Phylogeny, Morphological Evolution, and Speciation of Endemic Brassicaceae Genera in the Cape Flora of Southern Africa Author(S): Klaus Mummenhoff, Ihsan A

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny, Morphological Evolution, and Speciation of Endemic Brassicaceae Genera in the Cape Flora of Southern Africa Author(S): Klaus Mummenhoff, Ihsan A Phylogeny, Morphological Evolution, and Speciation of Endemic Brassicaceae Genera in the Cape Flora of Southern Africa Author(s): Klaus Mummenhoff, Ihsan A. Al-Shehbaz, Freek T. Bakker, H. Peter Linder, Andreas Mühlhausen Reviewed work(s): Source: Annals of the Missouri Botanical Garden, Vol. 92, No. 3 (Oct., 2005), pp. 400-424 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/40035479 . Accessed: 29/02/2012 04:58 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Annals of the Missouri Botanical Garden. http://www.jstor.org PHYLOGENY, Klaus Mummenhoff,2 MORPHOLOGICAL Ihsan A. Al-Shehbaz,3 Freeh T. Bakkerf EVOLUTION,AND H. Peter hinderf SPECIATIONOF ENDEMIC and Andreas Miihlhausen6 BRASSICACEAEGENERA IN THE CAPE FLORA OF SOUTHERNAFRICA1 Abstract Heliophila (ca. 73 spp.), the ditypic Cycloptychisand Thlaspeocarpa,and the monotypic Schlechteria, Silicularia, Brachycarpaea, and Chamira are endemic to the Cape region of South Africa, where they are the dominant genera of Brassicaceae. They may be regarded as the most diversified Brassicaceae lineage in every aspect of habit, leaf, flower, and fruit morphology.The characters used in the separation of these genera and their species, especially fruit type (silique vs. silicle), dehiscence (dehiscent vs. indehiscent), compression (latiseptate vs. angustiseptate),and cotyledonary type (spirolobal, diplecolobal, twice conduplicate), have been used extensively in the delimitation of tribes. The rela- tionship and taxonomic limits among these genera are unclear and controversial. The present ITS study demonstrates the monophyly of tribe Heliophileae, with Chamira as sister clade. The other five smaller genera above are nested within two of the three main lineages of Heliophila, to which they should be reduced to synonymy.The current study reveals parallel evolution of fruit characters often used heavily in the traditional classification schemes of the family. However, the arrangementof species into three main clades largely corresponds with the distribution of morphological characters (e.g., habit, leaf shape, seed structure, inflorescence type, and pres- ence/absence of basal appendages on the pedicels, petals, and staminal filaments) not adequately accounted for in previous studies. Estimation of divergence times of the main lineages of Heliophila is in agreement with recent esti- mations in other plant groups, all of which date the diversification against a backgroundof aridificationin the Pliocene and Pleistocene. Species of one main clade are perennial, microphyllous shrubs/subshrubstypically restricted to poor sandstone soils in the southwesternand western parts of the Cape Floristic Region of South Africa. Species of the other two clades are predominantlyannuals that grow in more arid regions of Namibia and Namaqualand,as well as in the above sandstone areas of the Cape Region. The adaptive significance of various floral structures is discussed in terms of their possible role in the rapid diversification within Heliophila. Key words: Brachycarpaea,Cape flora, Cape Floristic Region, Chamira, Cycloptychis,Heliophila, Heliophileae, ITS, phylogeny, radiation, Schlechteria, Silicularia, speciation, Thlaspeocarpa,trnL-F. Seven genera of Brassicaceae, Heliophila (73 represent the dominant Brassicaceae. Although