BXL Group Meeting 12:4:2019 (Unlayered)

BXL Group Meeting 12:4:2019 (Unlayered)

Carbenes: multiplicity and reactivity Beryl X. Li December 4th, 2019 Carbenes: multiplicity and reactivity Introduction + Divalent species, similar to CO and R–CN 2p sp2 2p carbocation sp2 2p 6 C singlet carbene 2 sp Carbon 12.011 2p carbon radical sp2 – 2p triplet carbene sp2 Very reactive: cyclopropanation, dimerization, ylide carbanion formation, X–H bond insertion, among others Anslyn, E.V.; Dougherty, D.A Modern Physical Organic Chemistry, 1st ed; University Science Books, 2006. Carbenes: multiplicity and reactivity A brief history Geuther & Hermann Gomberg Doering & Knox 1954 1855 1900 1953 – CHCl3 + OH CH2N2 + CHBr3 h! – CCl2 + Cl + H2O R R Br first to propose a characterized the first synthesis of Br carbenoid intermediate example of a free radical tropolone derivatives dibromomethylene intermediate Nef common belief Lennard-Jones & Pople Duschenne & Burnelle 1897 1920s and 1930s 1951 1953 Cl N H N H H F H H and singlet H F CCl2 H necessarily triplet similar intermediate in a propose two ground states 2 Ciamician-Dennstedt linear with degenerate CF2 is sp hybridized, with for the CH carbene rearrangement p orbitals 2 a singlet ground state Hopkinson, M.N.; Richter, C.; Schedler, M; Glorius, F. Nature 2014, 510, 485–96. Fremont, P.; Marion, N.; Nolan, S.P. Coord. Chem. 2009, 253, 862–92. Carbenes: multiplicity and reactivity A brief history Fischer numerous research Arduengo 1964 1970s and 1980s 1991 W(CO)5 Ground state: OMe singlet or triplet? N N first metal-carbene mesomeric and inductive stable, isolable complex effects considered N-heterocyclic cabene Hoffman Schrock 1968 1974 present day tBu energy H Carbenes: high energy vs. gap Ta intermediate with tBu tBu tBu comprehensible reactivity 0 min. splitting energy for CH2 first synthesis of a d to have a GS singlet metal-alkylidene complex Hopkinson, M.N.; Richter, C.; Schedler, M; Glorius, F. Nature 2014, 510, 485–96. Fremont, P.; Marion, N.; Nolan, S.P. Coord. Chem. 2009, 253, 862–92. Carbenes: multiplicity and reactivity Multiplicity overview 2p Hypothetically… (as were believed in 1930s) sp degenerate 2p orbitals linear carbenes would have a triplet ground state Today, carbenes are understood to be bent… coulombic repulsion (EC) vs. sp2 – 2p energy difference (!E) Singlet-triplet splitting !GST = EC – !E 2p 2p !E 2 2 sp EC sp singlet carbene triplet carbene Baird, N.C.; Taylor, K.F. J. Am. Chem. Soc. 1978, 100 (5), 1333–8. Carbenes: multiplicity and reactivity Multiplicity overview 2p Hypothetically… (as were believed in 1930s) sp degenerate 2p orbitals linear carbenes would have a triplet ground state Today, carbenes are understood to be (mostly) bent… coulombic repulsion (EC) vs. sp2 –2p energy difference (!E) Singlet-triplet splitting !GST = EC – !E p p !E ! EC ! singlet carbene triplet carbene Baird, N.C.; Taylor, K.F. J. Am. Chem. Soc. 1978, 100 (5), 1333–8. Carbenes: multiplicity and reactivity Multiplicity overview p p "E ! ! singlet carbene triplet carbene ■ Spin quantum number (S) = 1/2 + (–1/2) = 0 ■ Spin quantum number (S) = 1/2 + 1/2 = 1 ■ Multiplicity = 2S + 1 = 1 (hence “singlet”) ■ Multiplicity = 2S + 1 = 3 (hence “triplet”) p p or or ! ! ■ Nucleophile/electrophile ■ Diradicals ■ Chelotropic reactions, stereospecific ■ Stepwise radical additions, potentially stereoselective O O 2 O CH2I2 3 N2 Zn(Cu) H2 I h! Ar Ar C Ar Ar Zn Ar Ar MeO H I MeOH Ar Ar e.g. Simmons-Smith reaction Simmons, H.E.; Smith, R.D. J. Am. Chem. Soc. 1958, 80 (19), 5323–4. Bourisson, D.; Guerret, O.; Gabbais, F.P.; Bertrand, G. Chem. Rev. 2000, 100, 39–91. Carbenes: multiplicity and reactivity Factors that determine multiplicity: parent CH2 Factors ■mesomeric interactions H ■inductive effects H–C–H p H ■hyperconjugation ∡ 102 ° ■steric effects singlet state # EC ■solvent environment Singlet-triplet splitting !GST = EC – !E coulombic repulsion (EC) vs. sp2 / 2p energy difference (!E) H H energyincreases !GST = 9 kcal/mol postive number indicates triplet H p H–C–H is lowest energy ground state H !E ∡ 137 ° # triplet state Hoffman, R. J. Am. Chem. Soc., 1968, 90, 1475–85. Baird, N.C.; Taylor, K.F. J. Am. Chem. Soc. 1978, 100 (5), 1333–8. Carbenes: multiplicity and reactivity Factors that determine multiplicity: mesomeric interactions Factors ■mesomeric interactions Mesomeric effects on carbene ground state multiplicity ■inductive effects hyperconjugation electron donating or withdrawing substituents (essentially resonance) ■ ■steric effects ■solvent environment X-type interactions Z-type interactions C-type interactions p p p ! ! ! "-electron acceptors lower/ conjugated groups lower/ "-electron donors raise p orbital unaffect #–p gap unaffect #–p gap (e.g., –NR2, –OR, –F, –Cl, –Br, –I) (e.g., carbonyls, –SO2R, –NO, –NO2) (e.g., alkenes, alkynes, aryl groups) ground state singlet ground state triplet ground state triplet Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: mesomeric interactions Factors ■mesomeric interactions Mesomeric effects on carbene ground state multiplicity ■inductive effects hyperconjugation electron donating or withdrawing substituents (essentially resonance) ■ ■steric effects ■solvent environment X-type interactions carbenoid species !GST p H 9 kcal/mol H ! HS –28.0 kcal/mol HS negative !GST indicates singlet is lowest energy -electron donors raise p orbital " H2N ground state –52.6 kcal/mol (e.g., –NR2, –OR, –F, –Cl, –Br, –I) H2N ground state singlet Matus, M. H.; Nguyen, M. T.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 8864–71. Alder, R. W.; Blake, M. E.; Oliva, J. M. J. Phys. Chem. A 1999, 103, 11200–11. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: mesomeric interactions Factors ■mesomeric interactions Mesomeric effects on carbene ground state multiplicity ■inductive effects hyperconjugation electron donating or withdrawing substituents (essentially resonance) ■ ■steric effects ■solvent environment X-type interactions Z-type interactions C-type interactions p p p ! ! ! "-electron acceptors lower/ conjugated groups lower/ "-electron donors raise p orbital unaffect #–p gap unaffect #–p gap (e.g., –NR2, –OR, –F, –Cl, –Br, –I) (e.g., carbonyls, –SO2R, –NO, –NO2) (e.g., alkenes, alkynes, aryl groups) ground state singlet ground state triplet ground state triplet Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: mesomeric interactions Factors ■mesomeric interactions Mesomeric effects on carbene ground state multiplicity ■inductive effects hyperconjugation electron donating or withdrawing substituents (essentially resonance) ■ ■steric effects ■solvent environment C-type interactions p " conjugated groups lower/ unaffect !–p gap aryl groups generally stabilize both the singlet state (Esub/S) (e.g., alkenes, alkynes, aryl groups) and the triplet state (Esub/T) ground state triplet Woodcock, H. L.; Moran, D.; Brooks, B. R.; Schleyer, P. v. R.; Schaefer, H. F., III. J. Am. Chem. Soc. 2007, 129, 3763–70. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: inductive effects Factors ■mesomeric interactions Inductive effects ■inductive effects inductively electron-donating or -withdrawing groups intereact ■hyperconjugation selectively with carbon orbitals, which changes the !–p gap ■steric effects ■solvent environment 2p p 2p p ! ! 2s 2s !-EWG stabilizes !-nonbonding orbital !-EDG induces a smaller !–p gap, thus increasing !–p gap to favor singlet therefore favoring triplet Irikura, K.K.; Goddard III., W.A.; Beauchamp, J.L. J. Am. Chem. Soc. 1992, 114, 48–51. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: hyperconjugation Factors ■mesomeric interactions Hyperconjugation ■inductive effects ■hyperconjugation Singlets, which are isoelectric with carbocations, are more stabilized ■steric effects by hyperconjugative effects compared to the radical-like triplets ■solvent environment Me Me Me Me carbenoid H Me Me Me species Me H H Me H Me Me Me !GST 9.05 kcal/mol 2.26 kcal/mol –2.47 kcal/mol –0.17 kcal/mol 2.65 kcal/mol more hyperconjugation more steric bulk (favor singlet ground state) (favor triplet ground state) Sulzbach, H. M.; Bolton, E.; Lenoir, D.; Schleyer, P. v. R.; Schaefer, H. F., III. J. Am. Chem. Soc. 1996, 118, 9908–14. Gallo, M. M.; Schaefer, H. F., III. J. Phys. Chem. 1992, 96, 1515–7. Richards, C. A., Jr.; Kim, S.-J.; Yamaguchi, Y.; Schaefer, H. F., III. J. Am. Chem. Soc. 1995, 117, 10104–7. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity Factors that determine multiplicity: steric effects Factors ■mesomeric interactions Steric effects ■inductive effects Large angles favor the triplet state ■hyperconjugation Smaller angles (i.e. bulky substituents) favor the singlet state ■steric effects ■solvent environment H–C–H H H–C–H H ) ∡ 137 ° H ∡ 102 ° H ST G triplet state singlet state " singlet p triplet " relativeenergy ( H–C–H ∡ As the carbon bond angle decreases, the ! orbital gains more s character and moves lower in energy, increasing the !–p gap Sulzbach, H.M.; Bolton, E.; Lenoir, D.; Schyler, P.v.R.; Schaefer, H.F. J. Am. Chem. Soc. 1996, 118 (41), 9908–14. Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275–332. Carbenes: multiplicity and reactivity

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us