Point and Space Groups of Graphene∗

Total Page:16

File Type:pdf, Size:1020Kb

Point and Space Groups of Graphene∗ GENERAL ARTICLE Point and Space Groups of Graphene∗ Samiul Islam and S S Z Ashraf Graphene – the first discovered ideal two-dimensional mate- rial combines a wealth of exhibited novel physical phenomena with an overwhelming potential for practical applications. It is a one atom thick material where the carbon atoms sit on a honeycomb lattice. The honeycomb lattice is the cause for the many fascinating properties that graphene turns up with. Conventionally a material scientist would first like to know Samiul Islam is a the symmetry that any newly discovered material possesses, postgraduate from the as this can help determine the physical properties of the mate- Department of Physics, rial. In this article, we discuss the space and point symmetry Aligarh Muslim University. groups that the hallmark honeycomb structure of graphene He has studied condensed matter physics as special possesses. subject in postgraduation and intends to pursue research in the same field. 1. Introduction Symmetry is ubiquitous and features prominently in human intel- lectual pursuits as diverse as visual arts, poetry, music and none the least, natural sciences. In an ordinary sense, symmetry con- notes with beauty, similarity, equality, regularity, balance, jus- S S Z Ashraf is an Associate tice, repetition, periodicity, rhythm, etc. Quantitatively, symme- Professor at the Department of Physics, Aligarh Muslim try in natural sciences is measured through the mathematical lan- University. He works in the guage of ‘group theory’. In physics too, the scope of symmetry area of theoretical condensed is exceedingly wide as it underpins the whole gamut of physi- matter physics. His other cal phenomena right from the Dirac equation for the electron to interests are metaphysics and poetry. equations of the expanding universe. This scope permeates to its sub-branches, and thereby in condensed matter physics too, sym- metry and group theory serve as an extremely powerful tool to understand, predict and postdict the properties of materials. Crystals possess both point group symmetry (as of atoms and Keywords Graphene, honeycomb, hexago- nal , point, space and symmorphic groups, Hermann–Mauguin nota- ∗DOI: https://doi.org/10.1007/s12045-019-0797-1 tion. RESONANCE | April 2019 445 GENERAL ARTICLE molecules) and translational symmetry, which together form the Figure 1. Figures show- space groups. A point symmetry group is constituted of opera- ing (a) translation symme- try, (b) rotation symme- tions that leave one point fixed. Clearly, translation operation is try (four-fold), (c) reflection excluded from the point symmetry group as an object when sub- (bilateral) symmetry, and (d) jected to translation leaves behind the fixed point. There exist 10 glide reflection symmetry. crystallographic point groups compatible with five Bravais lattice in two dimensions (2D) and 32 crystallographic point operations consistent with fourteen Bravais lattice in three dimensions (3D). The knowledge of point groups of molecules and crystals is of much physical significance in spectroscopy and condensed matter The knowledge of point physics. Physical properties like optical activity, piezoelectricity, groups of molecules and pyro electricity, and molecular dipole moments are all related to crystals is of much the point groups of the crystal. physical significance in spectroscopy and Altogether, 17 crystallographic space groups in 2D and 230 in condensed matter 3D have been enumerated by symmetry considerations. These physics. space group symmetries are also of importance as they render the one-electron Hamiltonian invariant and hence commute with the space group providing the quantum numbers for determining the 446 RESONANCE | April 2019 GENERAL ARTICLE energy eigenvalues and eigenfunctions. Apart from this, the in- clusion of translational symmetry (that is irrelevant to molecules) also enables the determination of dispersion relations in recipro- cal space, which is an important feature in solids as the physical properties of solids are determined from it rather than by energy levels. Before we enumerate the space group symmetry opera- tions of graphene, we discuss below the point group operations in 2D. 2. Symmetry Operations in 2D Crystallography There are altogether eight symmetry operations in 3D, namely, (i) identity, (ii) rotation, (iii) reflection, (iv) translation, (v) glide reflection, (vi) inversion centre or point reflection, (viii) rotore- flection and, (viii) helical or screw axis or rototranslation. Out of these eight, the last three do not figure in 2D, and therefore, the first five operations only feature in 2D crystallography, which are illustrated in Figure 1. We first briefly discuss each of these five symmetries below before we proceed to point and space groups of graphene. 