Coopetition in the Soc Industry: the Case of Qualcomm Incorporated

Total Page:16

File Type:pdf, Size:1020Kb

Coopetition in the Soc Industry: the Case of Qualcomm Incorporated Journal of Open Innovation: Technology, Market, and Complexity Article Coopetition in the SoC Industry: The Case of Qualcomm Incorporated Yona Kwon, Dahee Kang, Sinji Kim and Seungho Choi * Ewha School of Business, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 121791, Korea; [email protected] (Y.K.); [email protected] (D.K.); [email protected] (S.K.) * Correspondence: [email protected]; Tel.: +82-2-3277-4138 Received: 3 December 2019; Accepted: 29 January 2020; Published: 2 February 2020 Abstract: This study uses the lens of competitive dynamics to examine the coopetition process, which combines both cooperation and competition, employed by Qualcomm within the SoC (System on a Chip) design market related to smart devices. Qualcomm succeeded in developing the first SoC, which integrated GPS (Global Positioning System) and other software, and during the process of developing mobile chips has simultaneously cooperated and competed with competitors. In particular, Samsung, which began as a customer of the firm, has since become its competitor. By conducting descriptive case analysis, this study shows a coopetition process in the SoC industry and supplemented a coopetition study with the actual exemplary coopetition case. Keywords: Competitive Dynamics; Coopetition; System on Chip Industry; Qualcomm 1. Introduction In a highly competitive environment, firms must continuously innovate to gain a competitive advantage over other firms. Although most of the firms seem to compete against each other to maintain their advantage continuously, firms also often cooperate with their competitors even while competing. Especially in a high-tech industry where technological innovation and change in products are fast, it is difficult to cope with global competitors with a single, static strategy. In other words, a dynamic competition and cooperation between firms is necessary to sustain a firm’s competitive advantage. This has led some researchers [1] to claim that within a complex business environment, firms should act outside of their boundaries and cooperate with other firms through “open innovation” by interacting with other firms or players in the market, as surviving alone in a competitive business environment is difficult to achieve. Coopetition is a term that refers to the simultaneous coexistence of cooperation and competition. The term, based on game theory and popularized by Nalebuff and Brandenburger [2], was coined to reflect the reality of business management today as companies must respond rapidly to changes in their business environment [3]. The dynamics of coopetition behavior assume that firms cannot survive alone in the changing environment and that interdependencies among firms create value for those firms [3–5]. Coopetition has been previously discussed in various theoretical and empirical studies, which have shown, for instance, that coopetition can be a source of innovation [6,7], and there are also tensions between cooperation and competition [8]. This case study is intended to complement that literature by looking at the actual changes in competitiveness and performance created by one highly successful firm’s coopetition and demonstrating that these actions occur in complex competitive dynamics and influence the firm’s strategic behavior. Throughout its history, Qualcomm has not only developed innovative technology but also survived with cooperation with other companies. The competitive behavior of Qualcomm thus should be understood as dynamic interactions in which Qualcomm both competes with and cooperates with J. Open Innov. Technol. Mark. Complex. 2020, 6, 9; doi:10.3390/joitmc6010009 www.mdpi.com/journal/joitmc J. Open Innov. Technol. Mark. Complex. 2020, 6, 9 2 of 18 its rivals. These interactions with their rivals do not occur alone but are intertwined and interrelated with one another. Interactions with a firm’s rivals affect firm’s survival and can lead to destructive or productive results [9]. This study focuses on the cooperation and competition between Qualcomm and Samsung and how firms employ coopetition to gain a competitive advantage. Coopetition occurs in two different but interdependent ways regarding the cooperative and competitive firm activities. Although these two processes may seem distinct, simultaneous competition and cooperation exist among firms. In this study, coopetition was analyzed over time. It conducted a comparative case analysis of the two firms to examine how the coopetitive process actually evolves and changes over time. This study contributes to coopetition research by analyzing and describing how specific firm events and external environmental changes affect competition and cooperation over time. In particular, we identified that competitive actions and reactions of firms are the key foundations of the change and evolution of the coopetitive process. The competitive actions of firms bring competition as well as cooperation reactions from their competitors. The choice of competitive and cooperative reactions depends on how other firms interpret and perceive other firm’s competitive activities. To achieve this research goal, we first review the literature relevant to the concept of coopetition and then analyzes the case of Qualcomm’s coopetition behavior with Samsung as an example of this dynamic. By analyzing the coopetition process of Qualcomm, this paper provides deeper insights into the dynamics of coopetition behavior. 