We Will Defeat Sanctions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Tragedy of Hamlet
THE TRAGEDY OF HAMLET THE WORKS OF SHAKESPEARE THE TRAGEDY OF HAMLET EDITED BY EDWARD DOWDEN n METHUEN AND CO. 36 ESSEX STREET: STRAND LONDON 1899 9 5 7 7 95 —— CONTENTS PAGE Introduction ix The Tragedy of Hamlet i Appendix I. The "Travelling" of the Players. 229 Appendix II.— Some Passages from the Quarto of 1603 231 Appendix III. Addenda 235 INTRODUCTION This edition of Hamlet aims in the first place at giving a trustworthy text. Secondly, it attempts to exhibit the variations from that text which are found in the primary sources—the Quarto of 1604 and the Folio of 1623 — in so far as those variations are of importance towards the ascertainment of the text. Every variation is not recorded, but I have chosen to err on the side of excess rather than on that of defect. Readings from the Quarto of 1603 are occa- sionally given, and also from the later Quartos and Folios, but to record such readings is not a part of the design of this edition. 1 The letter Q means Quarto 604 ; F means Folio 1623. The dates of the later Quartos are as follows: —Q 3, 1605 161 1 undated 6, For ; Q 4, ; Q 5, ; Q 1637. my few references to these later Quartos I have trusted the Cambridge Shakespeare and Furness's edition of Hamlet. Thirdly, it gives explanatory notes. Here it is inevitable that my task should in the main be that of selection and condensation. But, gleaning after the gleaners, I have perhaps brought together a slender sheaf. -
Reinhold, Renee 24016 Thompson.Pdf (578.0Kb)
Renee J. Reinhold Capstone Abstract Technology In Education The Teacher Education Program at Northern Illinois University is typically divided into two sections: the methods courses/teacher preparation semesters, and the actual sixteen-week student teaching experience. This unintentional separation often leaves the students in the prepatory semesters apprehensive about what is actually going to ,happen when they are student teaching. The student teachers themselves also feel somewhat alienated from the program due to being off-campus. This research project presents a model of how to connect the two divided segments of the Elementary Education program through telecommunica~s. Students from CIEE 344 were used to complete the model. These pre~ semester students searched tools available on the internet to coincide with a thematic unit I was planning for my third grade student teaching experience. In the end, this model grew into not only using the information sent via electronic mail, but also evolved into a technological experience for the children. The third graders learned the basic searching mechanisms on the internet to complete cooperative reports on planets which were shared with the class. ~, HONORS 1HESIS ABSTRAcr nmsIS SUBMISSION FORM Aln1IOR:Renee Jean Reinhold THESISTITLE: "Technology in Education ADVISOR: Dr. Tom Thompson ADVISOR'SDEPT: Curriculum s Inst. DISCIP~: Science Curriculum and Instruction YEAR: 1996 PAGE LENGTH: BmLIOGRAPHY: yes ILLUSTRATED: no PUBUSHED (YES OR NO): no LIST PUBLICAnON: no COPIES AVAllABLE (HARD COPY. MICROFILM. DISKETIE): 4 ABSTRACf (100-200 WORDS): See Attached AlAY 10 19!6 Student name:.~R_e.u.n_e_e--W.J..•.,--Aolo"""''''''''~~-= _ Approved by: Department of: Curriculum and Instruction Date: April 29, 1996 / Technology In Education I. -
The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring. -
Abstracts of the 50Th DDA Meeting (Boulder, CO)
Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011). -
This Sporting Life: Sports and Body Culture in Modern Japan William W