spp.), Cycloptychis(2 spp.), Schlechteria (1 sp.), Si- several classification systems (Table 1) have been licularia (1 sp.), Thlaspeocarpa (2 spp.), Brachy- proposed (e.g., Hayek, 1911; Schulz, 1936; Jan- carpaea (1 sp.), and Chamira (1 sp.), are endemic chen, 1942), the relationships among these genera to southern Africa (for authornames of these genera remain unresolved. In a recent re-evaluation of the and their species, see Table 1 and Appendix 1). group, Appel and Al-Shehbaz (1997) placed the Most species occur in the winter-rainfallarea of the first six genera in the tribe Heliophileae and re- western Cape Floristic Region (CFR), where they tained Chamira in the monotypic Chamireae.They 1 We are grateful to the directors, curators, and collectors of the institutions that provided the plant material. We thank Ulrike Coja for technical assistance, Andreas Franzke for fruitful discussions, and Adelaide Stork, Ashley Nicholas, and two anonymous reviewers for constructive criticisms that helped improve the final draft. 2 Departmentof Botany, Faculty of Biology/Chemistry,University of Osnabrtick,Barbarastrasse 11, 49069 Osnabriick, [email protected]. 3 Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri, U.S.A. 63166-0299. 4 [email protected]. National Herbarium Nederland, Wageningen branch & Biosystematics Group, Wageningen University, Generaal Foulkesweg 37, 6703 BL Wageningen,The Netherlands, [email protected]. 5 Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Switzerland, plin- [email protected]. 6 Departmentof Botany,Faculty of Biology/Chemistry,University of Osnabriick,Barbarastrasse 11, 49069 Osnabriick, [email protected]. Ann. Missouri Bot. Gard. 92: 400-424. Published on 10 October 2005. Volume 92, Number 3 Mummenhoff et al. 401 2005 Brassicaceae In Cape Flora 0^ C^ & 02 02 QJ characterized the by dipleco- 2 cd cd cd cd cd cd Heliophileae having lobal cotyledons (elongated and twice transversely folded). This uncommon cotyledonary type is also ill " ' j!!!!!l <J ^ ^ ^3 ro3^a3 13 ^ ^3 known in three Australian species of Lepidium L. sect. Monoploca (Bunge) Prantl subsect. Diploploca Hewson (Hewson, 1981; Mummenhoffet al., 2001), I making this character homoplastic. '53 §• The Heliophileae may be regarded as the most cd diversified Brassicaceae lineage in every aspect of habit, flower, and fruit morphology (Table 2; com- If I piled from Appel & Al-Shehbaz, 1997). It has flow- C/3 O- cd cd cd i g J9 _2 JH CD CD ers with enormous diversity in size rangingfrom the mill largest in the family (petals to 25 mm long in Bra- _fi CD CD CD a; 3 I chycarpaea juncea and Cycloptychis virgata) to CJ ffi ffi ffi J J I nearly the smallest (petals ca. 1.2 mm long in He- liophila pectinata). Heliophila has a wide range of flower color, including blue, a color otherwise 1 known in Brassicaceae only in the unrelated Hi- malayan Solms-laubachia Muschl. (Al-Shehbaz & %% % % the flowers have 1.2 t§Cd C^ CD CD CD CD CD j| Yang, 2001). Furthermore, usually on the basal of and/or o .h a a a a « appendages portions petals . Several H. Mg | .2 £ £ £ g staminal filaments. species (e.g., afri- ^ 13 13 T3 13 j^ I ffi ffi K ffi < beaked fruits similar to those of the | u I cana) produce g tribe Brassiceae, whereas others have siliques more ^ id v m iu than 12 cm long (e.g., H. scoparia) or minute sili- cles only about 2 mm in diameter (e.g., H. patens). T 11111 Fruit shape is quite variable (linear, lanceolate, ob- -J^ S 2 .2 .2 .2 or whereas fruit com- r| ^_^ j^ f CD CD U long, elliptic, ovoid, globose), in varies from Q ^S i i i i i pression Heliophila latiseptate (flat- l^q] "-rH ' cd cd cd cd cd tened to the to and