Coasts and Reefs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008) -
A Field Experiment on a Nourished Beach
CHAPTER 157 A Field Experiment on a Nourished Beach A.J. Fernandez* G. Gomez Pina * G. Cuena* J.L. Ramirez* Abstract The performance of a beach nourishment at" Playa de Castilla" (Huel- va, Spain) is evaluated by means of accurate beach profile surveys, vi- sual breaking wave information, buoy-measured wave data and sediment samples. The shoreline recession at the nourished beach due to "profile equilibration" and "spreading out" losses is discussed. The modified equi- librium profile curve proposed by Larson (1991) is shown to accurately describe the profiles with a grain size varying across-shore. The "spread- ing out" losses measured at " Playa de Castilla" are found to be less than predicted by spreading out formulations. The utilization of borrowed material substantially coarser than the native material is suggested as an explanation. 1 INTRODUCTION Fernandez et al. (1990) presented a case study of a sand bypass project at "Playa de Castilla" (Huelva, Spain) and the corresponding monitoring project, that was going to be undertaken. The Beach Nourishment Monitoring Project at the "Playa de Castilla" was begun over two years ago. The project is being *Direcci6n General de Costas. M.O.P.T, Madrid (Spain) 2043 2044 COASTAL ENGINEERING 1992 carried out to evaluate the performance of a beach fill and to establish effective strategies of coastal management and represents one of the most comprehensive monitoring projects that has been undertaken in Spain. This paper summa- rizes and discusses the data set for wave climate, beach profiles and sediment samples. 2 STUDY SITE & MONITORING PROGRAM Playa de Castilla, Fig. 1, is a sandy beach located on the South-West coast of Spain between the Guadiana and Gualdalquivir rivers. -
USER MANUAL SWASH Version 7.01
SWASH USER MANUAL SWASH version 7.01 SWASH USER MANUAL by : TheSWASHteam mail address : Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section P.O. Box 5048 2600 GA Delft The Netherlands website : http://www.tudelft.nl/swash Copyright (c) 2010-2020 Delft University of Technology. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back- Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.html#TOC1. iv Contents 1 About this manual 1 2 Generaldescriptionandinstructionsforuse 3 2.1 Introduction................................... 3 2.2 Background,featuresandapplications . ...... 3 2.2.1 Objectiveandcontext ......................... 3 2.2.2 Abird’s-eyeviewofSWASH. 4 2.2.3 ModelfeaturesandvalidityofSWASH . 7 2.2.4 Relation to Boussinesq-type wave models . .... 8 2.2.5 Relation to circulation and coastal flow models. ...... 9 2.3 Internal scenarios, shortcomings and coding bugs . ......... 9 2.4 Unitsandcoordinatesystems . 10 2.5 Choiceofgridsandtimewindows . .. 11 2.5.1 Introduction............................... 11 2.5.2 Computationalgridandtimewindow . 12 2.5.3 Inputgrid(s)andtimewindow(s) . 13 2.5.4 Input grid(s) for transport of constituents . ...... 14 2.5.5 Outputgrids .............................. 15 2.6 Boundaryconditions .............................. 16 2.7 Timeanddatenotation ............................ 17 2.8 Troubleshooting................................. 17 3 Input and output files 19 3.1 General ..................................... 19 3.2 Input/outputfacilities . .. 19 3.3 Printfileanderrormessages . .. 20 4 Description of commands 21 4.1 Listofavailablecommands. -
Coastal Landform Processes 29/03/2018 Do Now Copy Below: When Waves Lose Energy Material Is Deposited
Coastal Landform Processes 29/03/2018 Do Now Copy below: When waves lose energy material is deposited. This typical happens in sheltered areas such as bays, this explains why beaches are found here. Wave refraction is where the energy of the wave is reduced Aim ▪ To understand process acting on the coast that lead to landforms Wave energy converges on the headlands Wave energy is diverged Wave energy converges on the headlands Sediment moves and is deposited http://www.bbc.co.uk/education/cli ps/zsmb4wx Erosion Destructive waves will erode the coastline in four different ways: 1. Hydraulic Power Complete your 2. Corrasion erosion sheet 3. Attrition 4. Corrosion 5. Abrasion Longshore Drift • “Longshore drift is a process by which sediments such as sand or other materials are transported along a beach.” • The general direction of longshore drift around the coasts of the British Isles is controlled by the direction of the dominant wind. http://www.bbc.co.uk/learningzo ne/clips/the-coastline- longshore-drift-and- spits/3086.html Longshore Drift: A bird’s eye view Cliff Beach Sea Longshore Drift: A bird’s eye view Cliff Eroded material Beach from the cliffs is left on the beach Bob the pebble Sea Longshore Drift: A bird’s eye view Cliff Beach Waves The waves from the sea come onto the beach at an angle and pick Bob and other material up and move them up the beach. Sea Longshore Drift: A bird’s eye view Cliff Beach Swash This movement of the waves is called SWASH. The waves come in at an angle due to Sea wind direction Longshore Drift: A bird’s eye view Cliff Beach The waves then move back down the beach in a straight Swash direction due to gravity. -