2. Literature Review The case of Qualcomm shows the process of innovation and coopetition achieved throughout the growth of the SoC industry and thus helps to link the existing literature of coopetition to the real-life situation from this case study. This case study is established upon the competitive dynamics approach that mainly focused on the coopetitive behavior of the firm. 2.1. Competitive Dynamics Existing research into competitive dynamics has assumed that competition is a most crucial facet of competitive dynamics, and therefore, focused on the competitive moves of a firm [10] and the specific behaviors and responses of competitors [11]. As this literature has shown, the management process of firms becomes increasingly competitive during such phases as launching new products, increasing market share, and securing customers. At the same time, as researchers have noted, firms sometimes also partner and make alliances with competitors in order to compete [12]. The key issue explored by research on competitive dynamics is how a particular competitive behavior affects a firm’s competitive advantage and competition in the long run [9]. As this body of research has demonstrated, the environment and conditions in which firms compete differ across industries and time periods. In those different conditions, competitive interactions among firms lead to certain firm performance. The action and reaction of firms are interdependent to the extent their strategic actions affect firm performance [13]. This case study, while examining the ways in which the specific industry dynamics shaped their competitive actions, also enlarges upon those findings by analyzing the ways in which that competition was affected and mediated by strategic coopetition with its rivals. 2.2. Coopetition As globalization increases competition and the life cycle of products and technologies shorten, most tech companies can no longer effectively respond to the changes in the business environment based solely on their internal resources or abilities. Therefore, many firms have chosen to work closely with various other businesses to improve and sustain their own competitiveness [14]. In practice, alliances between firms have become widespread regardless of industry. According to a recent investigation, such a combination of competition and cooperation has led to innovative outcomes and J. Open Innov. Technol. Mark. Complex. 2020, 6, 9 3 of 18 economic growth [15]. Bengtsson et al. [16] defined this combination, coopetition, as “a process based upon simultaneous and mutual cooperative and competitive interactions between two or more actors at any level of analysis—whether individual, organizational or other entities”. The focus on concurrent competition and cooperation is the key issue explored in the literature on coopetition. It can be understood as a cooperative strategy that is applied to a cooperative and competitive relationship between firms and their competitors. Coopetition allows companies to share resources, technology, and know-how with their competitors. It enables them to enjoy all the advantages of cooperation and competition by maintaining a cooperative system and competing with each other to improve their performance in other fields [17]. As the era of technological convergence, interfirm competition or cooperation is now considered as an inevitable means of survival in the global competitive market. Moreover, the increased interconnection between global organizations makes coopetition a vital source of a firm’s strategy. According to Lado et al. [18], the pursuit of coopetition could lead to positive results. When firms strive to achieve balanced competition and cooperation, which delineates syncretic rent-seeking behavior, they could have various options for their strategic choice that result in having a competitive advantage. Cooperation between competitors has multiplied during the past decade [16]. Coopetition is reinforced by the “market commonality and resource asymmetry” among global rivals [17]. The commonality within the market leads to more competitive actions while the asymmetry within resources leads to
Recommended publications
  • Bootstomp: on the Security of Bootloaders in Mobile Devices
    BootStomp: On the Security of Bootloaders in Mobile Devices Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna, UC Santa Barbara https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini This paper is included in the Proceedings of the 26th USENIX Security Symposium August 16–18, 2017 • Vancouver, BC, Canada ISBN 978-1-931971-40-9 Open access to the Proceedings of the 26th USENIX Security Symposium is sponsored by USENIX BootStomp: On the Security of Bootloaders in Mobile Devices Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna fnredini, machiry, dipanjan, yanick, antoniob, edg, yans, chris, [email protected] University of California, Santa Barbara Abstract by proposing simple mitigation steps that can be im- plemented by manufacturers to safeguard the bootloader Modern mobile bootloaders play an important role in and OS from all of the discovered attacks, using already- both the function and the security of the device. They deployed hardware features. help ensure the Chain of Trust (CoT), where each stage of the boot process verifies the integrity and origin of 1 Introduction the following stage before executing it. This process, in theory, should be immune even to attackers gaining With the critical importance of the integrity of today’s full control over the operating system, and should pre- mobile and embedded devices, vendors have imple- vent persistent compromise of a device’s CoT. However, mented a string of inter-dependent mechanisms aimed at not only do these bootloaders necessarily need to take removing the possibility of persistent compromise from untrusted input from an attacker in control of the OS in the device.