in cd 2 .2 .2 .2 .2 parallel septum) terete, sa3 ^a '*& a'"B a '*B a '^B a Brachycarpaeait is angustiseptate (fruitflattened at ^ ^r*^ ^r*Js* Js* a to the 1, Fruits CD CD CD CD CD CD right angle septum) (Figs. 2). may | £££££ | | be dehiscent (Heliophila), indehiscent and woody J (Silicularia), samaroid (Thlaspeocarpa), or even and with a distinct or cd cd schizocarpic (Cycloptychis) rt cd pf| CD CD rudimentary carpophore (Brachycarpaea). These O CD ^O CD *S fruit characters (e.g., silique versus silicle, dehis- 1 IS |l cent vs. indehiscent, latiseptate vs. angustiseptate), 1 a£ which are used in the separation of species and genera within Heliophileae, have been used exten- sively in the delimitation of tribes (see Al-Shehbaz, 1984). Within Heliophila one finds ephemeral to perennial herbs, shrubs, and lianas to 3 m tall (H. I scandens). Apart from previous controversial clas- ! Pi! sification discussed and Al-Sheh- S ffi ffi I I M I systems by Appel "S3_CD baz (1997), nothing is known about the phyloge- >» CO netic relationships within the Heliophileae. The most striking features of the CFR are the I I high level of endemism and the remarkablespecies richness. estimated at about 9000 J ^» Species richness, "Sq-§| species in an area of 90,000 km2(Goldblatt & Man- ning, 2000), is comparable to those of the most di- verse equatorial areas, and species endemism of ca. I Illllii 70% is similar to that found on islands (Linder, 2003). In a recent review on the origin of the Cape 402 Annals of the Missouri Botanical Garden 8 % I I e ° ^ « g 22 £ jb * a>1fa = * i i li mil ifi I ^ r-H cc cdcfi(Na3Oa3T3a3OH^t« bO cdcc i ., ,«ii ii.j -i g 4 IlslllillJlU II fill- -siiS ti i j ! I !i iililiri I |I I I I I i!:Ii!!n-H g il I I s I 1 ^ ° | ^ I 15 lie "f 11 I I I .-S-i bIS I .1 -S3 I I 1!!^o!ii! ^1^ b§o| S S - ^ P S ^ " 6 | -8 ^ £ = *« I lilllj if I ?9 ^ 11 BiJiillfJJ I" If Volume 92, Number 3 Mummenhoff et al. 403 2005 Brassicaceae in Cape Flora Figure 1. Strict consensus ITS tree with the distribution of morphological data in Heliophila and related genera. Cleome spinosa (Cleomaceae), Aethionema saxatile, Alliaria petiolata, Rorippa amphibia, and Cardamine matthioli (Brassicaceae) served as the outgroup.
Recommended publications
  • Draft Plant Propagation Protocol
    Plant Propagation Protocol for Carex inops ESRM 412 – Native Plant Production TAXONOMY Family Names Family Scientific Name: Cyperaceae Family Common Name: Sedge Scientific Names Genus: Carex Species: inops Species Authority: L. H. Bailey Variety: Sub-species: Cultivar: Authority for Variety/Sub-species: Common Synonym(s) (include full CAINI3 Carex inops L.H. Bailey ssp inops scientific names (e.g., Elymus CAINH2 Carex inops ssp heliophila (Mack.) Crins glaucus Buckley), including variety Synonyms for ssp heliophila or subspecies information) CAER5 Carex erxlebeniana L. Kelso CAHE5 Carex heliophila Mack. CAPEH Carex pensylvanica Lam. ssp. Heliophila (Mack.) W.A. Weber CAPED Carex pensylvanica Lam. var. digyna Boeckeler Common Name(s): long-stolon sedge or sun sedge (ssp heliophila) Species Code (as per USDA Plants CAIN9 database): GENERAL INFORMATION Geographical range (distribution maps for North America and Washington state) http://plants.usda.gov/java/profile?symbol=CAIN9 http://plants.usda.gov/java/profile?symbol=CAIN9 Ecological distribution (ecosystems it Found in shortgrass, mixed, and tallgrass prairies, as occurs in, etc): well as Ponderosa pine communities and other woodlands (Fryer 2009) Climate and elevation range Dry to seasonally wet climates. Occasionally found at elevations > 5000 ft.(Fryer 2009) Local habitat and abundance; may May dominate to co-dominate in some systems. High include commonly associated prevelance and persistance even in systems where it is species not the dominant species. (Fryer 2009) Plant strategy
