The Road to the Mainline Zynqmp VCU Driver
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GLSL 4.50 Spec
The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
Report of Contributions
X.Org Developers Conference 2020 Report of Contributions https://xdc2020.x.org/e/XDC2020 X.Org Developer … / Report of Contributions State of text input on Wayland Contribution ID: 1 Type: not specified State of text input on Wayland Wednesday, 16 September 2020 20:15 (5 minutes) Between the last impromptu talk at GUADEC 2018, text input on Wayland has become more organized and more widely adopted. As before, the three-pronged approach of text_input, in- put_method, and virtual keyboard still causes confusion, but increased interest in implementing it helps find problems and come closer to something that really works for many usecases. The talk will mention how a broken assumption causes a broken protocol, and why we’re notdone with Wayland input methods yet. It’s recommended to people who want to know more about the current state of input methods on Wayland. Recommended background: aforementioned GUADEC talk, wayland-protocols reposi- tory, my blog: https://dcz_self.gitlab.io/ Code of Conduct Yes GSoC, EVoC or Outreachy No Primary author: DCZ, Dorota Session Classification: Demos / Lightning talks I Track Classification: Lightning Talk September 30, 2021 Page 1 X.Org Developer … / Report of Contributions IGT GPU Tools 2020 Update Contribution ID: 2 Type: not specified IGT GPU Tools 2020 Update Wednesday, 16 September 2020 20:00 (5 minutes) Short update on IGT - what has changed in the last year, where are we right now and what we have planned for the near future. IGT GPU Tools is a collection of tools and tests aiding development of DRM drivers. It’s widely used by Intel in its public CI system. -
Blackberry QNX Multimedia Suite
PRODUCT BRIEF QNX Multimedia Suite The QNX Multimedia Suite is a comprehensive collection of media technology that has evolved over the years to keep pace with the latest media requirements of current-day embedded systems. Proven in tens of millions of automotive infotainment head units, the suite enables media-rich, high-quality playback, encoding and streaming of audio and video content. The multimedia suite comprises a modular, highly-scalable architecture that enables building high value, customized solutions that range from simple media players to networked systems in the car. The suite is optimized to leverage system-on-chip (SoC) video acceleration, in addition to supporting OpenMAX AL, an industry open standard API for application-level access to a device’s audio, video and imaging capabilities. Overview Consumer’s demand for multimedia has fueled an anywhere- o QNX SDK for Smartphone Connectivity (with support for Apple anytime paradigm, making multimedia ubiquitous in embedded CarPlay and Android Auto) systems. More and more embedded applications have require- o Qt distributions for QNX SDP 7 ments for audio, video and communication processing capabilities. For example, an infotainment system’s media player enables o QNX CAR Platform for Infotainment playback of content, stored either on-board or accessed from an • Support for a variety of external media stores external drive, mobile device or streamed over IP via a browser. Increasingly, these systems also have streaming requirements for Features at a Glance distributing content across a network, for instance from a head Multimedia Playback unit to the digital instrument cluster or rear seat entertainment units. Multimedia is also becoming pervasive in other markets, • Software-based audio CODECs such as medical, industrial, and whitegoods where user interfaces • Hardware accelerated video CODECs are increasingly providing users with a rich media experience. -
The Opencl Specification
The OpenCL Specification Version: 2.0 Document Revision: 22 Khronos OpenCL Working Group Editor: Aaftab Munshi Last Revision Date: 3/18/14 Page 1 1. INTRODUCTION ............................................................................................................... 10 2. GLOSSARY ......................................................................................................................... 12 3. THE OPENCL ARCHITECTURE .................................................................................... 23 3.1 Platform Model ................................................................................................................................ 23 3.2 Execution Model .............................................................................................................................. 25 3.2.1 Execution Model: Mapping work-items onto an NDRange ........................................................................28 3.2.2 Execution Model: Execution of kernel-instances ........................................................................................30 3.2.3 Execution Model: Device-side enqueue ......................................................................................................31 3.2.4 Execution Model: Synchronization .............................................................................................................32 3.2.5 Execution Model: Categories of Kernels ....................................................................................................33 3.3 Memory -
Openbricks Embedded Linux Framework - User Manual I
