alkenesarising from 6-hydrogeninser- product distribution in the tion. It was determined that differ- dry salt pyrolyses of2-heptanone tosylhydrazone was ent for the lithiumand the sodium salts. However, the product distribution of thedry sodium salt was verysimilar diglyme to product distributionobtained on thermolysis in explained by a with sodium methoxide. This difference was reaction of lithium bromide(present as an impurity inall compound to the lithium salts)with the intermediate diazo afford an organolithiumintermediate that behaves in a some- what different fashionthan the free carbene.The unsaturated analogues were found to produce a cyclic product in addition to the expected acyclic alkenes arising from 3-hydrogen insertion. By comparison of the acyclic alkene distri- bution obtained in the saturated analogues with those in the unsaturated analogues, it was concluded that at leastsome cyclization was occurring via addition of the diazo moiety to the triple bond. It was determined that the organo- lithium intermediateresulting from lithium bromide cat- alyzed decomposition of the diazo compound was incapable of cyclization.
    [Show full text]