<<

On use of Laser measurements in determination of Orientation Parameters (EOP) and SLR stations’ coordinates

Bachir GOURINE

ABSTRACT

ThepresentworkdealswiththecalculationofLaserstationscoordinatesandEarthOrientationParameters(EOP)basedon observationsofLowEarthOrbit(LEO),namelyStarlette(STL)andStella(STA).Theorbitsofthesesatellitesare lessaccuratebecausetheyaremoreaffectedbythegravitationalandnongravitationalforcesthanthoseofhighsatellitesas LAGEOSI(LA1)andLAGEOSII(LA2).Theobjectiveistoachievegoodqualityonthegeodeticproductsbyinter combination of Low and High satellites data. The orbit computation of the different satellites is performed with GINS softwareandthelaserdataprocessingiscarriedoutbyMATLOsoftware,withconsiderationofarecentGRACEgravity model(Eigen_Grace03s)intheprocessing,foraperiodoffouryears(betweenJanuary2002andDecember2005).Thetime series of the results are projected according to ITRF2000, by CATREF software, where the Helmert transformation parametersareobtained.Wecomparetwoseriesofsolutions:LA1+LA2(LL)only,andafoursatellitecombinationbasedon LA1+LA2+STL+STA (LLSS), in terms of quality of the weekly stations positions, EOP and Geocentre variations. The resultspresentedshowthatthedataobtainedfromLEOsatellitessuchasStarletteandStellacanbesuccessfullyusedfor precisedeterminationoftheSLRgeodeticproducts.

1 Introduction

SatelliteLaserRanging(SLR)isoneofthemaintechniques of the calculation of the International Terrestrial Reference Frame(ITRF).Itcontributestotheframedeterminationbyprovidingtimeseriesoflaserstationscoordinates and Earth OrientationParameters(EOPs).ThelaserobservationsofLAGEOSI(LA1)andLAGEOSII(LA2)aregenerallyusedfor suchdetermination.However,whatisthecontributioninthisdeterminationofothersatelliteslikeLowEarthOrbit(LEO) ones?.ThetwinsStarlette(STA)andStella(STL),orbitingat800kmaltitude,werelaunchedbytheCNES,on1975and 1993,respectively.ThemaintasksoftheseLEOsatellitesarethedeterminationofEarth'sgravityfieldcoefficients,Earth rotationparameters,andinvestigationofEarthandoceantides.So,thecomputationofthelaserrangingstationscoordinates onthebasisofdataotherthanthosefromLAGEOSI/IIobservationsisdesirableforthefollowingreasons:(1)significantly increasesthenumberofobservationsusedfordeterminationofthestationscoordinatesandEOPs,(2)permitverificationof resultsobtainedfromtheLAGEOSI/IIdata,(3)permitdeterminationofcoordinatesofthestationsthatcannotrangeto LAGEOSsatellites.

Promising results of the stations coordinates determination were obtained for LEO satellite for short period[Lejba et al., 2008]&[Lejbaetal.,2007].TheobjectiveofthestudyistocheckifthelaserrangingobservationsofStarletteandStellacan beusedforaprecisedeterminationofthelaserrangingstationscoordinatesandEOP,andtoinvestigatethecontributionof theseLEOdataforthegeodynamicstudyofthestationsbehaviour,poleandGeocentermotions.So,theworkconcernsthe computationofalasernetworkbasedonbothLAGEOSsatellitesmeasurementswiththoseofStarletteandStellaover04 yearsperiod(betweenJanuary2002andDecember2005),accordingtotwodatacombinationsolutions,namelyLA1+LA2 (LL)andLA1+LA2+STL+STA(LLSS).

1 2 Results Analysis

Accordingtotable(1),itisclearthattheorbitsofthehighsatellites(LAGEOSI/II)haveabetterprecisionthanthoseofthe lowsatellites(StellaandStarlette),becausetheyarelessperturbed.TheSLRtimeseriesofpositionsof34stationsexpressed inthelocalcoordinates(NEH);obtainedfromtheLLandLLSScombinations;areprojectedonITRF2000referenceframe and are statistically equivalents, according to table (2). The addition of the low satellites to the high satellites did not deterioratetheresultsquality,inparticularfortheestimatesofEOPandGeocenterparameters,seetable(2). Satellite Lengthofthe WRMS arc (days) (mm) LAGEOSI 7 11.1 LAGEOSII 7 9.5 Starlette 3.5 16.1 Stella 3.5 15.5 Table 1: LengthofarcsandweightedRMSoforbitalarcsresiduals