OpenBricks Embedded Linux Framework - User Manual i OpenBricks Embedded Linux Framework - User Manual OpenBricks Embedded Linux Framework - User Manual ii Contents 1 OpenBricks Introduction 1 1.1 What is it ?......................................................1 1.2 Who is it for ?.....................................................1 1.3 Which hardware is supported ?............................................1 1.4 What does the software offer ?............................................1 1.5 Who’s using it ?....................................................1 2 List of supported features 2 2.1 Key Features.....................................................2 2.2 Applicative Toolkits..................................................2 2.3 Graphic Extensions..................................................2 2.4 Video Extensions...................................................3 2.5 Audio Extensions...................................................3 2.6 Media Players.....................................................3 2.7 Key Audio/Video Profiles...............................................3 2.8 Networking Features.................................................3 2.9 Supported Filesystems................................................4 2.10 Toolchain Features..................................................4 3 OpenBricks Supported Platforms 5 3.1 Supported Hardware Architectures..........................................5 3.2 Available Platforms..................................................5 3.3 Certified Platforms..................................................7 -
Gstreamer and Dmabuf
GStreamer and dmabuf OMAP4+ graphics/multimedia update Rob Clark Outline • A quick hardware overview • Kernel infrastructure: drm/gem, rpmsg+dce, dmabuf • Blinky s***.. putting pixels on the screen • Bringing it all together in GStreamer A quick hardware overview DMM/Tiler • Like a system-wide GART – Provides a contiguous view of memory to various hw accelerators: IVAHD, ISS, DSS • Provides tiling modes for enhanced memory bandwidth efficiency – For initiators like IVAHD which access memory in 2D block patterns • Provides support for rotation – Zero cost rotation for DSS/ISS access in 0º/90º/180º/270º orientations (with horizontal or vertical reflection) IVA-HD • Multi-codec hw video encode/decode – H.264 BP/MP/HP encode/decode – MPEG-4 SP/ASP encode/decode – MPEG-2 SP/MP encode/decode – MJPEG encode/decode – VC1/WMV9 decode – etc DSS – Display Subsystem • Display Subsystem – 4 video pipes, 3 support scaling and YUV – Any number of video pipes can be attached to one of 3 “overlay manager” to route to a display Kernel infrastructure: drm/gem, rpmsg+dce, dmabuf DRM Overview • DRM → Direct Rendering Manager – Started life heavily based on x86/desktop graphics card architecture – But more recently has evolved to better support ARM and other SoC platforms • KMS → Kernel Mode Setting – Replaces fbdev for more advanced display management – Hotplug, multiple display support (spanning/cloning) – And more recently support for overlays (planes) • GEM → Graphics Execution Manager – But the important/useful part here is the graphics/multimedia buffer management DRM - KMS • Models the display hardware as: – Connector → the thing that the display connects to • Handles DDC/EDID, hotplug detection – Encoder → takes pixel data from CRTC and encodes it to a format suitable for connectors • ie. -
GPU Technology Conference 2010 Sessions on 2095
GPU Technology Conference 2010 Sessions on Video Processing (subject to change) IMPORTANT: Visit www.nvidia.com/gtc for the most up-to-date schedule and to enroll into sessions to ensure your spot in the most popular courses. 2095 - Building High Density Real-Time Video Processing Systems Learn how GPU Direct can be used to effectively build real time, high performance, cost effective video processing products. We will focus especially on how to optimize bus throughput while keeping CPU load and latency minimal. Speaker: Ronny Dewaele, Barco Topics: Video Processing, Imaging Time: Thursday, September, 23rd, 16:00 - 16:50 2029 - Computer Vision Algorithms for Automating HD Post- Production Discover how post-production tasks can be accelerated by taking advantage of GPU-based algorithms. In this talk we present computer vision algorithms for corner detection, feature point tracking, image warping and image inpainting, and their efficient implementation on GPUs using CUDA. We also show how to use these algorithms to do real-time stabilization and temporal re-sampling (re-timing) of high definition video sequences, both common tasks in post-production. Benchmarking of the GPU implementations against optimized CPU algorithms demonstrates a speedup of approximately an order of magnitude. Speaker: Hannes Fassold, JOANNEUM RESEARCH Topics: Computer Vision, Video Processing Time: Wednesday, September, 22nd, 15:00 - 15:50 2125 - Developing GPU Enabled Visual Effects For Film And Video 1 The arrival of fully programable GPUs is now changing the visual effects industry, which traditionally relied on CPU computation to create their spectacular imagery. Implementing the complex image processing algorithms used by VFX is a challenge, but the payoffs in terms of interactivity and throughput can be enormous. -
Der Optimale PC
