7.11 Ntruencrypt As a Lattice Cryptosystem

Total Page:16

File Type:pdf, Size:1020Kb

7.11 Ntruencrypt As a Lattice Cryptosystem 7.11. NTRUEncrypt as a Lattice Cryptosystem 425 Returning to Example 7.56, we see that the expected number of decryption keys in T (84, 83) for N = 251 and q = 257 is 251 3 251 167 ≈ 2−1222.02. (7.45) 257 84 83 Of course, if h(x) is an NTRUEncrypt public key, then there do exist de- cryption keys, since we built the decryption key f(x) into the construction of h(x). But the probability calculation (7.45) makes it unlikely that there are any additional decryption keys beyond f(x) and its rotations. 7.11 NTRUEncrypt as a Lattice Cryptosystem In this section we explain how NTRU key recovery can be formulated as a shortest vector problem in a certain special sort of lattice. Exercise 7.36 sketches a similar description of NTRU plaintext recovery as a closest vector problem. 7.11.1 The NTRU Lattice Let N−1 h(x)=h0 + h1x + ···+ hN−1x NTRU be an NTRUEncrypt public key. The NTRU lattice Lh associated to h(x) is the 2N-dimensional lattice spanned by the rows of the matrix ⎛ ⎞ 10··· 0 h0 h1 ··· hN−1 ⎜ ⎟ ⎜ 01··· 0 hN−1 h0 ··· hN−2 ⎟ ⎜ ⎟ ⎜ . .. .. ⎟ ⎜ . ⎟ ⎜ ⎟ NTRU ⎜ 00··· 1 h1 h2 ··· h0 ⎟ Mh = ⎜ ⎟ . ⎜ 00··· 0 q 0 ··· 0 ⎟ ⎜ ⎟ ⎜ 00··· 0 0 q ··· 0 ⎟ ⎜ . ⎟ ⎝ . .. .. ⎠ 00··· 0 00··· q NTRU Notice that Mh is composed of four N-by-N blocks: Upper left block = Identity matrix, Lower left block = Zero matrix, Lower right block = q times the identity matrix, Upper right block = Cyclical permutations of the coefficients of h(x). 426 7. Lattices and Cryptography It is often convenient to abbreviate the NTRU matrix as I h M NTRU = , (7.46) h 0 qI where we view (7.46) as a 2-by-2 matrix with coefficients in R. We are going to identify each pair of polynomials N−1 N−1 a(x)=a0 + a1x + ···+ aN−1x and b(x)=b0 + b1x + ···+ bN−1x in R with a 2N-dimensional vector 2N (a, b)=(a0,a1,...,aN−1,b0,b1,...,bN−1) ∈ Z . We now suppose that the NTRUEncrypt public key h(x) was created using the private polynomials f(x)andg(x) and compute what happens when we multiply the NTRU matrix by a carefully chosen vector. Proposition 7.59. Assuming that f(x) h(x) ≡ g(x)(modq),letu(x) ∈ R be the polynomial satisfying f(x) h(x)=g(x)+qu(x). (7.47) Then NTRU (f, −u)Mh =(f, g), (7.48) NTRU so the vector (f, g) is in the NTRU lattice Lh . Proof. It is clear that the first N coordinates of the product (7.48)arethe NTRU vector f, since the left-hand side of Mh is the identity matrix atop the zero NTRU matrix. Next consider what happens when we multiply the column of Mh whose top entry is hk by the vector (f, −u). We get the quantity hkf0 + hk−1f1 + ···+ hk+1fN−1 − quk, which is the kth entry of the vector f(x) h(x) − qu(x). From (7.47), this is the kth entry of the vector g, so the second N coordinates of the product (7.48) form the vector g. Finally, (7.48) says that we can get the vector (f, g)by NTRU taking a certain linear combination of the rows of Mh . Hence (f, g) ∈ NTRU Lh . Remark 7.60. Using the abbreviation (7.46) and multiplying 2-by-2 matrices having coefficients in R, the proof of Proposition 7.59 becomes the succinct computation 1 h (f, −u) =(f, f h − qu)=(f, g). 0 q Proposition 7.61. Let (N,p,q,d) be NTRUEncrypt parameters, where for simplicity we will assume that p =3 and d ≈ N/3 and q ≈ 6pd ≈ 2pN. NTRU Let Lh be an NTRU lattice associated to the private key (f, g). 7.11. NTRUEncrypt as a Lattice Cryptosystem 427 LNTRU qN (a) det( h )=√ . √ (b) (f, g) ≈ 4d ≈ 4N/3 ≈ 1.155 N. (c) The Gaussian heuristic predicts that the shortest nonzero vector in the NTRU lattice has length NTRU σ Lh ≈ Nq/πe ≈ 0.838N. Hence if N is large, then there is a high probability that the shortest nonzero NTRU vectors in Lh are (f, g) and its rotations. Further, (f, g) . ≈ 1√38, σ(L) N √ so the vector (f, g) is a factor of O(1/ N ) shorter than predicted by the Gaussian heuristic. NTRU Proof. (a) Proposition 7.20 says that det(Lh ) is equal to the determinant NTRU of the matrix Mh . The matrix is upper triangular, so its determinant is the product of the