2.1 Identity Symmetry The identity operation, denoted here by E, in essence, does noth- Most asymmetric of the ing as this operation restores the object to its original status. This objects still possesses the identity symmetry means that the most asymmetric of the objects will still possess ff ff operation. In e ect, we this symmetry operation. In e ect, we can also say that E has the can also say that identity same significance that the number 1 has in multiplication. The symmetry operation has identity operation itself forms a group as it satisfies all the ax- the same significance ioms of the algebraic structure of group. that the number 1 has in multiplication. 2.2 Rotation Symmetry As the name suggests, rotational symmetry is the symmetry that an object possesses if it looks the same after being turned by some degree. Physically, this also means that the object has multiple orientation positions adopting which it becomes indistinguishable RESONANCE | April 2019 447 GENERAL ARTICLE 1 1 ACn group is a simple nth from the earlier one. The rotation symmetry is denoted by Cn , order cyclic group of rotation where n is an integer, and rotation by 360o/n about a particular about a single n-fold axis. o axis defines the n-fold rotation axis, like C2 = 180 rotation, C3 = 120o rotation, etc. 2.3 Reflection Symmetry The simplest case of Reflection symmetry is referred to by several names that also un- reflection symmetry is derline its meaning, i.e. line symmetry, mirror symmetry, mirror- bilateral symmetry image symmetry, etc. So this is symmetry with respect to re- which also has been found to be the most flection; meaning that an object does not change upon undergo- perceptible symmetry in ing a reflection operation. In other words, the reflection line, or creatures including the mirror line or the axis of symmetry cuts the object into two human beings. equal parts which cannot be distinguished as they are the exact replica of each other. The simplest case of reflection symmetry is bilateral symmetry which also has been found to be the most perceptible symmetry in creatures including human beings. 2.4 Translation Symmetry Translation symmetry is the symmetry that a figure has if it can be made to look exactly the same when it is displaced or translated by some fixed distance. Naturally, translational symmetry exists Glide reflection only for infinite patterns, and for finite patterns, it is understood symmetry is a compound that translational symmetry would prevail only if the pattern were symmetry operation to continue indefinitely. requiring two symmetry operations (translation + reflection) to be 2.5 Glide Reflection Symmetry performed subsequently on the object to make it coincide with its original Glide reflection symmetry is a compound symmetry operation re- shape. quiring two symmetry operations (translation + reflection) to be performed subsequently on the object to make it coincide with its original shape. The translation is to be done by a fixed distance in a fixed direction and then reflected over a line parallel to the di- rection of translation. As is the case with translational symmetry, glide-reflectional symmetry also exists only for infinite patterns. 448 RESONANCE | April 2019 GENERAL ARTICLE Figure 2. (a) 3. Structure of Graphene Abee hive or honeycomb (b) Graphene sheets containing 2 Graphene is a single layer of graphite or conversely, graphite honeycomb structure. is weakly bonded stacked graphene sheets. Graphene was first mechanically exfoliated from graphite in 2004 by two Russian scientists, Andre Geim and Konstantin Novoselov at University 2Graphene is the thinnest, of Manchester, and the discovery fetched them the 2010 Nobel lightest, strongest, most con- Prize. ducting (heat and electricity), highly transparent and novel material known to humans. It The carbon atoms in graphene are bonded in sp2 hybridisation. has got immensely large and Three electrons per carbon atom are involved in the formation of diverse applications in areas like medicine, electronics, light σ bonds and the remaining one electron per atom is involved in processing, energy, sensors, making the π bonds. The π electrons are responsible for the elec- thermoelectricity, etc. tronic properties at low energies. The carbon atoms populate a structure which is similar to a honeycomb as can be seen in Figure 2. Hence the graphene lattice is called the ‘honeycomb lattice’. However, a honeycomb lattice is not a Bravais lattice. To recall, a Bravais lattice is one where the lattice looks the same when RESONANCE | April 2019 449 GENERAL ARTICLE viewed from any two points, and hence any two lattice points can Figure 3. (a) Honeycomb be connected by primitive translation vectors. In the honeycomb lattice with two inequivalent lattice shown in Figure 3a, the points A and B are not similar as carbon atomic positions A the surroundings of these two points are dissimilar. We have near and B is not a Bravais lat- the right of carbon atom A at a distance of ac−c the carbon B atom, (b) tice. Now combine two which is devoid of an A atom to its right at the same distance. So carbon atoms within a sin- the environment surrounding A and B carbon atoms are differ- gle lattice point as shown en- ent.
