Report of Contributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GLSL 4.50 Spec
The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
AMD Powerpoint- White Template
RDNA Architecture Forward-looking statement This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) including, but not limited to, the features, functionality, performance, availability, timing, pricing, expectations and expected benefits of AMD’s current and future products, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange Commission filings, including but not limited to AMD's Quarterly Report on Form 10-Q for the quarter ended March 30, 2019 2 Highlights of the RDNA Workgroup Processor (WGP) ▪ Designed for lower latency and higher -
Blackberry QNX Multimedia Suite
PRODUCT BRIEF QNX Multimedia Suite The QNX Multimedia Suite is a comprehensive collection of media technology that has evolved over the years to keep pace with the latest media requirements of current-day embedded systems. Proven in tens of millions of automotive infotainment head units, the suite enables media-rich, high-quality playback, encoding and streaming of audio and video content. The multimedia suite comprises a modular, highly-scalable architecture that enables building high value, customized solutions that range from simple media players to networked systems in the car. The suite is optimized to leverage system-on-chip (SoC) video acceleration, in addition to supporting OpenMAX AL, an industry open standard API for application-level access to a device’s audio, video and imaging capabilities. Overview Consumer’s demand for multimedia has fueled an anywhere- o QNX SDK for Smartphone Connectivity (with support for Apple anytime paradigm, making multimedia ubiquitous in embedded CarPlay and Android Auto) systems. More and more embedded applications have require- o Qt distributions for QNX SDP 7 ments for audio, video and communication processing capabilities. For example, an infotainment system’s media player enables o QNX CAR Platform for Infotainment playback of content, stored either on-board or accessed from an • Support for a variety of external media stores external drive, mobile device or streamed over IP via a browser. Increasingly, these systems also have streaming requirements for Features at a Glance distributing content across a network, for instance from a head Multimedia Playback unit to the digital instrument cluster or rear seat entertainment units. Multimedia is also becoming pervasive in other markets, • Software-based audio CODECs such as medical, industrial, and whitegoods where user interfaces • Hardware accelerated video CODECs are increasingly providing users with a rich media experience. -
The Opencl Specification
The OpenCL Specification Version: 2.0 Document Revision: 22 Khronos OpenCL Working Group Editor: Aaftab Munshi Last Revision Date: 3/18/14 Page 1 1. INTRODUCTION ............................................................................................................... 10 2. GLOSSARY ......................................................................................................................... 12 3. THE OPENCL ARCHITECTURE .................................................................................... 23 3.1 Platform Model ................................................................................................................................ 23 3.2 Execution Model .............................................................................................................................. 25 3.2.1 Execution Model: Mapping work-items onto an NDRange ........................................................................28 3.2.2 Execution Model: Execution of kernel-instances ........................................................................................30 3.2.3 Execution Model: Device-side enqueue ......................................................................................................31 3.2.4 Execution Model: Synchronization .............................................................................................................32 3.2.5 Execution Model: Categories of Kernels ....................................................................................................33 3.3 Memory -
Openbricks Embedded Linux Framework - User Manual I