    [Show full text]
  • Stochastic Modeling and Performance Analysis of Multimedia Socs
    Stochastic Modeling and Performance Analysis of Multimedia SoCs Balaji Raman, Ayoub Nouri, Deepak Gangadharan, Marius Bozga, Ananda Basu, Mayur Maheshwari, Jérôme Milan, Axel Legay, Saddek Bensalem, Samarjit Chakraborty To cite this version: Balaji Raman, Ayoub Nouri, Deepak Gangadharan, Marius Bozga, Ananda Basu, et al.. Stochastic Modeling and Performance Analysis of Multimedia SoCs. SAMOS XIII - Embedded Computer Sys- tems: Architectures, Modeling, and Simulation, Jul 2013, Agios konstantinos, Samos Island, Greece. pp.145-154, 10.1109/SAMOS.2013.6621117. hal-00878094 HAL Id: hal-00878094 https://hal.archives-ouvertes.fr/hal-00878094 Submitted on 29 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Stochastic Modeling and Performance Analysis of Multimedia SoCs Balaji Raman1, Ayoub Nouri1, Deepak Gangadharan2, Marius Bozga1, Ananda Basu1, Mayur Maheshwari1, Jerome Milan3, Axel Legay4, Saddek Bensalem1, and Samarjit Chakraborty5 1 VERIMAG, France, 2 Technical Univeristy of Denmark, 3 Ecole Polytechnique, France, 4 INRIA Rennes, France, 5 Technical University of Munich, Germany. E-mail: [email protected] Abstract—Quality of video and audio output is a design-time to estimate buffer size for an acceptable output quality. The constraint for portable multimedia devices.
    [Show full text]
  • An Emerging Architecture in Smart Phones
    International Journal of Electronic Engineering and Computer Science Vol. 3, No. 2, 2018, pp. 29-38 http://www.aiscience.org/journal/ijeecs ARM Processor Architecture: An Emerging Architecture in Smart Phones Naseer Ahmad, Muhammad Waqas Boota * Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan Abstract ARM is a 32-bit RISC processor architecture. It is develop and licenses by British company ARM holdings. ARM holding does not manufacture and sell the CPU devices. ARM holding only licenses the processor architecture to interested parties. There are two main types of licences implementation licenses and architecture licenses. ARM processors have a unique combination of feature such as ARM core is very simple as compare to general purpose processors. ARM chip has several peripheral controller, a digital signal processor and ARM core. ARM processor consumes less power but provide the high performance. Now a day, ARM Cortex series is very popular in Smartphone devices. We will also see the important characteristics of cortex series. We discuss the ARM processor and system on a chip (SOC) which includes the Qualcomm, Snapdragon, nVidia Tegra, and Apple system on chips. In this paper, we discuss the features of ARM processor and Intel atom processor and see which processor is best. Finally, we will discuss the future of ARM processor in Smartphone devices. Keywords RISC, ISA, ARM Core, System on a Chip (SoC) Received: May 6, 2018 / Accepted: June 15, 2018 / Published online: July 26, 2018 @ 2018 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license.
    [Show full text]
  • Mediatek Linkit™ Development Platform for RTOS Get Started Guide
    MediaTek LinkIt™ Development Platform for RTOS Get Started Guide Version: 3.0 Release date: 30 June 2016 © 2015 - 2016 MediaTek Inc. This document contains information that is proprietary to MediaTek Inc. (“MediaTek”) and/or its licensor(s). MediaTek cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with MediaTek (“License Agreement”) and been granted explicit permission within the License Agreement (“Permitted User”). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice. MediaTek LinkIt™ Development Platform for RTOS Get Started Guide Document Revision History Revision Date Description 1.0 24 March 2016 Initial version. 2.0 17 May 2016 Move the contents relative to flash, HDK, and build comments to corresponding documents. Add the support of Keil 3.0 30 June 2016 Add the support of IAR. Refine the architecture and provide more information on the SDK usage. © 2015 - 2016 MediaTek Inc. Page i of v This document contains information that is proprietary to MediaTek Inc.