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale CEAS Occasional Publication Series Council on East Asian Studies 2007 This Sporting Life: Sports and Body Culture in Modern Japan William W. Kelly Yale University Atsuo Sugimoto Kyoto University Follow this and additional works at: http://elischolar.library.yale.edu/ceas_publication_series Part of the Asian History Commons, Asian Studies Commons, Cultural History Commons, Japanese Studies Commons, Social and Cultural Anthropology Commons, and the Sports Studies Commons Recommended Citation Kelly, William W. and Sugimoto, Atsuo, "This Sporting Life: Sports and Body Culture in Modern Japan" (2007). CEAS Occasional Publication Series. Book 1. http://elischolar.library.yale.edu/ceas_publication_series/1 This Book is brought to you for free and open access by the Council on East Asian Studies at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in CEAS Occasional Publication Series by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. This Sporting Life Sports and Body Culture in Modern Japan j u % g b Edited by William W. KELLY With SUGIMOTO Atsuo YALE CEAS OCCASIONAL PUBLICATIONS VOLUME 1 This Sporting Life Sports and Body Culture in Modern Japan yale ceas occasional publications volume 1 © 2007 Council on East Asian Studies, Yale University All rights reserved Printed in the United States of America No part of this book may be used or reproduced in any manner whatsoever without written permis- sion. No part of this book may be stored in a retrieval system or transmitted in any form or by any means including electronic electrostatic, magnetic tape, mechanical, photocopying, recording, or otherwise without the prior permission in writing of the publisher. -
2010 FIFA World Cup South Africa™ Teams
2010 FIFA World Cup South Africa™ Teams Statistical Kit 1 (To be used in conjunction with Match Kit) Last update: 5 June 2010 Next update: 10 June 2010 Contents Participants 2010 FIFA World Cup South Africa™..........................................................................................3 Global statistical overview: 32 teams at a glance..........................................................................................4 Algeria (ALG) ...................................................................................................................................................4 Argentina (ARG) ..............................................................................................................................................8 Australia (AUS)...............................................................................................................................................12 Brazil (BRA) ....................................................................................................................................................16 Cameroon (CMR)...........................................................................................................................................20 Chile (CHI) .....................................................................................................................................................23 Côte d’Ivoire (CIV)..........................................................................................................................................26 -
By: Maddie S. It Takes 84 Earth Years for It to Complete One Orbit
Uranus By: Maddie S. It takes 84 earth years for it to complete one orbit. It's radius is 400.1 miles. At its closest it orbits Uranus appeared to be 1.7 billion miles away. At its only a blue-green ball with farthest it orbits 1.9 billion miles a smooth surface. away. Uranus is too far away to see easily without a telescope. Uranus is the seventh planet Sometimes it is just bright from the sun. It orbits farther enough to see with the naked out, along Uranus's outer eye. ring. Uranus' high powered telescope at the Keck Observatory in Hawaii creates detailed images of Uranus. Each of Uranus' hemispheres receives 42 earth years of sunlight. Uranus' rings are a mix of large chunks of matter and fine particles of dust. One spacecraft has managed to visit Uranus but it took a little creativity to get it there. The rings orbiting Uranus are thinner than those orbiting other planets. Uranus has ten moons. Ariel is Uranus's brightest moon. The moons names are Juliet, Puck Cordelia, Ophelia, Bianca, Desdemona, Portia, Rosalind, Cressida, and Belinda. Umbriel is the darkest moon on Uranus. Uranus Uranus is so far away that for about 200 years scientists could not make out how quickly it turns on its axis. Most planets turn on their axis in such a way that they are almost upright as they move about the sun. It is the only planet with an axis tipped that way, so some think of it as a sideways planet. Like most planets, Uranus has its own natural satellites, or moons. -