3.2.6. Methods for Field Measurement and Remote Sensing of the Swash Zone
© Author(s) 2014. CC Attribution 4.0 License. ISSN 2047-0371 3.2.6. Methods for field measurement and remote sensing of the swash zone Sebastian J. Pitman1 1 Ocean and Earth Sciences, National Oceanography Centre, University of Southampton ([email protected]) ABSTRACT: Swash action is the dominant process responsible for the cross-shore exchange of sediment between the subaerial and subaqueous zones, with a significant part of the littoral drift also taking place as a result of swash motions. The swash zone is the area of the beach between the inner surfzone and backbeach that is intermittently submerged and exposed by the processes of wave uprush and backwash. Given the dominant role that swash plays in the morphological evolution of a beach, it is important to understand and quantify the main processes. The extent of swash (horizontally and vertically), current velocities and suspended sediment concentrations are all parameters of interest in the study of swash processes. In situ methods of measurements in this energetic zone were instrumental in developing early understanding of swash processes, however, the field has experienced a shift towards remote sensing methods. This article outlines the emergence of high precision technologies such as video imaging and LIDAR (light detection and ranging) for the study of swash processes. Furthermore, the applicability of these methods to large-scale datasets for quantitative analysis is demonstrated. KEYWORDS: run-up, morphodynamics, coastal imaging, video, LIDAR. Introduction al., 2004) and its dominant responses are largely well understood. It is the most The beachface is a highly spatially and energetic zone in terms of bed sediment temporally dynamic zone, predominantly due movement and is characterised by strong and to swash processes such as wave run up. -
Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data
Remote Sens. 2014, 6, 6961-6987; doi:10.3390/rs6086961 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data Thomas Mann 1,* and Hildegard Westphal 1,2 1 Leibniz Center for Tropical Marine Ecology, Fahrenheitstrasse 6, D-28359 Bremen, Germany; E-Mail: [email protected] 2 Department of Geosciences, University of Bremen, D-28359 Bremen, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-421-2380-0132; Fax: +49-421-2380-030. Received: 30 May 2014; in revised form: 7 July 2014 / Accepted: 18 July 2014 / Published: 25 July 2014 Abstract: Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying “outlier” shoreline positions. -
Nature Parks Snorkeling Surfing Fishing
Things to do in Florida Nature Parks Snorkeling Surfing Fishing Nature Parks Green Cay This nature center is the county’s newest nature canter that over- looks 100 acres of constructed wetland. Wakodahatchee Wetlands Is a park in Delray Beach with a three-quarter mile boardwalk that crosses between open water ponds and marches. Patch Reef Park & DeHoernle Park Parks in Boca Raton that have an abundant of sports and recreation facilities. Morikami Museum & Japanese Gardens The gardens at this Japanese cultural center in Delray Beach in- clude paradise garden, various styles of rock and Zen gardens, and a museum. Gumbo Limbo This Nature Center and Environmental Complex includes an indoor museum with fish tanks with fish, turtles, and other sea life. It is also known for rehabilitating and protecting sea turtles. *More information and website links are located on the last page. Snorkeling Blowing Rocks This is an environmental preserve on Jupiter Island in Hobe Sound. This peaceful, barrier island sanctuary is known for large-scale, native coastal habitat restoration. Lantana Beach Lantana is a coastal community in Palm Beach and 10 feet off shore there is a pretty good areas to snorkel. Red Reef Park A 67-acre oceanfront park in Boca Raton for swimming, snorkeling, and surf fishing that includes a nature center. Lauderdale-by-the-Sea Is known as “The Shore Diving Capital of South Florida”. There are two coral reef lines that are just a short swim from the beach. John Pennekamp Coral Reef State Park The first undersea park that encompasses about 70 natural square miles. -
The Economic, Social and Icon Value of the Great Barrier Reef Acknowledgement