    [Show full text]
  • SECOND AMENDED COMPLAINT 3:14-Cv-582-JD
    Case 3:14-cv-00582-JD Document 51 Filed 11/10/14 Page 1 of 19 1 EDUARDO G. ROY (Bar No. 146316) DANIEL C. QUINTERO (Bar No. 196492) 2 JOHN R. HURLEY (Bar No. 203641) PROMETHEUS PARTNERS L.L.P. 3 220 Montgomery Street Suite 1094 San Francisco, CA 94104 4 Telephone: 415.527.0255 5 Attorneys for Plaintiff 6 DANIEL NORCIA 7 UNITED STATES DISTIRCT COURT 8 NORTHERN DISTRICT OF CALIFORNIA 9 DANIEL NORCIA, on his own behalf and on Case No.: 3:14-cv-582-JD 10 behalf of all others similarly situated, SECOND AMENDED CLASS ACTION 11 Plaintiffs, COMPLAINT FOR: 12 v. 1. VIOLATION OF CALIFORNIA CONSUMERS LEGAL REMEDIES 13 SAMSUNG TELECOMMUNICATIONS ACT, CIVIL CODE §1750, et seq. AMERICA, LLC, a New York Corporation, and 2. UNLAWFUL AND UNFAIR 14 SAMSUNG ELECTRONICS AMERICA, INC., BUSINESS PRACTICES, a New Jersey Corporation, CALIFORNIA BUS. & PROF. CODE 15 §17200, et seq. Defendants. 3. FALSE ADVERTISING, 16 CALIFORNIA BUS. & PROF. CODE §17500, et seq. 17 4. FRAUD 18 JURY TRIAL DEMANDED 19 20 21 22 23 24 25 26 27 28 1 SECOND AMENDED COMPLAINT 3:14-cv-582-JD Case 3:14-cv-00582-JD Document 51 Filed 11/10/14 Page 2 of 19 1 Plaintiff DANIEL NORCIA, having not previously amended as a matter of course pursuant to 2 Fed.R.Civ.P. 15(a)(1)(B), hereby exercises that right by amending within 21 days of service of 3 Defendants’ Motion to Dismiss filed October 20, 2014 (ECF 45). 4 Individually and on behalf of all others similarly situated, Daniel Norcia complains and alleges, 5 by and through his attorneys, upon personal knowledge and information and belief, as follows: 6 NATURE OF THE ACTION 7 1.
    [Show full text]
  • Comparative Study of Various Systems on Chips Embedded in Mobile Devices
    Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.4, No.7, 2013 - National Conference on Emerging Trends in Electrical, Instrumentation & Communication Engineering Comparative Study of Various Systems on Chips Embedded in Mobile Devices Deepti Bansal(Assistant Professor) BVCOE, New Delhi Tel N: +919711341624 Email: [email protected] ABSTRACT Systems-on-chips (SoCs) are the latest incarnation of very large scale integration (VLSI) technology. A single integrated circuit can contain over 100 million transistors. Harnessing all this computing power requires designers to move beyond logic design into computer architecture, meet real-time deadlines, ensure low-power operation, and so on. These opportunities and challenges make SoC design an important field of research. So in the paper we will try to focus on the various aspects of SOC and the applications offered by it. Also the different parameters to be checked for functional verification like integration and complexity are described in brief. We will focus mainly on the applications of system on chip in mobile devices and then we will compare various mobile vendors in terms of different parameters like cost, memory, features, weight, and battery life, audio and video applications. A brief discussion on the upcoming technologies in SoC used in smart phones as announced by Intel, Microsoft, Texas etc. is also taken up. Keywords: System on Chip, Core Frame Architecture, Arm Processors, Smartphone. 1. Introduction: What Is SoC? We first need to define system-on-chip (SoC). A SoC is a complex integrated circuit that implements most or all of the functions of a complete electronic system.