OpenBricks Embedded Linux Framework - User Manual i OpenBricks Embedded Linux Framework - User Manual OpenBricks Embedded Linux Framework - User Manual ii Contents 1 OpenBricks Introduction 1 1.1 What is it ?......................................................1 1.2 Who is it for ?.....................................................1 1.3 Which hardware is supported ?............................................1 1.4 What does the software offer ?............................................1 1.5 Who’s using it ?....................................................1 2 List of supported features 2 2.1 Key Features.....................................................2 2.2 Applicative Toolkits..................................................2 2.3 Graphic Extensions..................................................2 2.4 Video Extensions...................................................3 2.5 Audio Extensions...................................................3 2.6 Media Players.....................................................3 2.7 Key Audio/Video Profiles...............................................3 2.8 Networking Features.................................................3 2.9 Supported Filesystems................................................4 2.10 Toolchain Features..................................................4 3 OpenBricks Supported Platforms 5 3.1 Supported Hardware Architectures..........................................5 3.2 Available Platforms..................................................5 3.3 Certified Platforms..................................................7 -
Gstreamer and Dmabuf
GStreamer and dmabuf OMAP4+ graphics/multimedia update Rob Clark Outline • A quick hardware overview • Kernel infrastructure: drm/gem, rpmsg+dce, dmabuf • Blinky s***.. putting pixels on the screen • Bringing it all together in GStreamer A quick hardware overview DMM/Tiler • Like a system-wide GART – Provides a contiguous view of memory to various hw accelerators: IVAHD, ISS, DSS • Provides tiling modes for enhanced memory bandwidth efficiency – For initiators like IVAHD which access memory in 2D block patterns • Provides support for rotation – Zero cost rotation for DSS/ISS access in 0º/90º/180º/270º orientations (with horizontal or vertical reflection) IVA-HD • Multi-codec hw video encode/decode – H.264 BP/MP/HP encode/decode – MPEG-4 SP/ASP encode/decode – MPEG-2 SP/MP encode/decode – MJPEG encode/decode – VC1/WMV9 decode – etc DSS – Display Subsystem • Display Subsystem – 4 video pipes, 3 support scaling and YUV – Any number of video pipes can be attached to one of 3 “overlay manager” to route to a display Kernel infrastructure: drm/gem, rpmsg+dce, dmabuf DRM Overview • DRM → Direct Rendering Manager – Started life heavily based on x86/desktop graphics card architecture – But more recently has evolved to better support ARM and other SoC platforms • KMS → Kernel Mode Setting – Replaces fbdev for more advanced display management – Hotplug, multiple display support (spanning/cloning) – And more recently support for overlays (planes) • GEM → Graphics Execution Manager – But the important/useful part here is the graphics/multimedia buffer management DRM - KMS • Models the display hardware as: – Connector → the thing that the display connects to • Handles DDC/EDID, hotplug detection – Encoder → takes pixel data from CRTC and encodes it to a format suitable for connectors • ie. -
The Openvx™ Specification
The OpenVX™ Specification Version 1.2 Document Revision: dba1aa3 Generated on Wed Oct 11 2017 20:00:10 Khronos Vision Working Group Editor: Stephen Ramm Copyright ©2016-2017 The Khronos Group Inc. i Copyright ©2016-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specifica- tion for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specifi- cation are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions. -
The Road to the Mainline Zynqmp VCU Driver
The Road to the Mainline ZynqMP VCU Driver FOSDEM ’21 Michael Tretter – [email protected] https://www.pengutronix.de Agenda Xilinx Zynq® UltraScale+™ MPSoC H.264/H.265 Video Codec Unit Video Encoders in Mainline Linux VCU Mainline Driver: Allegro A Glimpse into the Future 2/47 Xilinx Zynq® UltraScale+™ MPSoC 3/47 ZynqMP Platform Overview Luca Ceresoli: ARM64 + FPGA and more: Linux on the Xilinx ZynqMP https://archive.fosdem.org/ 2018/schedule/event/arm6 4_and_fpga 4/47 ZynqMP Mainline Status Mainline Linux just works, e.g., on ZCU104 Evaluation Kit U-Boot, Barebox, FSBL Sometimes more reliable with Xilinx downstream Xilinx is actively mainlining their drivers 5/47 Make Sure that Your ZynqMP has a VCU ZU # E V ZU: Zynq Ultrascale+ #: Value Index C/E: Processor System Identifier G/V: Engine Type 6/47 Focus on Video Encoding VCU supports video decoding, as well Linux mainline driver only supports encoding Decoding might be focus in a future talk 7/47 Basic Video Encoding Knowledge Expected Paul Kocialkowski: Supporting Hardware-Accelerated Video Encoding with Mainline https://www.youtube.com/watch?v=S5wCdZfGFew 8/47 H.264/H.265 Video Codec Unit 9/47 VCU: Documentation Hardware configuration Software usage Available on the Xilinx Website 10/47 VCU: Features The encoder engine is designed to process video streams using the HEVC (ISO/IEC 23008-2 high-efficiency Video Coding) and AVC (ISO/IEC 14496-10 Advanced Video Coding) standards. It provides complete support for these standards, including support for 8-bit and 10-bit color, Y- only (monochrome), 4:2:0 and 4:2:2 Chroma formats, up to 4K UHD at 60 Hz performance. -
The Opengl ES Shading Language