At what price? The economic, social and icon value of the Great Barrier Reef Acknowledgement Deloitte Access Economics acknowledges and thanks the Great Barrier Reef Foundation for commissioning the report with support from the National Australia Bank and the Great Barrier Reef Marine Park Authority. In particular, we would like to thank the report’s Steering Committee for their guidance: Andrew Fyffe Prof. Ove Hoegh-Guldberg Finance Officer Director of the Global Change Institute Great Barrier Reef Foundation and Professor of Marine Science The University of Queensland Anna Marsden Managing Director Prof. Robert Costanza Great Barrier Reef Foundation Professor and Chair in Public Policy Australian National University James Bentley Manager Natural Value, Corporate Responsibility Dr Russell Reichelt National Australia Bank Limited Chairman and Chief Executive Great Barrier Reef Marine Park Authority Keith Tuffley Director Stephen Fitzgerald Great Barrier Reef Foundation Director Great Barrier Reef Foundation Dr Margaret Gooch Manager, Social and Economic Sciences Stephen Roberts Great Barrier Reef Marine Park Authority Director Great Barrier Reef Foundation Thank you to Associate Professor Henrietta Marrie from the Office of Indigenous Engagement at CQUniversity Cairns for her significant contribution and assistance in articulating the Aboriginal and Torres Strait Islander value of the Great Barrier Reef. Thank you to Ipsos Public Affairs Australia for their assistance in conducting the primary research for this study. We would also like -
Artificial Reef Observations from a Manned Submersible Off Southeast Florida
BULLETIN OF MARINE SCIENCE, 44(2): 1041-1050, 1989 ARTIFICIAL REEF OBSERVATIONS FROM A MANNED SUBMERSIBLE OFF SOUTHEAST FLORIDA Eugene A, Shinn and Robert I. Wicklund ABSTRACT Examination of 16artificial reef structures with a two-person submersible in depths ranging from 30 to 120 m (100-400 ft) indicated that the highest numbers offish are found around reefs in water shallower .than 46 m (150 ft). Fewer fish, especially those with tropical coral reef affinities, below 46 m was probably caused by a thermocline, observed on all dives deeper than 43 m (140 ft). During 4 days in September 1987, temperatures from the surface down to approximately 43 m were 30° to 31°C (86°-88°F), whereas below 43 m the temperature dropped as low as 1O.6°C(51°F) at 120 m (390 ft). Algae and reef community encrusters (gorgonians, bryozoans, branching sponges, and corals), abundant on shallower structures, were absent below 46 m. Structures that penetrated above the thermocline, such as two upright oil "rigs" and a hopper barge, were also effective reefs. The open structure and high profile of the rigs enhance their use as artificial reefs by providing a range of well-aerated habitats. Any effect of substrate or post-deployment age on fish abundance could not be documented. Wood appeared to be a more effective fish-concentrating material but has a shorter useful life than does steeL The greatest diversity and numbers of fish were observed at the Miami sewer outfalL Numerous derelict ships and other material have been placed off southeast Florida for the purpose of enhancing fish stocks and sportsfishing. -
The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes
1 Surveys in Geophysics Archimer November 2011, Volume 40, Issue 6, Pages 1563-1601 https://doi.org/10.1007/s10712-019-09557-5 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00509/62046/ The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes Dodet Guillaume 1, *, Melet Angélique 2, Ardhuin Fabrice 6, Bertin Xavier 3, Idier Déborah 4, Almar Rafael 5 1 UMR 6253 LOPSCNRS-Ifremer-IRD-Univiversity of Brest BrestPlouzané, France 2 Mercator OceanRamonville Saint Agne, France 3 UMR 7266 LIENSs, CNRS - La Rochelle UniversityLa Rochelle, France 4 BRGMOrléans Cédex, France 5 UMR 5566 LEGOSToulouse Cédex 9, France *Corresponding author : Guillaume Dodet, email address : [email protected] Abstract : Surface gravity waves generated by winds are ubiquitous on our oceans and play a primordial role in the dynamics of the ocean–land–atmosphere interfaces. In particular, wind-generated waves cause fluctuations of the sea level at the coast over timescales from a few seconds (individual wave runup) to a few hours (wave-induced setup). These wave-induced processes are of major importance for coastal management as they add up to tides and atmospheric surges during storm events and enhance coastal flooding and erosion. Changes in the atmospheric circulation associated with natural climate cycles or caused by increasing greenhouse gas emissions affect the wave conditions worldwide, which may drive significant changes in the wave-induced coastal hydrodynamics. Since sea-level rise represents a major challenge for sustainable coastal management, particularly in low-lying coastal areas and/or along densely urbanized coastlines, understanding the contribution of wind-generated waves to the long-term budget of coastal sea-level changes is therefore of major importance. -
Upwelling As a Source of Nutrients for the Great Barrier Reef Ecosystems: a Solution to Darwin's Question?