    [Show full text]
  • Overview of CPU Power Consumption and Management in Smartphones
    Overview of CPU Power Consumption and Management in Smartphones Prof. Sasu Tarkoma University of Helsinki, Aalto University, Helsinki Institute for Information Technology Contents • Modern smartphone SoC and CPUs – The CPU: power states – Power management basics • Smartphone solutions – Linux CPU Frequency subsystem – Power models • Intra-device task offloading – Sensor hub – Heterogeneous multiprocessing • Computation offloading Smartphones • Smartphones have become hubs for applications and connecting with the Internet • Cloud has emerged as a backend for mobile applications • Mobile data and WiFi are the dominant protocols for connecting with Internet resources • The next generation solutions are addressing limitations of the current smartphones – Coordination of resource usage – Offloading in its many forms – Heterogeneous environment and the emergence of IoT / M2M / wearables Observations • Smartphone and mobile device hardware and software evolve rapidly • Multiple wireless protocols • Heterogeneous computing over multiple cores – Dedicated subsystems (sensor hubs) – Increasing number of sensing subsystems – Always-on sensing • Battery technology has not kept pace with the development • Software is not, in many cases, optimized • Difficult to balance between local versus distributed processing • Difficult to control traffic across interfaces Mobile Evolution 1995 2000 2005 2010 2015 Processor Single Single Single Dual-core Quad-core and beyond, auxiliary processors, sensor hubs Cellular 2G 2.5-3G 3.5G Transition 4G generation toward 4G Standard GSM GPRS HSPA HSPA, LTE LTE, LTE-A Downlink (Mb/ 0.01 0.1 1 10 100 s) Display pixels 4 16 64 256 1024 (x1000) Communicatio - - WiFi, WiFi, WiFi, Bluetooth LE, ns modules Bluetooth Bluetooth RFID Battery 1 2 3 4 5 capacity (Wh) Software (MB) 0.1 1 10 100 1000 Example Smartphone SoC Modem Subsystem Multicore Subsystem Multimedia Subsystem LTE Adreno World KRAIT CPU KRAIT CPU GPU Modem Audio, GPS,Wi-Fi, Video HW, BT,FM Accelerator L1 Cache L1 Cache s DSP DSP DSP L2 Cache Multim.
    [Show full text]
  • We Shape the Connected World Automotive Autonomy Generating Energy Effectively Wearable Technology ARM’S Technology Is Cars Are Becoming Mobile Computing Platforms
    ARM Holdings plc Annual Report 2015: Strategic Report We shape the connected world Automotive autonomy Generating energy effectively Wearable technology ARM’s technology is Cars are becoming mobile computing platforms. Wind turbines and solar panels can be made Smart watches, biometric-monitors and More sensors and cameras are being included more effective by including technology that augmented reality headsets are intelligent, to assist the driver with lane detection, reading controls and monitors the wind turbine, and connected devices that can give us extra shaping the way we roadside signage and identifying potential hazards aggregates data across the entire wind farm. information to improve our health and or people crossing the road. In time, driver wellness, or just to help us have more fun. all live our lives; in the assistance may lead to a fully automated vehicle. home, as we travel, at school or work, and as we have fun with our friends Mobile computing Smart city streets Intelligent networks Smarter homes ARM-based mobile computers, including City infrastructure from street lights to car Broadband and mobile phone network speeds Cost-efficiency in the home can be improved smartphones, tablets and some laptops are, parking meters can be made more effective by are increasing, and latency decreasing, enabling through learning thermostats that understand for many people, the primary device for their embedding intelligent chips. Street lights that new services for operators to provide to your daily routine, domestic appliances that use work, whether in an office or on the road; can dim when no one is nearby will save energy consumers and enterprises, from delivering advanced algorithms for calculating water and for researching and writing school assignments; and reduce carbon emissions, and prognostics in more movie and TV options to collating and detergent requirements, and smart meters that and for engaging with friends.
    [Show full text]
  • M-Line BROCHURE
    The Novasom Industries M-line was created for those advanced multimedia applications where the computing power and the presence of specific HW accelerators are needed as much as the advanced connectivity to various kinds of displays while maintaining the classic low-level industrial connectivity. Novasom Industries M11 series, based on the new Intel Apollo Lake x5 6th generation Atom CPU with Microsoft Windows 10 and UHD (4k) video capabilities, is perfect for the typical Kiosks & Digital-Signage applications. The M7 is based on the Rockchip RK3328, a 4X A53 processor and can drive UHD (4k) displays, has USB3 & 2, HDMI and supports Android OS. Complete SBC with immediate bootstrap Native Android & Linux support O.S. (M7, M8 & M9) M8 board runs Qualcomm Snapdragon 410E with Android and Windows 10 IoT and can be connected to FHD displays. Native Window 10 and Linux (M11) Embedded UPS manager with battery and Redundant The M9, based on the Rockchip RK3399 offers an android like Power Input experience and high side multimedia application with UHD, multiple video and camera input. HD Audio output and Optical SPDIF mPCIe interface slot (M9, M7 & M11) All the M-Line boards support Linux OS. Fluidity and no scratch on Heavy UHD play RASPMOOD form factor for M7, M8 and M9: dimensions, guaranteed mechanical holes, expansion pin on strip, connector Fully certified board, visit kind and position are similar to the famous Pi Family. www.novasomindustries.com for details So if you've started with a toy-board and want to use in an industrial proposal, we are ready.