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • The Heterodiaspory of Capsella Bursa-Pastoris {Brassicaceae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 2003 Band/Volume: 43_2 Autor(en)/Author(s): Teppner Herwig Artikel/Article: The Heterodiaspory of Capsella bursa-pastoris (Brassicaceae). 381-391 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Horn, Austria) Vol. 43 Fasc. 2 381-391 29. 12. 2003 The Heterodiaspory of Capsella bursa-pastoris {Brassicaceae) By Herwig TEPPNER *) With 2 Figures Received June 20, 2003 Key words: Brassicaceae, Cruciferae, Capsella bursa-pastoris. -Dispersal, fruits, heterodiaspory, polydiaspory. - Terminology. Summary TEPPNER H. 2003. The heterodiaspory of Capsella bursa-pastoris {Brassicaceae). - Phyton (Horn, Austria) 43 (2): 381-391, 2 figures. - English with German summary. In Capsella bursa-pastoris (L.) MEDIK. two kinds of diaspores are formed: 1) the valves of the silicle containing an apical seed (i.e. the uppermost seed of each locule), which are therefore one-seeded mericarps and 2) the true (naked) seeds. Finally, of the fallen valves c. 70 % contained the apical seed; these can be easily dispersed by water and wind. Terms for heteromorphic diaspores are briefly discussed. As regards to terminology, it is proposed to restrict the term heterodiaspory, in the sense of the definition of MÜLLER-SCHNEIDER & LHOTSKÄ 1972: 408, for such cases with diaspores of different levels of morphological organisation on one individual. As an encom- passing term for heterocarpy, heteromericarpy, heterospermy, heterodiaspory etc. the older term polydiaspory (MÜLLER 1955:16) can be used. Zusammenfassung TEPPNER H. 2003. Die Heterodiasporie von Capsella bursa-pastoris (Brassica- ceae).
    [Show full text]
  • Willi Orchids
    growers of distinctively better plants. Nunured and cared for by hand, each plant is well bred and well fed in our nutrient rich soil- a special blend that makes your garden a healthier, happier, more beautiful place. Look for the Monrovia label at your favorite garden center. For the location nearest you, call toll free l-888-Plant It! From our growing fields to your garden, We care for your plants. ~ MONROVIA~ HORTICULTURAL CRAFTSMEN SINCE 1926 Look for the Monrovia label, call toll free 1-888-Plant It! co n t e n t s Volume 77, Number 3 May/June 1998 DEPARTMENTS Commentary 4 Wild Orchids 28 by Paul Martin Brown Members' Forum 5 A penonal tour ofplaces in N01,th America where Gaura lindheimeri, Victorian illustrators. these native beauties can be seen in the wild. News from AHS 7 Washington, D . C. flower show, book awards. From Boon to Bane 37 by Charles E. Williams Focus 10 Brought over f01' their beautiful flowers and colorful America)s roadside plantings. berries, Eurasian bush honeysuckles have adapted all Offshoots 16 too well to their adopted American homeland. Memories ofgardens past. Mock Oranges 41 Gardeners Information Service 17 by Terry Schwartz Magnolias from seeds, woodies that like wet feet. Classic fragrance and the ongoing development of nell? Mail-Order Explorer 18 cultivars make these old favorites worthy of considera­ Roslyn)s rhodies and more. tion in today)s gardens. Urban Gardener 20 The Melting Plot: Part II 44 Trial and error in that Toddlin) Town. by Susan Davis Price The influences of African, Asian, and Italian immi­ Plants and Your Health 24 grants a1'e reflected in the plants and designs found in H eading off headaches with herbs.