Recommended publications
  • In Order for the Figure to Map Onto Itself, the Line of Reflection Must Go Through the Center Point
    3-5 Symmetry State whether the figure appears to have line symmetry. Write yes or no. If so, copy the figure, draw all lines of symmetry, and state their number. 1. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The figure has reflectional symmetry. In order for the figure to map onto itself, the line of reflection must go through the center point. Two lines of reflection go through the sides of the figure. Two lines of reflection go through the vertices of the figure. Thus, there are four possible lines that go through the center and are lines of reflections. Therefore, the figure has four lines of symmetry. eSolutionsANSWER: Manual - Powered by Cognero Page 1 yes; 4 2. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure does not have reflectional symmetry. There is no way to fold or reflect it onto itself. ANSWER: no 3. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure has reflectional symmetry. The figure has a vertical line of symmetry. It does not have a horizontal line of symmetry. The figure does not have a line of symmetry through the vertices. Thus, the figure has only one line of symmetry. ANSWER: yes; 1 State whether the figure has rotational symmetry. Write yes or no. If so, copy the figure, locate the center of symmetry, and state the order and magnitude of symmetry.
    [Show full text]
  • Glide and Screw
    Space Groups •The 32 crystallographic point groups, whose operation have at least one point unchanged, are sufficient for the description of finite, macroscopic objects. •However since ideal crystals extend indefinitely in all directions, we must also include translations (the Bravais lattices) in our description of symmetry. Space groups: formed when combining a point symmetry group with a set of lattice translation vectors (the Bravais lattices), i.e. self-consistent set of symmetry operations acting on a Bravais lattice. (Space group lattice types and translations have no meaning in point group symmetry.) Space group numbers for all the crystal structures we have discussed this semester, and then some, are listed in DeGraef and Rohrer books and pdf. document on structures and AFLOW website, e.g. ZnS (zincblende) belongs to SG # 216: F43m) Class21/1 Screw Axes •The combination of point group symmetries and translations also leads to two additional operators known as glide and screw. •The screw operation is a combination of a rotation and a translation parallel to the rotation axis. •As for simple rotations, only diad, triad, tetrad and hexad axes, that are consistent with Bravais lattice translation vectors can be used for a screw operator. •In addition, the translation on each rotation must be a rational fraction of the entire translation. •There is no combination of rotations or translations that can transform the pattern produced by 31 to the pattern of 32 , and 41 to the pattern of 43, etc. •Thus, the screw operation results in handedness Class21/2 or chirality (can’t superimpose image on another, e.g., mirror image) to the pattern.