    [Show full text]
  • Three Ways of Seeing Improved Health and Productivity
    Three ways of seeing Key Features Galaxy Watch3 improved health and The Galaxy Watch3 is a premium solution that’s B2B-ready, with days of power and a rotating bezel that allows easy productivity. navigation even while wearing gloves. • Onboard GPS, motion, activity and heart-rate sensors • Battery lasts up to 56 hours (45mm model)2 • Carrier-agnostic LTE3 Take a look at the Samsung Galaxy • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Watch3, Galaxy Watch Active2, and Galaxy Watch Active. Galaxy Watch Active2 The premium Galaxy Watch3, the versatile Galaxy Watch Active, With a focus on wellness, the Galaxy Watch Active2 features and the health-oriented Galaxy Watch Active2 offer greater a digital touch bezel plus advanced sensors that enable health and productivity to virtually any enterprise. They’re more accurate blood pressure tracking, ECG tracking, 1 protected by Samsung Knox . And they’re all customizable to heart rate tracking, alerts, and fall detection. incorporate your company’s branding. Be more nimble. Be • Advanced sensors include heart rate tracker, ECG sensor, and 32G high more productive. Samsung Galaxy watches make it possible. sampling rate accelerometer and gyro • Battery lasts up to 60 hours (44mm model)2 • Carrier-agnostic LTE3 • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Galaxy Watch Active The Galaxy Watch Active offers secure communications in fast-paced environments, and supports corporate efficiency, productivity, health, and safety initiatives. • Advanced sleep tracking helps improve stress levels and sleep patterns • Battery lasts up to 45 hours2 • Tested to MIL-STD-810G standards,4 IP685, rated at 5 ATM Contact Us: samsung.com/wearablesforbiz Galaxy Watch3 Galaxy Watch Active2 Galaxy Watch Active “1.77”” x 1.82”” x 0.44”” (45.0 x 46.2 x 11.1 mm) 1.73" x 1.73" x 0.43" (44 x 44 x 10.9mm) Dimensions 1.56” x 1.56” x 0.41” (39.5 x 39.5 x 10.5mm) 1.61”” x 1.67”” x 0.44”” (41.0 x 42.5 x 11.3 mm)” 1.57" x 1.73" x 0.43" (40 x 40 x 10.9mm) Physical Weight 1.90 oz (53.8 g) /1.70 oz (48.2g) 1.7 oz.
    [Show full text]
  • Mediatek Inc
    01 May 2015 Asia Pacific/Taiwan Equity Research Semiconductor Devices MediaTek Inc. (2454.TW / 2454 TT) Rating NEUTRAL* Price (30 Apr 15, NT$) 395.00 RESULTS Target price (NT$) 405.00¹ Upside/downside (%) 2.5 Mkt cap (NT$ mn) 708,117 (US$ 23,121) 2Q lacks growth, but a high bar is set for 2H Enterprise value (NT$ mn) 544,619 ■ 1Q15 results in line with CS, but below street. 1Q15 sales were already Number of shares (mn) 1,792.70 Free float (%) 89.1 reported at NT$47.5 bn, -14.3% QoQ. Smartphone shipments were 85 mn 52-week price range 535.0 - 390.0 (30mn LTE), down from 95-100mn in 4Q14 due to seasonality and emerging ADTO - 6M (US$ mn) 101.0 market weakness. GMs met our 47.3% vs 46-48% guidance and OpM was also *Stock ratings are relative to the coverage universe in each analyst's or each team's respective sector. in line at 16.1% on cost controls. Lower non-op income kept EPS only in line ¹Target price is for 12 months. with our NT$4.62 and below street's NT$4.97. Research Analysts ■ 2Q15 guidance below, inventory elevated. Sales were guided -5% to +3% Randy Abrams, CFA QoQ, below CS/street's +9%/+18% QoQ on 3G price pressure and 4G mix 886 2 2715 6366 [email protected] skewed to the entry level. Margins are in line, with GMs at 45.5-47.5% and Nickie Yue OpM at 12.5-16.5%. Inventory is elevated, at 102 days and guided to stay 886 2 2715 6364 98-110 days in 2Q15, requiring 2H15 acceleration.
    [Show full text]
  • Survey and Benchmarking of Machine Learning Accelerators
    1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users.
    [Show full text]