diagonal entries, which equals qN . (b) Each of f and g has (approximately) d coordinates equal to 1 and d coordinates equal to −1. NTRU (c) Using (a) and keeping in mind that Lh has dimension 2N,weestimate the Gaussian expected shortest length using the formula (7.21), 2N Nq 6 σ LNTRU = (det L)1/2N = ≈ N. h 2πe πe πe 7.11.2 Quantifying the Security of an NTRU Lattice Proposition 7.61 says that Eve can determine Alice’s private NTRU key if she NTRU can find a shortest vector in the NTRU lattice Lh . Thus the security of NTRU NTRUEncrypt depends at least on the difficulty of solving SVP in Lh . NTRU More generally, if Eve can solve apprSVP in Lh to within a factor of 1 approximately N for some < 2 , then the short vector that she finds will probably serve as a decryption key. This leads to the question of how to estimate the difficulty of finding a short, or shortest, vector in an NTRU lattice. The LLL algorithm that we describe in Sect. 7.13.2 runs in polynomial time and solves apprSVP to within N NTRU a factor of 2 , but if N is large, LLL does not find very small vectors in Lh . In Sect. 7.13.4 we describe a generalization of the LLL algorithm, called BKZ- LLL, that is able to find very small vectors. The BKZ-LLL algorithm includes a blocksize parameter β, and it solves apprSVP to within a factor of β2N/β, but its running time is exponential in β. 428 7. Lattices and Cryptography Unfortunately, the operating characteristics of standard lattice reduction algorithms such as BKZ-LLL are not nearly as well understood as are the operating characteristics of sieves, the index calculus, or Pollard’s ρ method. This makes it difficult to predict theoretically how well a lattice reduction algorithm will perform on any given class of lattices. Thus in practice, the security of a lattice-based cryptosystem such as NTRUEncrypt must be de- termined experimentally. Roughly, one takes a sequence of parameters (N,q,d)inwhichN grows and such that certain ratios involving N, q,andd are held approximately constant. For each set of parameters, one runs many experiments using BKZ-LLL with NTRU increasing block size β until the algorithm finds a short vector in Lh . Then one plots the logarithm of the average running time against N, verifies that the points approximately lie on line, and computes the best-fitting line log(Running Time) = AN + B. (7.49) After doing this for many values of N up to the point at which the com- putations become infeasible, one can use the line (7.49) to extrapolate the expected amount of time it would take to find a private key vector in an NTRU NTRU lattice Lh for larger values of N. Such experiments suggest that values of N in the range from 250 to 1000 yield security levels comparable to currently secure implementations of RSA, Elgamal, and ECC. Details of such experiments are described in [102]. Remark 7.62.√Proposition 7.61 says that the short target vectors in an NTRU lattice are O( N ) shorter than predicted by the Gaussian heuristic. Theoret- ically and experimentally, it is true that if a lattice of dimension n has a vector that is extremely small, say O(2n) shorter than the Gaussian prediction, then lattice reduction algorithms such as LLL and its variants are very good at finding the tiny vector. It is a natural and extremely interesting question to ask whether vectors that are only O(n) shorter than the Gaussian prediction might similarly be easier to find. At this time, no one knows the answer to this question. 7.12 Lattice-Based Digital Signature Schemes We have already seen digital signatures schemes whose security depends on the integer factorization problem (Sect. 4.2) and on the discrete logarithm prob- lem in the multiplicative group (Sect. 4.3) or in an elliptic curve (Sect. 6.4.3). In this section we briefly discuss how digital signature schemes may be con- structed from hard lattice problems. 7.12.1 The GGH Digital Signature Scheme It is easy to convert the CVP idea underlying GGH encryption into a lattice- based digital signature scheme. Samantha knows a good (i.e., short and.