    [Show full text]
  • Genome Improvement and Genetic Map Construction for Aethionema Arabicum, the First Divergent Branch in the Brassicaceae Family
    bioRxiv preprint doi: https://doi.org/10.1101/662684; this version posted June 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title 2 Genome improvement and genetic map construction for Aethionema arabicum, 3 the first divergent branch in the Brassicaceae family 4 Authors 5 Thu-Phuong Nguyen1, Cornelia Mühlich2, Setareh Mohammadin1, Erik van den Bergh1, 6 ǂ, Adrian E. Platts3, Fabian B. Haas2, Stefan A. Rensing2, *, M. Eric Schranz1, * 7 1 Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB 8 Wageningen, The Netherlands 9 2 Faculty of Biology, Plant Cell Biology, University of Marburg, Karl-von-Frisch-Str. 8, 10 35043 Marburg, Germany 11 3 Center for Genomics and Systems Biology, Department of Biology, New York 12 University, New York, USA 13 ǂ Current address: EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD, 14 United Kingdom 15 * Corresponding authors 16 T-P.N.: [email protected] 17 C.M.: [email protected] 18 S.M.: [email protected] 19 E.vd.B.: [email protected] 20 A.E.P.: [email protected] 21 F.B.H: [email protected] 22 S.A.R.: [email protected] 23 M.E.S: [email protected] 24 1 bioRxiv preprint doi: https://doi.org/10.1101/662684; this version posted June 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Palynological Features of Eleven Aethionema Taxa from Turkey and Their Systematic Implications
    Bangladesh J. Plant Taxon. 24(2): 197-204, 2017 (December) © 2017 Bangladesh Association of Plant Taxonomists PALYNOLOGICAL FEATURES OF ELEVEN AETHIONEMA TAXA FROM TURKEY AND THEIR SYSTEMATIC IMPLICATIONS 1 MEHMET CENGIZ KARAISMAILOGLU Department of Botany, Faculty of Science, Istanbul University, 034116 Istanbul, Turkey Keywords: Aethionema; Brassicaceae; Pollen; Morphology; Turkey; SEM; PCA. Abstract Pollen morphology of 11 taxa, including 2 endemic of the genus Aethionema W.T. Aiton from Turkey was examined under light and scanning electron microscopes. The pollens of Aethionema are mostly isopolar and bilaterally symmetric; spheroidal, prolate, perprolate and subprolate with the polar axes 14.07-26.41 µm and the equatorial axes 7.85-22.02 µm; mostly tricolpate, rarely 2-colpate; surface ornamentation is micro or macro reticulate. The exine thickness varies between 0.66 and 1.91 µm, and in tine thickness ranges from 0.27 to 0.85 µm. It is found that dimension of pollen grains, surface ornamentation, apocolpidium and amb diameter are taxonomically significant. Introduction The family Brassicaceae (Cruciferae), one of the largest angiosperm families, consists about 340 genera and 3350 species distributed mostly in temperate Northern Hemisphere (Al-Shehbaz, 1986; Karaismailoglu, 2016). The genus Aethionema W.T. Aiton represents with about 45 taxa in Turkey, including 20 endemic taxa (Guner et al., 2012). Turkey is one of the biodiversity rich centers of the genus, and its number in outside Anatolia declines gradually (Davis, 1965; Pinar et al., 2007). Aethionema having relatively few morphological characters and dimorphism in fruits among individuals of some species poses some taxonomic problems in classification of taxa within the genus (Al-Shehbaz et al., 2007).
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Taxa Named in Honor of Ihsan A. Al-Shehbaz
    TAXA NAMED IN HONOR OF IHSAN A. AL-SHEHBAZ 1. Tribe Shehbazieae D. A. German, Turczaninowia 17(4): 22. 2014. 2. Shehbazia D. A. German, Turczaninowia 17(4): 20. 2014. 3. Shehbazia tibetica (Maxim.) D. A. German, Turczaninowia 17(4): 20. 2014. 4. Astragalus shehbazii Zarre & Podlech, Feddes Repert. 116: 70. 2005. 5. Bornmuellerantha alshehbaziana Dönmez & Mutlu, Novon 20: 265. 2010. 6. Centaurea shahbazii Ranjbar & Negaresh, Edinb. J. Bot. 71: 1. 2014. 7. Draba alshehbazii Klimeš & D. A. German, Bot. J. Linn. Soc. 158: 750. 2008. 8. Ferula shehbaziana S. A. Ahmad, Harvard Pap. Bot. 18: 99. 2013. 9. Matthiola shehbazii Ranjbar & Karami, Nordic J. Bot. doi: 10.1111/j.1756-1051.2013.00326.x, 10. Plocama alshehbazii F. O. Khass., D. Khamr., U. Khuzh. & Achilova, Stapfia 101: 25. 2014. 11. Alshehbazia Salariato & Zuloaga, Kew Bulletin …….. 2015 12. Alshehbzia hauthalii (Gilg & Muschl.) Salariato & Zuloaga 13. Ihsanalshehbazia Tahir Ali & Thines, Taxon 65: 93. 2016. 14. Ihsanalshehbazia granatensis (Boiss. & Reuter) Tahir Ali & Thines, Taxon 65. 93. 2016. 15. Aubrieta alshehbazii Dönmez, Uǧurlu & M.A.Koch, Phytotaxa 299. 104. 2017. 16. Silene shehbazii S.A.Ahmad, Novon 25: 131. 2017. PUBLICATIONS OF IHSAN A. AL-SHEHBAZ 1973 1. Al-Shehbaz, I. A. 1973. The biosystematics of the genus Thelypodium (Cruciferae). Contrib. Gray Herb. 204: 3-148. 1977 2. Al-Shehbaz, I. A. 1977. Protogyny, Cruciferae. Syst. Bot. 2: 327-333. 3. A. R. Al-Mayah & I. A. Al-Shehbaz. 1977. Chromosome numbers for some Leguminosae from Iraq. Bot. Notiser 130: 437-440. 1978 4. Al-Shehbaz, I. A. 1978. Chromosome number reports, certain Cruciferae from Iraq.