Uranian and Saturnian Satellites in Comparison
Compara've Planetology between the Uranian and Saturnian Satellite Systems - Focus on Ariel Oberon Umbriel Titania Ariel Miranda Puck Julie Cas'llo-Rogez1 and Elizabeth Turtle2 1 – JPL, California Ins'tute of Technology 2 – APL, John HopKins University 1 Objecves Revisit observa'ons of Voyager in the Uranian system in the light of Cassini-Huygens’ results – Constrain planetary subnebula, satellites, and rings system origin – Evaluate satellites’ poten'al for endogenic and geological ac'vity Uranian Satellite System • Large popula'on • System architecture almost similar to Saturn’s – “small” < 200 Km embedded in rings – “medium-sized” > 200 Km diameter – No “large” satellite – Irregular satellites • Rela'vely high albedo • CO2 ice, possibly ammonia hydrates Daphnis in Keeler gap Accre'on in Rings? Charnoz et al. (2011) Charnoz et al., Icarus, in press) Porco et al. (2007) ) 3 Ariel Titania Oberon Density(kg/m Umbriel Configuraon determined by 'dal interac'on with Saturn Configura'on determined by 'dal interac'on within the rings Distance to Planet (Rp) Configuraon determined by Titania Oberon Ariel 'dal interac'on with Saturn Umbriel Configura'on determined by 'dal interac'on within the rings Distance to Planet (Rp) Evidence for Ac'vity? “Blue” ring found in both systems Product of Enceladus’ outgassing ac'vity Associated with Mab in Uranus’ system, but source if TBD Evidence for past episode of ac'vity in Uranus’ satellite? Saturn’s and Uranus’ rings systems – both planets are scaled to the same size (Hammel 2006) Ariel • Comparatively low -
SPK Tutorial
NAIF Navigation Ancillary Information Facility SPK: The SPICE Ephemeris Subsystem A Tutorial April 1998 Prologue NAIF Navigation Ancillary Information Facility This document provides a brief tutorial for the SPICE ephemeris subsystem–the so-called SPK files and the SPK subroutine family found in the NAIF Toolkit SPICELIB library. Caution: the examples used are not necessarily appropriate solutions to any particular application, and not all relevant application design issues are discussed. See the last page of this tutorial for a listing of references for further information. SPK File Contents NAIF Navigation Ancillary Information Facility • An SPK file holds ephemeris data for any number/types of solar system objects – “Ephemeris data” ⇒ position and velocity of one object relative to another – “Solar system object” ⇒ any spacecraft, planet (mass center or barycenter), satellite, comet or asteroid. Also, the sun and the solar system barycenter. Can also be a designated point on an object (e.g. a DSN station). • A single SPK file can hold data for just one, or for any combination of objects – Examples: » Cassini spacecraft » MGS orbiter, M98 lander, Mars, Phobos and the sun SPICE Ephemeris Objects NAIF Navigation Ancillary Information Facility Z COMET • SPACECRAFT SUN MASS CENTER • PLANET Y BARYCENTER SOLAR OBJECT ON PLANET SURFACE SYSTEM CENTER BARYCENTER OF FIGURE • •• PLANET CENTER X OF MASS ASTEROID SATELLITE Examples of Generic SPK Files Obtained from NAIF NAIF Navigation Ancillary Information Facility DExxx JUPxxx + DE zzz Planetary -
02. Solar System (2001) 9/4/01 12:28 PM Page 2
01. Solar System Cover 9/4/01 12:18 PM Page 1 National Aeronautics and Educational Product Space Administration Educators Grades K–12 LS-2001-08-002-HQ Solar System Lithograph Set for Space Science This set contains the following lithographs: • Our Solar System • Moon • Saturn • Our Star—The Sun • Mars • Uranus • Mercury • Asteroids • Neptune • Venus • Jupiter • Pluto and Charon • Earth • Moons of Jupiter • Comets 01. Solar System Cover 9/4/01 12:18 PM Page 2 NASA’s Central Operation of Resources for Educators Regional Educator Resource Centers offer more educators access (CORE) was established for the national and international distribution of to NASA educational materials. NASA has formed partnerships with universities, NASA-produced educational materials in audiovisual format. Educators can museums, and other educational institutions to