Recommended publications
  • A Public-Key Cryptosystem Based on Discrete Logarithm Problem Over Finite Fields 퐅퐩퐧
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. III (Jan - Feb. 2015), PP 01-03 www.iosrjournals.org A Public-Key Cryptosystem Based On Discrete Logarithm Problem over Finite Fields 퐅퐩퐧 Saju M I1, Lilly P L2 1Assistant Professor, Department of Mathematics, St. Thomas’ College, Thrissur, India 2Associate professor, Department of Mathematics, St. Joseph’s College, Irinjalakuda, India Abstract: One of the classical problems in mathematics is the Discrete Logarithm Problem (DLP).The difficulty and complexity for solving DLP is used in most of the cryptosystems. In this paper we design a public key system based on the ring of polynomials over the field 퐹푝 is developed. The security of the system is based on the difficulty of finding discrete logarithms over the function field 퐹푝푛 with suitable prime p and sufficiently large n. The presented system has all features of ordinary public key cryptosystem. Keywords: Discrete logarithm problem, Function Field, Polynomials over finite fields, Primitive polynomial, Public key cryptosystem. I. Introduction For the construction of a public key cryptosystem, we need a finite extension field Fpn overFp. In our paper [1] we design a public key cryptosystem based on discrete logarithm problem over the field F2. Here, for increasing the complexity and difficulty for solving DLP, we made a proper additional modification in the system. A cryptosystem for message transmission means a map from units of ordinary text called plaintext message units to units of coded text called cipher text message units. The face of cryptography was radically altered when Diffie and Hellman invented an entirely new type of cryptography, called public key [Diffie and Hellman 1976][2].
    [Show full text]
  • 2.3 Diffie–Hellman Key Exchange
    2.3. Di±e{Hellman key exchange 65 q q q q q q 6 q qq q q q q q q 900 q q q q q q q qq q q q q q q q q q q q q q q q q 800 q q q qq q q q q q q q q q qq q q q q q q q q q q q 700 q q q q q q q q q q q q q q q q q q q q q q q q q q qq q 600 q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q 500 q qq q q q q q qq q q q q q qqq q q q q q q q q q q q q q qq q q q 400 q q q q q q q q q q q q q q q q q q q q q q q q q 300 q q q q q q q q q q q q q q q q q q qqqq qqq q q q q q q q q q q q 200 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q qq q q 100 q q q q q q q q q q q q q q q q q q q q q q q q q 0 q - 0 30 60 90 120 150 180 210 240 270 Figure 2.2: Powers 627i mod 941 for i = 1; 2; 3;::: any group and use the group law instead of multiplication.
    [Show full text]
  • Making NTRU As Secure As Worst-Case Problems Over Ideal Lattices
    Making NTRU as Secure as Worst-Case Problems over Ideal Lattices Damien Stehlé1 and Ron Steinfeld2 1 CNRS, Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL), 46 Allée d’Italie, 69364 Lyon Cedex 07, France. [email protected] – http://perso.ens-lyon.fr/damien.stehle 2 Centre for Advanced Computing - Algorithms and Cryptography, Department of Computing, Macquarie University, NSW 2109, Australia [email protected] – http://web.science.mq.edu.au/~rons Abstract. NTRUEncrypt, proposed in 1996 by Hoffstein, Pipher and Sil- verman, is the fastest known lattice-based encryption scheme. Its mod- erate key-sizes, excellent asymptotic performance and conjectured resis- tance to quantum computers could make it a desirable alternative to fac- torisation and discrete-log based encryption schemes. However, since its introduction, doubts have regularly arisen on its security. In the present work, we show how to modify NTRUEncrypt to make it provably secure in the standard model, under the assumed quantum hardness of standard worst-case lattice problems, restricted to a family of lattices related to some cyclotomic fields. Our main contribution is to show that if the se- cret key polynomials are selected by rejection from discrete Gaussians, then the public key, which is their ratio, is statistically indistinguishable from uniform over its domain. The security then follows from the already proven hardness of the R-LWE problem. Keywords. Lattice-based cryptography, NTRU, provable security. 1 Introduction NTRUEncrypt, devised by Hoffstein, Pipher and Silverman, was first presented at the Crypto’96 rump session [14]. Although its description relies on arithmetic n over the polynomial ring Zq[x]=(x − 1) for n prime and q a small integer, it was quickly observed that breaking it could be expressed as a problem over Euclidean lattices [6].