    [Show full text]
  • Nested Whole-Genome Duplications Coincide with Diversification And
    ARTICLE https://doi.org/10.1038/s41467-020-17605-7 OPEN Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae Nora Walden 1,7, Dmitry A. German 1,5,7, Eva M. Wolf 1,7, Markus Kiefer 1, Philippe Rigault 1,2, Xiao-Chen Huang 1,6, Christiane Kiefer 1, Roswitha Schmickl3, Andreas Franzke 1, Barbara Neuffer4, ✉ Klaus Mummenhoff4 & Marcus A. Koch 1 1234567890():,; Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phy- logenetic genome-wide association studies to analyze the evolution of morphological form and function. 1 Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany. 2 GYDLE, 1135 Grande Allée Ouest, Québec, QC G1S 1E7, Canada. 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.
    [Show full text]
  • Neobeckia Aquatica Eaton (Greene) North American Lake Cress
    New England Plant Conservation Program Conservation and Research Plan Neobeckia aquatica Eaton (Greene) North American Lake Cress Prepared by: John D. Gabel and Donald H. Les University of Connecticut Storrs, Connecticut For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] ! website: www.newfs.org Approved, Regional Advisory Council, 2000 SUMMARY The North American lake cress, Neobeckia aquatica (Eaton) Greene (Brassicaceae), is listed as S1 in Vermont, SH in Massachusetts, and “SH?” in Maine. Lake cress likely requires clear, slow-moving water. A requirement of sites is that they have regular fluctuations in water level. Sites are typically located in gently flowing riverine systems and have little or no shoreline development. Special threats include invasive plant species, eutrophication, and development of habitat. All extant New England element occurrences of lake cress are located in Vermont at four sites. VT.002, Orwell is characterized by small population numbers (two to five plants). The site is highly eutrophic and threatened by invasive aquatic plants (Butomus umbellatus, Lythrum salicaria, and Trapa natans). VT.006, Orwell is characterized by a relatively large population (100-500 plants). The site is threatened by invasive aquatic plants (Butomus umbellatus , Lythrum salicaria, and Trapa natans.) VT.009, Shoreham is a highly eutrophic site with 500-1000 plants in the population. VT.010, Isle La Motte represents a population located in a pristine habitat with around 500 plants. The conservation objectives for Neobeckia aquatica in New England are to: C remove the threat of invasive plants from extant lake cress populations.
    [Show full text]
  • The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution
    The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution Dissertation submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Liza Paola Ding born in Mosbach, Baden-Württemberg, Germany Oral examination: 22.12.2014 Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar Table of contents INTRODUCTION ............................................................................................................. 18 1 THE MUSTARD FAMILY ....................................................................................... 19 2 THE TRIBAL SYSTEM OF THE BRASSICACEAE ........................................... 22 3 CHALCONE SYNTHASE ........................................................................................ 23 PART 1: TROUBLE WITH THE OUTGROUP............................................................ 27 4 MATERIAL AND METHODS ................................................................................. 28 4.1 Experimental set-up ......................................................................................................................... 28 4.1.1 Plant material and data composition .............................................................................................. 28 4.1.2 DNA extraction and PCR amplification ........................................................................................
    [Show full text]
  • Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
    RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a).
    [Show full text]