Vol. 8: 257-269, 1982 MARINE ECOLOGY - PROGRESS SERIES Published May 28 Mar. Ecol. Prog. Ser. / I Upwelling as a Source of Nutrients for the Great Barrier Reef Ecosystems: A Solution to Darwin's Question? John C. Andrews and Patrick Gentien Australian Institute of Marine Science, Townsville 4810, Queensland, Australia ABSTRACT: The Great Barrier Reef shelf ecosystem is examined for nutrient enrichment from within the seasonal thermocline of the adjacent Coral Sea using moored current and temperature recorders and chemical data from a year of hydrology cruises at 3 to 5 wk intervals. The East Australian Current is found to pulsate in strength over the continental slope with a period near 90 d and to pump cold, saline, nutrient rich water up the slope to the shelf break. The nutrients are then pumped inshore in a bottom Ekman layer forced by periodic reversals in the longshore wind component. The period of this cycle is 12 to 25 d in summer (30 d year round average) and the bottom surges have an alternating onshore- offshore speed up to 10 cm S-'. Upwelling intrusions tend to be confined near the bottom and phytoplankton development quickly takes place inshore of the shelf break. There are return surface flows which preserve the mass budget and carry silicate rich Lagoon water offshore while nitrogen rich shelf break water is carried onshore. Upwelling intrusions penetrate across the entire zone of reefs, but rarely into the Lagoon. Nutrition is del~veredout of the shelf thermocline to the living coral of reefs by localised upwelling induced by the reefs. -
Pacific Remote Islands Marine National Monument
U.S. Fish & Wildlife Service Pacific Remote Islands Marine National Monument The Pacific Remote Islands Marine National Monument falls within the Central Pacific Ocean, ranging from Wake Atoll in the northwest to Jarvis Island in the southeast. The seven atolls and islands included within the monument are farther from human population centers than any other U.S. area. They represent one of the last frontiers and havens for wildlife in the world, and comprise the most widespread collection of coral reef, seabird, and shorebird protected areas on the planet under a single nation’s jurisdiction. At Howland Island, Baker Island, Jarvis Island, Palmyra Atoll, and Kingman Reef, the terrestrial areas, reefs, and waters out to 12 nautical miles (nmi) are part of the National Wildlife Refuge System. The land areas at Wake Atoll and Johnston Atoll remain under the jurisdiction of The giant clam, Tridacna gigas, is a clam that is the largest living bivalve mollusk. the U.S. Air Force, but the waters from Photo: © Kydd Pollock 0 to 12 nmi are protected as units of the National Wildlife Refuge System. For all of the areas, fishery-related Marine National Monument, and orders long time periods throughout their entire activities seaward from the 12-nmi refuge of magnitude greater than the reefs near cultural and geological history. These boundaries out to the 50-nmi monument heavily populated islands. Expansive refuges are unique in that they were and boundary are managed by the National shallow coral reefs and deep coral forests, are still largely pristine, though many Oceanic and Atmospheric Administration.