    [Show full text]
  • The Discrete Log Problem and Elliptic Curve Cryptography
    THE DISCRETE LOG PROBLEM AND ELLIPTIC CURVE CRYPTOGRAPHY NOLAN WINKLER Abstract. In this paper, discrete log-based public-key cryptography is ex- plored. Specifically, we first examine the Discrete Log Problem over a general cyclic group and algorithms that attempt to solve it. This leads us to an in- vestigation of the security of cryptosystems based over certain specific cyclic × groups: Fp, Fp , and the cyclic subgroup generated by a point on an elliptic curve; we ultimately see the highest security comes from using E(Fp) as our group. This necessitates an introduction of elliptic curves, which is provided. Finally, we conclude with cryptographic implementation considerations. Contents 1. Introduction 2 2. Public-Key Systems Over a Cyclic Group G 3 2.1. ElGamal Messaging 3 2.2. Diffie-Hellman Key Exchanges 4 3. Security & Hardness of the Discrete Log Problem 4 4. Algorithms for Solving the Discrete Log Problem 6 4.1. General Cyclic Groups 6 × 4.2. The cyclic group Fp 9 4.3. Subgroup Generated by a Point on an Elliptic Curve 10 5. Elliptic Curves: A Better Group for Cryptography 11 5.1. Basic Theory and Group Law 11 5.2. Finding the Order 12 6. Ensuring Security 15 6.1. Special Cases and Notes 15 7. Further Reading 15 8. Acknowledgments 15 References 16 1 2 NOLAN WINKLER 1. Introduction In this paper, basic knowledge of number theory and abstract algebra is assumed. Additionally, rather than beginning from classical symmetric systems of cryptog- raphy, such as the famous Caesar or Vigni`ere ciphers, we assume a familiarity with these systems and why they have largely become obsolete on their own.
    [Show full text]
  • Sieve Algorithms for the Discrete Logarithm in Medium Characteristic Finite Fields Laurent Grémy
    Sieve algorithms for the discrete logarithm in medium characteristic finite fields Laurent Grémy To cite this version: Laurent Grémy. Sieve algorithms for the discrete logarithm in medium characteristic finite fields. Cryptography and Security [cs.CR]. Université de Lorraine, 2017. English. NNT : 2017LORR0141. tel-01647623 HAL Id: tel-01647623 https://tel.archives-ouvertes.fr/tel-01647623 Submitted on 24 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php
    [Show full text]
  • Comparing the Difficulty of Factorization and Discrete Logarithm: a 240-Digit Experiment⋆
    Comparing the Difficulty of Factorization and Discrete Logarithm: a 240-digit Experiment? Fabrice Boudot1, Pierrick Gaudry2, Aurore Guillevic2[0000−0002−0824−7273], Nadia Heninger3, Emmanuel Thomé2, and Paul Zimmermann2[0000−0003−0718−4458] 1 Université de Limoges, XLIM, UMR 7252, F-87000 Limoges, France 2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France 3 University of California, San Diego, USA In memory of Peter L. Montgomery Abstract. We report on two new records: the factorization of RSA-240, a 795-bit number, and a discrete logarithm computation over a 795-bit prime field. Previous records were the factorization of RSA-768 in 2009 and a 768-bit discrete logarithm computation in 2016. Our two computations at the 795-bit level were done using the same hardware and software, and show that computing a discrete logarithm is not much harder than a factorization of the same size. Moreover, thanks to algorithmic variants and well-chosen parameters, our computations were significantly less expensive than anticipated based on previous records. The last page of this paper also reports on the factorization of RSA-250. 1 Introduction The Diffie-Hellman protocol over finite fields and the RSA cryptosystem were the first practical building blocks of public-key cryptography. Since then, several other cryptographic primitives have entered the landscape, and a significant amount of research has been put into the development, standardization, cryptanalysis, and optimization of implementations for a large number of cryptographic primitives. Yet the prevalence of RSA and finite field Diffie-Hellman is still a fact: between November 11, 2019 and December 11, 2019, the ICSI Certificate Notary [21] observed that 90% of the TLS certificates used RSA signatures, and 7% of the TLS connections used RSA for key exchange.
