Innovative Concepts and Methods in Fire Danger Estimation
Total Page:16
File Type:pdf, Size:1020Kb
European Association of Remote Sensing Laboratories Special Interest Group on Forest Fires Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) 4th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Innovative Concepts and Methods in Fire Danger Estimation Emilio Chuvieco, Pilar Martín and Chris Justice (Editors) Ghent University Ghent – Belgium, 5-7 June 2003 Emilio Chuvieco, Pilar Martín and Chris Justice (2003): Proceedings of the 4th International Workshop on Remote Sensing and GIS applications to Forest Fire Management: Innovative concepts and methods in fire danger estimation. Ghent University – EARSeL, 233 pages, ISBN: 2-908885-25-5 Front Cover: Shaded representation of DSM (Digital Surface Model) from the test site in a Swiss National Park derived from lidar measurements. From Morsdorf et al., included in this volume. CONTENTS Foreword Session 1. Fuel moisture content estimation ◊ Application of radiative transfer models to moisture content estimation and burned land mapping. S. Jacquemoud and S.L. Ustin....................................................................................................... 8 ◊ Combining NDVI and Surface Temperature for the estimation of fuel moisture content in forest fire danger assessment. E. Chuvieco, D. Cocero, P. Martín, J. Martínez, J. de la Riva & F. Pérez ................................. 18 ◊ Sensitivity of remotely sensed spectral reflectance to variation in fuel moisture content F.M. Danson & P. Bowyer .......................................................................................................... 23 ◊ Fuel Moisture Content Estimation using Terra Modis sensor: a first approach in South- Eastern France. F. Dauriac, M. Deshayes & P. Coing .......................................................................................... 27 ◊ Use of optical, thermal infrared and radar remote sensing for monitoring fuel moisture conditions. B. Leblon, K. Abbott, L. Gallant & G. Strickland, M. Alexander............................................... 33 ◊ Contribution of image treatment and analysis in study of vegetal flammability. A.Madoui, M. Bouafia, D. Alatou............................................................................................... 38 ◊ The GOFC/GOLD-Fire Program: a mechanism for international coordination. Chris Justice, Ivan Csiszar, Johann Goldammer, Bryan Lee, Emilio Chuvieco.......................... 42 ◊ The LANDFIRE Project: Developing critical spatial data and modeling tools for implementing the USA National Fire Plan and the Cohesive Strategy. Robert E. Keane........................................................................................................................... 49 ◊ The European Forest Fire Information System (EFFIS). J. San-Miguel-Ayanz , P. Barbosa, G. Schmuck, G. Libertà....................................................... 51 Session 2. Fuel type mapping ◊ Deriving canopy structure for fire modeling from Lidar. B. Peterson, P. Hyde, M. Hofton, R. Dubayah, J. Fites-Kaufman, C. Hunsaker and J. B. Blair. 56 ◊ Hyperspectral technologies for wildfire fuel mapping. D.A. Roberts & P.E. Dennison....................................................................................................66 ◊ Scaling-up based on Radiative Transfer Modeling in a Pine (Pinus Montana ssp. arborea) dominated canopy for forest fire fuel properties mapping using Imaging Spectrometer Data. B. Kötz, M. Schaepman, F. Morsdorf, K. Itten, P. Bowyer, B. Allgöwer................................... 76 ◊ Generation of crown bulk density for Pinus sylvestris from LIDAR. D. Riaño & E. Chuvieco, S. Condés, J. González Matesanz....................................................... 80 ◊ Deriving Geometric Properties of Single Trees from High Resolution Airborne Laser Scanning Data. Felix Morsdorf, Erich Meier, Benjamin Koetz, Klaus Itten, B. Allgöwer .................................. 85 Session 3. Fire risk mapping methods ◊ Human fire causes: a challenge for modeling. V. Leone & R. Lovregli............................................................................................................... 90 ◊ The use of the Nearest Neighbour Method to predict forest fires. A. Felber & P. Bartelt................................................................................................................ 100 ◊ Model for Forest Fire Risk Estimation in Estado Miranda (Venezuela). L.G. García-Montero, C. Pascual, D. Bravo and J. Urbano & J. García-Cañete....................... 104 ◊ Mapping forest fire prone areas in Lebanon. T. Masri, M. Khawlie, G. Faour & M. Awad............................................................................ 109 ◊ Mapping forest fire occurrence at a regional scale. J. de la Riva, F. Pérez & N. Lana-Renault & N. Koutsias......................................................... 