    [Show full text]
  • Group Theory Applied to Crystallography
    International Union of Crystallography Commission on Mathematical and Theoretical Crystallography Summer School on Mathematical and Theoretical Crystallography 27 April - 2 May 2008, Gargnano, Italy Group theory applied to crystallography Bernd Souvignier Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen The Netherlands 29 April 2008 2 CONTENTS Contents 1 Introduction 3 2 Elements of space groups 5 2.1 Linearmappings .................................. 5 2.2 Affinemappings................................... 8 2.3 AffinegroupandEuclideangroup . .... 9 2.4 Matrixnotation .................................. 12 3 Analysis of space groups 14 3.1 Lattices ....................................... 14 3.2 Pointgroups..................................... 17 3.3 Transformationtoalatticebasis . ....... 19 3.4 Systemsofnonprimitivetranslations . ......... 22 4 Construction of space groups 25 4.1 Shiftoforigin................................... 25 4.2 Determining systems of nonprimitivetranslations . ............. 27 4.3 Normalizeraction................................ .. 31 5 Space group classification 35 5.1 Spacegrouptypes................................. 35 5.2 Arithmeticclasses............................... ... 36 5.3 Bravaisflocks.................................... 37 5.4 Geometricclasses................................ .. 39 5.5 Latticesystems .................................. 41 5.6 Crystalsystems .................................. 41 5.7 Crystalfamilies ................................. .. 42 6 Site-symmetry
    [Show full text]
  • Crystal Symmetry Groups
    X-Ray and Neutron Crystallography rational numbers is a group under Crystal Symmetry Groups multiplication, and both it and the integer group already discussed are examples of infinite groups because they each contain an infinite number of elements. ymmetry plays an important role between the integers obey the rules of In the case of a symmetry group, in crystallography. The ways in group theory: an element is the operation needed to which atoms and molecules are ● There must be defined a procedure for produce one object from another. For arrangeds within a unit cell and unit cells example, a mirror operation takes an combining two elements of the group repeat within a crystal are governed by to form a third. For the integers one object in one location and produces symmetry rules. In ordinary life our can choose the addition operation so another of the opposite hand located first perception of symmetry is what that a + b = c is the operation to be such that the mirror doing the operation is known as mirror symmetry. Our performed and u, b, and c are always is equidistant between them (Fig. 1). bodies have, to a good approximation, elements of the group. These manipulations are usually called mirror symmetry in which our right side ● There exists an element of the group, symmetry operations. They are com- is matched by our left as if a mirror called the identity element and de- bined by applying them to an object se- passed along the central axis of our noted f, that combines with any other bodies.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • The Cubic Groups
    The Cubic Groups Baccalaureate Thesis in Electrical Engineering Author: Supervisor: Sana Zunic Dr. Wolfgang Herfort 0627758 Vienna University of Technology May 13, 2010 Contents 1 Concepts from Algebra 4 1.1 Groups . 4 1.2 Subgroups . 4 1.3 Actions . 5 2 Concepts from Crystallography 6 2.1 Space Groups and their Classification . 6 2.2 Motions in R3 ............................. 8 2.3 Cubic Lattices . 9 2.4 Space Groups with a Cubic Lattice . 10 3 The Octahedral Symmetry Groups 11 3.1 The Elements of O and Oh ..................... 11 3.2 A Presentation of Oh ......................... 14 3.3 The Subgroups of Oh ......................... 14 2 Abstract After introducing basics from (mathematical) crystallography we turn to the description of the octahedral symmetry groups { the symmetry group(s) of a cube. Preface The intention of this account is to provide a description of the octahedral sym- metry groups { symmetry group(s) of the cube. We first give the basic idea (without proofs) of mathematical crystallography, namely that the 219 space groups correspond to the 7 crystal systems. After this we come to describing cubic lattices { such ones that are built from \cubic cells". Finally, among the cubic lattices, we discuss briefly the ones on which O and Oh act. After this we provide lists of the elements and the subgroups of Oh. A presentation of Oh in terms of generators and relations { using the Dynkin diagram B3 is also given. It is our hope that this account is accessible to both { the mathematician and the engineer. The picture on the title page reflects Ha¨uy'sidea of crystal structure [4].