    [Show full text]
  • Discrete Logarithm Based Protocols
    Discrete Logarithm Based Protocols Patrick Horster Hans- Joachim Knobloch University of Karlsruhe European Institute for System Security Am Fasanengarten 5 D-7500 Karlsruhe 1 FR Germany Abstract The Exponential Security System (TESS) developed at the European Institute for System Security is the result of an attempt to increase the security in heteroge- nous computer networks. In this paper we present the cryptographic protocols in the kernel of TESS. We show how they can be used to implement access control, authentication, confiden- tiality protection, key exchange, digital signatures and distributed network security management. We also look at the compatibility of TESS with existing standards, like the X.509 Directory Authentication Framework, and compare it to established systems like Kerberos. A comparison of TESS with the non-electronic “paper”-world of authentication and data exchange shows strong parallels. Finally we give a short overview of the current state of development and avail- ability of different TESS components. 1 Introduction During the last years a workinggroup at the European Institute for System Security devel- oped the network security system SELANE (Skure Local Area Network Environment) [BausSO]. The main part of the system is a family of cryptographic protocols based on the discrete logarithm problem. After the possible scope of applications of these protocols had been extended far beyond the originally anticipated area of LAN security, a larger system called TESS (The Exponential Security System) was formed. SELANE is the part of TESS dealing with network security. Another part is an electronic signature system named EES (Exponential Electronic Signature). D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT ’91, LNCS 547, pp.
    [Show full text]
  • 11.6 Discrete Logarithms Over Finite Fields
    Algorithms 61 11.6 Discrete logarithms over finite fields Andrew Odlyzko, University of Minnesota Surveys and detailed expositions with proofs can be found in [7, 25, 26, 28, 33, 34, 47]. 11.6.1 Basic definitions 11.6.1 Remark Discrete exponentiation in a finite field is a direct analog of ordinary exponentiation. The exponent can only be an integer, say n, but for w in a field F , wn is defined except when w = 0 and n ≤ 0, and satisfies the usual properties, in particular wm+n = wmwn and (for u and v in F )(uv)m = umvm. The discrete logarithm is the inverse function, in analogy with the ordinary logarithm for real numbers. If F is a finite field, then it has at least one primitive element g; i.e., all nonzero elements of F are expressible as powers of g, see Chapter ??. 11.6.2 Definition Given a finite field F , a primitive element g of F , and a nonzero element w of F , the discrete logarithm of w to base g, written as logg(w), is the least non-negative integer n such that w = gn. 11.6.3 Remark The value logg(w) is unique modulo q − 1, and 0 ≤ logg(w) ≤ q − 2. It is often convenient to allow it to be represented by any integer n such that w = gn. 11.6.4 Remark The discrete logarithm of w to base g is often called the index of w with respect to the base g. More generally, we can define discrete logarithms in groups.
    [Show full text]
  • Decisional Diffie-Hellman Problem (DDH)
    Course Business • Homework 3 Due Now • Homework 4 Released • Professor Blocki is travelling, but will be back next week 1 Cryptography CS 555 Week 11: • Discrete Log/DDH • Applications of DDH • Factoring Algorithms, Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters Readings: Katz and Lindell Chapter 8.4 & Chapter 9 Fall 2017 2 Recap: Cyclic Group • = = 0, 1, 2, … (g is generator) • If = then for each h and each integer 0 we have = ∈ ≥ ℎ ℎ Fact 1: Let p be a prime then is a cyclic group of order p-1. ∗ Fact 2: Number of generatorsℤ g s.t. of = is ∗ −1 Example (generator): p=7, g=5 ℤ −1 <2>={1,5,4,6,2,3} 3 Recap: Cyclic Group • = = 0, 1, 2, … (g is generator) • If = then for each h and each integer 0 we have = ∈ ≥ ℎ ℎ Fact 1: Let p be a prime then is a cyclic group of order p-1. Fact 2: Number of generators g∗ s.t. of = is ℤ ∗ −1 Proof: Suppose that = and let h = then ℤ −1 = , , ( ), ∗ ( ), … ℤ Recall: 0 2 1 :−1 03 = {0, −…1, 1} if and only if gcd(i,p-1)=1. ℎ − ≥ − 4 Recap Diffie-Hellman Problems Computational Diffie-Hellman Problem (CDH) • Attacker is given h1 = and h2 = . • Attackers goal is to find 1 = h1 = h22 • CDH Assumption: For all PPT1∈2 A there is2 a negligible∈1 function negl such that A succeeds with probability at most negl(n). Decisional Diffie-Hellman Problem (DDH) • Let z0 = and let z1 = , where x1,x2 and r are random • Attacker is given12 , and (for a random bit b) • Attackers goal is to guess1 2 b • DDH Assumption: For all PPT A there is a negligible function negl such that A succeeds with probability at most ½ + negl(n).