The OpenGL ES® Shading Language Language Version: 3.20 Document Revision: 12 246 JuneAugust 2015 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost 1 Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
Radeon GPU Profiler Documentation
Radeon GPU Profiler Documentation Release 1.11.0 AMD Developer Tools Jul 21, 2021 Contents 1 Graphics APIs, RDNA and GCN hardware, and operating systems3 2 Compute APIs, RDNA and GCN hardware, and operating systems5 3 Radeon GPU Profiler - Quick Start7 3.1 How to generate a profile.........................................7 3.2 Starting the Radeon GPU Profiler....................................7 3.3 How to load a profile...........................................7 3.4 The Radeon GPU Profiler user interface................................. 10 4 Settings 13 4.1 General.................................................. 13 4.2 Themes and colors............................................ 13 4.3 Keyboard shortcuts............................................ 14 4.4 UI Navigation.............................................. 16 5 Overview Windows 17 5.1 Frame summary (DX12 and Vulkan).................................. 17 5.2 Profile summary (OpenCL)....................................... 20 5.3 Barriers.................................................. 22 5.4 Context rolls............................................... 25 5.5 Most expensive events.......................................... 28 5.6 Render/depth targets........................................... 28 5.7 Pipelines................................................. 30 5.8 Device configuration........................................... 33 6 Events Windows 35 6.1 Wavefront occupancy.......................................... 35 6.2 Event timing............................................... 48 6.3 -
Optimizing for the Radeon RDNA Architecture
OPTIMIZING FOR THE RADEONTM RDNA ARCHITECTURE LOU KRAMER DEVELOPER TECHNOLOGY ENGINEER, AMD WHO AM I? Lou Kramer Developer Technology Engineer at AMD since Nov. 2017 I work closely with game studios to make their games look amazing and run fast on AMD GPUs ☺ AMD Public | Let’s build… 2020 | Optimizing for the RadeonTM RDNA architecture | May 15, 2020 | 2 WHY THIS TALK? On July 7th 2019, we released a new GPU architecture with our RadeonTM RX 5700 cards! → RadeonTM New Architecture (RDNA) Today, we have several products based on RDNA AMD Public | Let’s build… 2020 | Optimizing for the RadeonTM RDNA architecture | May 15, 2020 | 3 WHY THIS TALK? RDNA is present in a bunch of different products Design goals of RDNA • Scalability • Special focus on • Geometry handling • Cache flushes • Amount of work in flight needed • Latency AMD Public | Let’s build… 2020 | Optimizing for the RadeonTM RDNA architecture | May 15, 2020 | 4 AGENDA • Architecture • Compute Unit (CU) Work Group Processor (WGP) • GCN RDNA • Highlights of changes • Optimizations • Texture access • Workload distribution • Shader optimizations AMD Public | Let’s build… 2020 | Optimizing for the RadeonTM RDNA architecture | May 15, 2020 | 5 COMPUTE UNIT (CU) SIMD16 SIMD16 SIMD16 SIMD16 SALU LDS Texture L1$ VGPR VGPR VGPR VGPR 64KB Units 16KB I$ SGPR 32KB 64KB 64KB 64KB 64KB K$ CU 16KB CU CU A GCN based GPU has several Compute Units - a CU has: • 4 SIMD16 + VGPRs This is where the shaders get • 1 Scalar ALU + SGPRs executed! • 1 L1 Cache • … AMD Public | Let’s build… 2020 | Optimizing -
News Release for More Information: Neil Trevett, President, Khronos | [email protected] | Phone: +1 (408) 464 7053
News Release For more information: Neil Trevett, President, Khronos | [email protected] | Phone: +1 (408) 464 7053 Khronos Releases OpenVX 1.1 Specification for High Performance, Low Power Computer Vision Acceleration Expanded range of processing functions; Enhanced flexibility for data access and processing; Full conformance tests available; Safety Critical specification in development May 2nd 2016 – Embedded Vision Summit, Santa Clara, CA – The Khronos™ Group, an open consortium of leading hardware and software companies, announces the immediate availability of the OpenVX™ 1.1 specification for cross platform acceleration of computer vision applications and libraries. OpenVX enables performance and power optimized computer vision algorithms for use cases such as face, body and gesture tracking, smart video surveillance, automatic driver assistance systems, object and scene reconstruction, augmented reality, visual inspection, robotics and more. Conformant OpenVX 1.0 implementations and tools are shipping from AMD, Imagination, Intel, NVIDIA, Synopsis and VeriSilicon. OpenVX 1.1 builds on this momentum by adding new processing functions for use cases such as computational photography, and enhances application control over how data is accessed and processed. An open source OpenVX 1.1 sample implementation and full conformance tests will be available before mid-2016. Details on the OpenVX specifications and Adopters Program are available at: www.khronos.org/openvx. “More and more products are incorporating computer vision, and OpenVX