    [Show full text]
  • Lecture Notes
    Solid State Physics PHYS 40352 by Mike Godfrey Spring 2012 Last changed on May 22, 2017 ii Contents Preface v 1 Crystal structure 1 1.1 Lattice and basis . .1 1.1.1 Unit cells . .2 1.1.2 Crystal symmetry . .3 1.1.3 Two-dimensional lattices . .4 1.1.4 Three-dimensional lattices . .7 1.1.5 Some cubic crystal structures ................................ 10 1.2 X-ray crystallography . 11 1.2.1 Diffraction by a crystal . 11 1.2.2 The reciprocal lattice . 12 1.2.3 Reciprocal lattice vectors and lattice planes . 13 1.2.4 The Bragg construction . 14 1.2.5 Structure factor . 15 1.2.6 Further geometry of diffraction . 17 2 Electrons in crystals 19 2.1 Summary of free-electron theory, etc. 19 2.2 Electrons in a periodic potential . 19 2.2.1 Bloch’s theorem . 19 2.2.2 Brillouin zones . 21 2.2.3 Schrodinger’s¨ equation in k-space . 22 2.2.4 Weak periodic potential: Nearly-free electrons . 23 2.2.5 Metals and insulators . 25 2.2.6 Band overlap in a nearly-free-electron divalent metal . 26 2.2.7 Tight-binding method . 29 2.3 Semiclassical dynamics of Bloch electrons . 32 2.3.1 Electron velocities . 33 2.3.2 Motion in an applied field . 33 2.3.3 Effective mass of an electron . 34 2.4 Free-electron bands and crystal structure . 35 2.4.1 Construction of the reciprocal lattice for FCC . 35 2.4.2 Group IV elements: Jones theory . 36 2.4.3 Binding energy of metals .
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • Introduction to the Physical Properties of Graphene
    Introduction to the Physical Properties of Graphene Jean-No¨el FUCHS Mark Oliver GOERBIG Lecture Notes 2008 ii Contents 1 Introduction to Carbon Materials 1 1.1 TheCarbonAtomanditsHybridisations . 3 1.1.1 sp1 hybridisation ..................... 4 1.1.2 sp2 hybridisation – graphitic allotopes . 6 1.1.3 sp3 hybridisation – diamonds . 9 1.2 Crystal StructureofGrapheneand Graphite . 10 1.2.1 Graphene’s honeycomb lattice . 10 1.2.2 Graphene stacking – the different forms of graphite . 13 1.3 FabricationofGraphene . 16 1.3.1 Exfoliatedgraphene. 16 1.3.2 Epitaxialgraphene . 18 2 Electronic Band Structure of Graphene 21 2.1 Tight-Binding Model for Electrons on the Honeycomb Lattice 22 2.1.1 Bloch’stheorem. 23 2.1.2 Lattice with several atoms per unit cell . 24 2.1.3 Solution for graphene with nearest-neighbour and next- nearest-neighour hopping . 27 2.2 ContinuumLimit ......................... 33 2.3 Experimental Characterisation of the Electronic Band Structure 41 3 The Dirac Equation for Relativistic Fermions 45 3.1 RelativisticWaveEquations . 46 3.1.1 Relativistic Schr¨odinger/Klein-Gordon equation . ... 47 3.1.2 Diracequation ...................... 49 3.2 The2DDiracEquation. 53 3.2.1 Eigenstates of the 2D Dirac Hamiltonian . 54 3.2.2 Symmetries and Lorentz transformations . 55 iii iv 3.3 Physical Consequences of the Dirac Equation . 61 3.3.1 Minimal length for the localisation of a relativistic par- ticle ............................ 61 3.3.2 Velocity operator and “Zitterbewegung” . 61 3.3.3 Klein tunneling and the absence of backscattering . 61 Chapter 1 Introduction to Carbon Materials The experimental and theoretical study of graphene, two-dimensional (2D) graphite, is an extremely rapidly growing field of today’s condensed matter research.