ct.2509.001 16.11.2009 12:04 Uhr Seite 1 Mit Stellenmarkt www.ct.de e 3,50 magazin für Österreich e 3,70 magazin für Schweiz CHF 6,90 • Benelux e 4,20 ItalienItalien e 4,60 • Spanien e 4,60 25/2009 c computercomputer 2525 techniktechnik 23. 11. 2009 E-Books und Zeitungen im Online-Zugriff Das universelle Buch Kindle & Co. im Test • Lesestoff selbst aufbereiten Multifunktionsdrucker Videoschnittprogramme Fernseher mit LED-Backlight Aktuelle Spielkonsolen Günstige Android-Handys i5-PCs,i5-PCs, i7-Notebooksi7-Notebooks Quad-Core-Power Von XP auf Windows 7 E-Books • Der optimale PC Core i5 & i7, Strom sparen im Netz Wissenschaftler im Web Strom sparen im Netz Linux: Initskripte verwalten Notebook oder Desktop Heise h DerDer optimaleoptimale PCPC Komplettsysteme vs. superleise Selbstbaurechner ct.0108.999.anzeige.EP 09.06.2008 16:00 Uhr Seite 2 © Copyright by Heise Zeitschriften Verlag GmbH & Co. KG. Veröffentlichung und Vervielfältigung nur mit Genehmigung des Heise Zeitschriften Verlags. ct.2509.003 17.11.2009 15:22 Uhr Seite 3 c Nicht nachmachen "Wow, das Spiel ist wirklich geil!!!1111" Bei solch fetten Gewinnen kann die Firma So oder ähnlich könnte man die Bewertungen gelassen in Kauf nehmen, wenn in den kommenden etlicher Spielemagazine zusammen fassen, die Wochen Jugendschützer auf die Barrikaden das viel diskutierte 3D-Ballerspiel Call of klettern. Außerdem könnte Activisions Erfolgs - Duty: Modern Warfare 2 vom US-Hersteller rezept als Vorlage für andere Hersteller dienen, Activision in den Himmel loben. Doch selten um vermehrt mit altbekannten Spielideen war die Diskrepanz zwischen dem Hype der kräftig Kasse zu machen. -
The Openvx™ Specification
The OpenVX™ Specification Version 1.2 Document Revision: dba1aa3 Generated on Wed Oct 11 2017 20:00:10 Khronos Vision Working Group Editor: Stephen Ramm Copyright ©2016-2017 The Khronos Group Inc. i Copyright ©2016-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specifica- tion for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specifi- cation are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions. -
AMD Linux Driver 2021.10 Release Notes
[AMD Official Use Only - Internal Distribution Only] AMD Linux Driver 2021.10 Release Notes 1. Overview AMD’s Linux® Driver’s includes open source graphics driver for AMD’s embedded platforms and other peripheral devices on selected development platforms. New features supported in this release: 1. New LTS kernel 5.10.5. 2. Bug fixes and driver updates. 2. Linux® kernel Support 1. 5.10.5 LTS 3. Linux Distribution Support 1. Ubuntu 20.04.1 4. Component Versions The following table shows git commit details of the sources and binaries used in the package. The patches present in patches folder of this release package has to be applied on top of the git commit mentioned in the below table to get the full sources corresponding to this driver release. The sources directory in this package contains patches pre-applied to these commit ids. 2021.10 Linux Driver Release Notes 1 [AMD Official Use Only - Internal Distribution Only] Component Version Commit ID Source Link for git clone Name Kernel 5.10.5 f5247949c0a9304ae43a895f29216a9d876f https://git.kernel.org/pub/scm/linux/ker 3919 nel/git/stable/linux.git Libdrm 2.4.103 5dea8f56ee620e9a3ace34a99ebf0175efb5 https://github.com/freedesktop/mesa- 7b11 drm.git Mesa 21.1.0-dev 38f012e0238f145f4c83bf7abf59afceee333 https://github.com/mesa3d/mesa.git 397 Ddx 19.1.0 6234a1b2652f469071c0c9b0d8b0f4a8079e https://github.com/freedesktop/xorg- fe74 xf86-video-amdgpu.git Gstomx 1.0.0.1 5c4bff4a433dff1c5d005edfceaf727b6214b git://people.freedesktop.org/~leoliu/gsto b74 mx Wayland 1.15.0 ea09c2fde7fcfc7e24a19ae5c5977981e9bef -
The Opengl ES Shading Language
The OpenGL ES® Shading Language Language Version: 3.20 Document Revision: 12 246 JuneAugust 2015 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost 1 Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
NVIDIA's Opengl Functionality
NVIDIANVIDIA ’’ss OpenGLOpenGL FunctionalityFunctionality Session 2127 | Room A5 | Monday, September, 20th, 16:00 - 17:20 San Jose Convention Center, San Jose, California Mark J. Kilgard • Principal System Software Engineer – OpenGL driver – Cg (“C for graphics”) shading language • OpenGL Utility Toolkit (GLUT) implementer • Author of OpenGL for the X Window System • Co-author of Cg Tutorial Outline • OpenGL’s importance to NVIDIA • OpenGL 3.3 and 4.0 • OpenGL 4.1 • Loose ends: deprecation, Cg, further extensions OpenGL Leverage Cg Parallel Nsight SceniX CompleX OptiX Example of Hybrid Rendering with OptiX OpenGL (Rasterization) OptiX (Ray tracing) Parallel Nsight Provides OpenGL Profiling Configure Application Trace Settings Parallel Nsight Provides OpenGL Profiling Magnified trace options shows specific OpenGL (and Cg) tracing options Parallel Nsight Provides OpenGL Profiling Parallel Nsight Provides OpenGL Profiling Trace of mix of OpenGL and CUDA shows glFinish & OpenGL draw calls OpenGL In Every NVIDIA Business OpenGL on Quadro – World class OpenGL 4 drivers – 18 years of uninterrupted API compatibility – Workstation application certifications – Workstation application profiles – Display list optimizations – Fast antialiased lines – Largest memory configurations: 6 gigabytes – GPU affinity – Enhanced interop with CUDA and multi-GPU OpenGL – Advanced multi-GPU rendering – Overlays – Genlock – Unified Back Buffer for less framebuffer memory usage – Cross-platform • Windows XP, Vista, Win7, Linux, Mac, FreeBSD, Solaris – SLI Mosaic –