    [Show full text]
  • Cryptanalysis of a Proposal Based on the Discrete Logarithm Problem Inside Sn
    cryptography Brief Report Cryptanalysis of a Proposal Based on the Discrete Logarithm Problem Inside Sn María Isabel González Vasco 1,*,†, Angela Robinson 2,† and Rainer Steinwandt 2,† 1 MACIMTE, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain 2 Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA; [email protected] (A.R.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +34-91-488-7605 † These authors contributed equally to this work. Received: 21 May 2018; Accepted: 16 July 201; Published: 19 July 2018 Abstract: In 2008, Doliskani et al. proposed an ElGamal-style encryption scheme using the symmetric group Sn as mathematical platform. In 2012, an improvement of the cryptosystem’s memory requirements was suggested by Othman. The proposal by Doliskani et al. in particular requires the discrete logarithm problem in Sn, using its natural representation, to be hard. Making use of the Chinese Remainder Theorem, we describe an efficient method to solve this discrete logarithm problem, yielding a polynomial time secret key recovery attack against Doliskani et al.’s proposal. Keywords: cryptanalysis; symmetric group; public key encryption 1. Introduction Discrete logarithm problems in certain representations of cyclic groups, such as subgroups of elliptic curves over prime fields, are a popular resource in the construction of cryptographic primitives. Widely deployed solutions for digital signatures and key establishment rely on the computational hardness of such discrete logarithm problems. Doliskani et al. proposed a cryptosystem in [1] which relies on the discrete logarithm problem inside the symmetric group Sn, using its standard representation, to be hard.
    [Show full text]
  • Discrete Logarithms Aurore Guillevic, François Morain
    Discrete Logarithms Aurore Guillevic, François Morain To cite this version: Aurore Guillevic, François Morain. Discrete Logarithms. Nadia El Mrabet; Marc Joye. Guide to pairing-based cryptography, CRC Press - Taylor and Francis Group, pp.42, 2016, 9781498729505. hal-01420485v1 HAL Id: hal-01420485 https://hal.inria.fr/hal-01420485v1 Submitted on 20 Dec 2016 (v1), last revised 13 Dec 2017 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 9 Discrete Logarithms ∗ 9.1 Setting and First Properties ..................... 9-2 General Setting • The Pohlig-Hellman Reduction • A Tour of Possible Groups 9.2 Generic Algorithms .............................. 9-3 Shanks's Baby-Steps Giant-Steps Algorithm • The RHO Method • The Kangaroo Method • Solving Batch-DLP 9.3 Finite Fields ...................................... 9-15 Introduction • Index-Calculus Methods • Linear Algebra • The Number Field Sieve (NFS) • Number Field Sieve: Renements • Large Characteristic Non-Prime Fields • Medium Characteristic Fields • Small Characteristic: From the Function Field Sieve (FFS) to the Quasi-Polynomial-Time Aurore Guillevic Algorithm (QPA) • How to Choose Real-Size Finite INRIA-Saclay and École Polytechnique/LIX Field Parameters • Discrete logarithm algorithms in pairing-friendly target nite elds Fpn : August François Morain 2016 state-of-the-art École Polytechnique/LIX and CNRS and INRIA-Saclay References .............................................
    [Show full text]
  • The Past, Evolving Present and Future of Discrete Logarithm
    The Past, evolving Present and Future of Discrete Logarithm Antoine Joux, Andrew Odlyzko and Cécile Pierrot Abstract The first practical public key cryptosystem ever published, the Diffie-Hellman key exchange algorithm, relies for its security on the assumption that discrete logarithms are hard to compute. This intractability hypothesis is also the foundation for the security of a large variety of other public key systems and protocols. Since the introduction of the Diffie-Hellman key exchange more than three decades ago, there have been substantial algorithmic advances in the computation of discrete logarithms. However, in general the discrete logarithm problem is still considered to be hard. In particular, this is the case for the multiplicative group of finite fields with medium to large characteristic and for the additive group of a general elliptic curve. This paper presents a current survey of the state of the art concerning discrete logarithms and their computation. 1 Introduction 1.1 The Discrete Logarithm Problem Many popular public key cryptosystems are based on discrete exponentiation. If G is a multi- plicative group, such as the group of invertible elements in a finite field or the group of points on an elliptic curve, and g is an element of G, then gx is the discrete exponentiation of base g to the power x. This operation shares basic properties with ordinary exponentiation, for example gx+y = gx · gy. The inverse operation is, given h in G, to determine a value of x, if it exists, such that h = gx. Such a number x is called a discrete logarithm of h to the base g, since it shares many properties with the ordinary logarithm.
    [Show full text]