    [Show full text]
  • COXETER GROUPS (Unfinished and Comments Are Welcome)
    COXETER GROUPS (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] October 10, 2018 1 2 Contents Preface 4 1 Regular Polytopes 7 1.1 ConvexSets............................ 7 1.2 Examples of Regular Polytopes . 12 1.3 Classification of Regular Polytopes . 16 2 Finite Reflection Groups 21 2.1 NormalizedRootSystems . 21 2.2 The Dihedral Normalized Root System . 24 2.3 TheBasisofSimpleRoots. 25 2.4 The Classification of Elliptic Coxeter Diagrams . 27 2.5 TheCoxeterElement. 35 2.6 A Dihedral Subgroup of W ................... 39 2.7 IntegralRootSystems . 42 2.8 The Poincar´eDodecahedral Space . 46 3 Invariant Theory for Reflection Groups 53 3.1 Polynomial Invariant Theory . 53 3.2 TheChevalleyTheorem . 56 3.3 Exponential Invariant Theory . 60 4 Coxeter Groups 65 4.1 Generators and Relations . 65 4.2 TheTitsTheorem ........................ 69 4.3 The Dual Geometric Representation . 74 4.4 The Classification of Some Coxeter Diagrams . 77 4.5 AffineReflectionGroups. 86 4.6 Crystallography. .. .. .. .. .. .. .. 92 5 Hyperbolic Reflection Groups 97 5.1 HyperbolicSpace......................... 97 5.2 Hyperbolic Coxeter Groups . 100 5.3 Examples of Hyperbolic Coxeter Diagrams . 108 5.4 Hyperbolic reflection groups . 114 5.5 Lorentzian Lattices . 116 3 6 The Leech Lattice 125 6.1 ModularForms ..........................125 6.2 ATheoremofVenkov . 129 6.3 The Classification of Niemeier Lattices . 132 6.4 The Existence of the Leech Lattice . 133 6.5 ATheoremofConway . 135 6.6 TheCoveringRadiusofΛ . 137 6.7 Uniqueness of the Leech Lattice . 140 4 Preface Finite reflection groups are a central subject in mathematics with a long and rich history. The group of symmetries of a regular m-gon in the plane, that is the convex hull in the complex plane of the mth roots of unity, is the dihedral group of order 2m, which is the simplest example of a reflection Dm group.
    [Show full text]
  • Pose Estimation for Objects with Rotational Symmetry
    Pose Estimation for Objects with Rotational Symmetry Enric Corona, Kaustav Kundu, Sanja Fidler Abstract— Pose estimation is a widely explored problem, enabling many robotic tasks such as grasping and manipulation. In this paper, we tackle the problem of pose estimation for objects that exhibit rotational symmetry, which are common in man-made and industrial environments. In particular, our aim is to infer poses for objects not seen at training time, but for which their 3D CAD models are available at test time. Previous X 2 X 1 X 2 X 1 work has tackled this problem by learning to compare captured Y ∼ 2 Y ∼ 2 Y ∼ 2 Y ∼ 2 views of real objects with the rendered views of their 3D CAD Z ∼ 6 Z ∼ 1 Z ∼ Z ∼ 1 ∼ ∼ ∼ ∞ ∼ models, by embedding them in a joint latent space using neural Fig. 1. Many industrial objects such as various tools exhibit rotational networks. We show that sidestepping the issue of symmetry symmetries. In our work, we address pose estimation for such objects. in this scenario during training leads to poor performance at test time. We propose a model that reasons about rotational symmetry during training by having access to only a small set of that this is not a trivial task, as the rendered views may look symmetry-labeled objects, whereby exploiting a large collection very different from objects in real images, both because of of unlabeled CAD models. We demonstrate that our approach different background, lighting, and possible occlusion that significantly outperforms a naively trained neural network on arise in real scenes.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry 1 I. WHAT IS SYMMETRY AND WHY IT IS IMPORTANT? Some object are ”more symmetrical” than others. A sphere is more symmetrical than a cube because it looks the same after rotation through any angle about the diameter. A cube looks the same only if it is rotated through certain angels about specific axes, such as 90o, 180o, or 270o about an axis passing through the centers of any of its opposite faces, or by 120o or 240o about an axis passing through any of the opposite corners. Here are also examples of different molecules which remain the same after certain symme- try operations: NH3, H2O, C6H6, CBrClF . In general, an action which leaves the object looking the same after a transformation is called a symmetry operation. Typical symme- try operations include rotations, reflections, and inversions. There is a corresponding symmetry element for each symmetry operation, which is the point, line, or plane with respect to which the symmetry operation is performed. For instance, a rotation is carried out around an axis, a reflection is carried out in a plane, while an inversion is carried our in a point. We shall see that we can classify molecules that possess the same set of symmetry ele- ments, and grouping together molecules that possess the same set of symmetry elements. This classification is very important, because it allows to make some general conclusions about molecular properties without calculation. Particularly, we will be able to decide if a molecule has a dipole moment, or not and to know in advance the degeneracy of molecular states.
    [Show full text]