serve as regional ERCs in many obtain a catalog and an order form by one of the following methods: States. A complete list of regional ERCs is available through CORE, or electroni- cally via NASA Spacelink at http://spacelink.nasa.gov/ercn NASA CORE Lorain County Joint Vocational School NASA’s Education Home Page serves as a cyber-gateway to informa- 15181 Route 58 South tion regarding educational programs and services offered by NASA for the Oberlin, OH 44074-9799 American education community. This high-level directory of information provides Toll-free Ordering Line: 1-866-776-CORE specific details and points of contact for all of NASA’s educational efforts, Field Toll-free FAX Line: 1-866-775-1460 Center offices, and points of presence within each State. Visit this resource at the E-mail: [email protected] following address: http://education.nasa.gov Home Page: http://core.nasa.gov NASA Spacelink is one of NASA’s electronic resources specifically devel- Educator Resource Center Network (ERCN) oped for the educational community. -
Uranus, Neptune and Pluto
Modern Astronomy: Voyage to the Planets Lecture 8 The outer planets: Uranus, Neptune and Pluto University of Sydney Centre for Continuing Education Autumn 2005 Tonight: • Uranus • Neptune • Pluto and Chiron • The Voyager missions continue (or not?) The only mission to fly to the outer planets was Voyager 2. After leaving Saturn in August 1981, Voyager arrived at Uranus in January 1986, then flew on past Neptune in August 1989. It then swung down below the ecliptic and headed into interstellar space. Uranus Uranus was discovered in 1781 by William Herschel, musician and amateur astronomer. Herschel became the first person in recorded history to discover a new planet, at a stroke doubling the size of the known Solar System. In fact, Uranus had been detected, mistaken for a star, on 22 occasions during the preceding century, including by John Flamsteed, the first Astronomer Royal, who called it 34 Tauri. Basic facts Uranus Uranus/Earth Mass 86.83 x 1024 kg 14.536 Radius 25,559 km 4.007 Mean density 1.270 g/cm3 0.230 Gravity (eq., 1 bar) 8.87 m/s2 0.905 Semi-major axis 2872 x 106 km 19.20 Period 30 685.4 d 84.011 Orbital inclination 0.772o - Orbital eccentricity 0.0457 2.737 Axial tilt 97.8o 4.173 Rotation period –17.24 h 0.720 Length of day 17.24 h 0.718 Uranus shows an almost totally featureless disk. Even Voyager 2 at a distance of 80,000 km saw few distinguishable features. Uranus’ atmosphere is made up of 83% hydrogen, 15% helium, 2% methane and small amounts of acetylene and other hydrocarbons. -
Chapter Xii Individual Membership by Commission
Transactions IAU, Volume XXVIIB Proc. XXVII IAU General Assembly, August 2009 c 2010 International Astronomical Union Ian F. Corbett, ed. DOI: 00.0000/X000000000000000X CHAPTER XII INDIVIDUAL MEMBERSHIP BY COMMISSION 419 420 CHAPTER XII Division I Commission 4 Ephemerides President Kaplan, George Vice-President Hohenkerk, Catherine Organizing Committee Arlot, Jean-Eudes Folkner, William Urban, Sean Bangert, John Lara, Martin Vondr´ak,Jan Bell, Steven Pitjeva, Elena Members Abalakin, Viktor Hilton, James Olivier, Enrico Ahn, Youngsook Howard, Sethanne Reasenberg, Robert Aoki, Shinko Ilyas, Mohammad Rodin, Alexander Arakida, Hideyoshi Ivantsov, Anatoliy Rossello, Gaspar Bandyopadhyay, A. Janiczek, Paul Salazar, Antonio Capitaine, Nicole Johnston, Kenneth Schwan, Heiner Chapront, Jean Kinoshita, Hiroshi Seidelmann, P. Chapront-Touze, Michelle Klepczynski, William Shapiro, Irwin Coma, Juan Kolaczek, Barbara Shiryaev, Alexander Cooper, Nicholas Krasinsky, George Shuygina, Nadia de Greiff, J. Laskar, Jacques Simon, Jean-Louis Di, Xiaohua Lehmann, Marek S^oma,Mitsuru Dickey, Jean Lieske, Jay Standish, E. Duncombe, Raynor Lopez Moratalla, Teodoro Thuillot, William Dunham, David Lukashova, Marina Ting, Yeou-Tswen Eroshkin, Georgij Madsen, Claus Vilinga, Jaime Fiala, Alan Majid, Abdul Wang, Xiao-bin Fienga, Agn`es Mallamaci, Claudio Wielen, Roland Fominov, Aleksandr Emelyanenko, Yoshimitsu Wilkins, George Fu, Yanning Morrison, Leslie Williams, Carol Giorgini, Jon Mueller, Ivan Williams, James Glebova, Nina Newhall, X. Winkler, Gernot Harper, David