113 ◊ An Empirical Fire Danger Model for Tropical Humid Areas (East Kalimantan, Indonesia). G. Ruecker................................................................................................................................. 118 ◊ Fire Threat Analysis in West Kutai District of East Kalimantan, Indonesia. Solichin, J. G. Goldammer & A. A. Hoffmann & G. Rücker.................................................... 122 ◊ Multicriteria Decision Analysis for Forest Fire Risk Assessment in Galicia, Spain. J. Varela, J. E. Arias, I. Sordo & A. Tarela ............................................................................... 127 Session 4. Burned land mapping ◊ Fire regimes in protected areas of Sub-Saharan Africa, derived from the GBA2000 dataset. I. Palumbo, J-M. Grégoire, L. Boschetti & H. Eva ................................................................... 135 ◊ Assessing vegetation condition through biomass burning smoke by applying the Aerosol-Free Vegetation Index (AFRI) on SPOT-VEGETATION and TERRA-EOS MODIS images. E. Ben-Ze’ev, A. Karnieli, Y. Kaufman.................................................................................... 146 ◊ Hemispheric fire activity characterization from the analysis of global burned surfaces time series (1982-1993). C. Carmona-Moreno & J.P. Malingreau, M. Antonovski, V. Buchshtaber & V. Pivovarov .... 150 ◊ Assessment of the potential of the SAC-C/multispectral medium resolution scanner (MMRS) imagery for mapping burned areas. M. García & E. Chuvieco .......................................................................................................... 154 ◊ Identifying burnt areas in the Siberian boreal forests between 1990 and 2000 using SPOT VEGETATION. France Gerard, Charles George and Heiko Balzter ................................................................... 160 ◊ Evaluation of RADARSAT-1 data for identification of burnt areas in Southern Europe. Meritxell Gimeno, Jesus San-Miguel Ayanz............................................................................. 165 ◊ Object-oriented image analysis for burned area mapping using NOAA-AVHRR imagery in Creus Cape, Spain. I. Z. Gitas & G. H. Mitri, E. Chuvieco & G. Ventura ............................................................... 170 ◊ Creating a Forest Fire Database for the Far East of Asia using NOAA/AVHRR observation. J. Kučera & Y. Yasuoka, D.G. Dye........................................................................................... 175 ◊ A performance evaluation of a burned area object-oriented classification model when applied to topographically and non-topographically corrected TM imagery. G.H. Mitri & I.Z. Gitas.............................................................................................................. 178 ◊ Active fire recognition by the small satellite on Bi-spectral Infrared Detection (BIRD). D. Oertel, K. Briess, E. Lorenz, W. Skrbek, & B. Zhukov........................................................ 183 ◊ Analysis of plant community regeneration in burnt areas by multitemporal Landsat TM and field data. Fernando Pérez-Cabello & Juan de la Riva............................................................................... 188 ◊ Map of burnt zones in Asturias in the period 1991-2001 created from Landsat-TM Images. C. Recondo 2, E. Wozniak2 & C. S. Pérez-Morandeira2 ........................................................... 193 ◊ Validation of two MODIS single-scene fire products for mapping burned area: hot spots and NIR spectral test burn scars. J.M. Salmon, W.M. Hao, M.E. Miller & B. Nordgren, Y. Kaufman & R. Li........................... 197 ◊ Assessing the accuracy of burned area maps made with moderate to coarse spatial resolution data: improving reliability and intercomparability. S. Trigg, S. Flasse, J. Le Roux .................................................................................................. 202 ◊ Multitemporal compositing techniques for burned land mapping. G. Ventura , E. Chuvieco & P. Martín ...................................................................................... 206 ◊ Monthly burned area and forest fire carbon emission estimates for the russian federation from SPOT Vegetation burned area mapping. M.J.Wooster & Y-H. Zhang .......................................................................................................... 211 ◊ Improving satellite-derived fire products with Airborne Thermal Imaging Systems: detection, calibration and rapid data collection and delivery systems. V.G. Ambrosia, C.A. Hlavka, J.A. Brass & S.S. Wegener, S.W. Buechel ............................... 215 ◊ Burn severity detection enhancement