Combination N E U Xp Yp TX TY TZ (mm) (mm) (mm) (mas) (mas) (mm) (mm) (mm) LL 20 ±35 21 ±23 6±26 0.12 ±0.32 0.30 ±0.32 1±6 1±5 1±7 LLSS 21 ±36 20 ±21 5±28 0.10 ±0.30 0.33 ±0.32 0±6 1±5 1±7 Table 2: Statisticsofstationscoordinates'residuals,polecoordinateupdates(Xp,Yp)andGeocenterparameterstimeseries. 2.1 Pole motion

Thefigure(1)illustratestheresidualstimeseriesofpolecoordinates( Xp, Yp)andoftheLengthofDay(LOD),withrespect tothestandardsolutionEOPC04ofIERS.Inthetable(2),thevaluesandtheirRMSofpolecoordinates,accordingtoLLand LLSSsolutionsarepracticallythesame.Inaddition,theestimationofpoleparametersissatisfactoryfortheSLRtechnique andtheobtainedvaluesarecoherentwithpublishedvaluesofIERS[Gambis,2004].

3 L L 2 L L S S 1 0

(mas) Xp - 1 2002 2002,5 2003 2003,5 2004 2004,5 2005 2005,5 2006 - 2 ye ar

3 L L 2 L L S S 1 0

(mas) yp 2002 2002,5 2003 2003,5 2004 2004,5 2005 2005,5 2006 -1 -2 ye ar

0,8 L L 0,6 L L S S 0,4 0,2 0

(ms) LOD -0,2 2002 2002,5 2003 2003,5 2004 2004,5 2005 2005,5 2006 -0,4 -0,6 ye ar Figure 1: ParametersofpolemotionaccordingtoLLandLLSScombinations.

ThefrequencyanalysisofpoletimeseriesisperformedbyFAMOUSsoftware[Mignard,2005].Therelatedperiodicsignals aredecomposed,withrespecttothreeperiods[Frède,1999]:interannual,annualandshortperiods(fromfewdaystofew months<100days).Theamplitudevaluesofpolecoordinates,accordingtoLLandLLSScombinations,areveryclosed, becausethemaximaldifferencedoesnotexceed22 as(i.e.,0.7mm).Inotherhand,theamplitudesaresmallofaboutfew

2 mm.ForLOD,theaverageamplitudeisaround10 s(i.e.,5mm).Generally,thesevaluesremainverysmallbecausethey describetheresidualsignalsofthegeophysicalphenomena.Thestudyofthenoise,affectingthepoletimeseriesisbasedon Allanvariancemethod.Thedominantnoise,forLLandLLSSsolutions,istheflickernoisewithaslopeoftheAllandiagram of0.4and0.6.Thenoiselevelisofabout106115 asor3mm,forpolecoordinatesanditisaround11and16 s(6and 8mm),forLOD,accordingtoLLandLLSS,respectively. 2.2 Geocenter variations

TheGeocentervariationsaremainlyduetotheredistributionofmassesinatmosphere,inoceansandalsoinhydrological reservoirs.Table(3)displaysthevaluesofamplitudesandphasesofannualtermsofoursolutions,andoftwogeodynamic modelsof(Dongetal.,1997)&(Chenetal.,1999).OnecanobserveacoherenceintheamplitudesvaluesforLLandLLSS solutionsandincomparisonofoursolutionswithgeodynamicalones.

LL LLSS Dongetal.1997 Chenetal.1999 TXA 2.9 ±0.8 2.6 ±0.8 4.2 2.4 ϕ 139 ±15 131 ±18 224 244 TYA 2.3 ±0.5 4.1 ±0.6 3.2 2.0 ϕ 168 ±22 183 ±16 339 270 TZA 2.3 ±2.6 1.9 ±2.1 3.5 4.1 ϕ 246 ±67 218 ±71 235 228 Table 3: AnnualtermsoftheGeocentervariationscomponents(TX,TY,TZ)accordingtotheLLandLLSScombinations

ThewhitenoiseisthedominantnoisefortheXandYGeocentercomponents,withnoiselevelofabout1.8mm(accordingto theLLandLLSScombinationbutitisabout2.3mmforYcomponentofLLSSsolution).However,theZcomponentis affectedbyaflickernoiseatlevelof2.8mm. 2.3 Coordinate updates of SLR stations

Figure (2) shows the average RMS of topocentric coordinates (NEU) of 34 SLR Stations over four years (20022005), accordingtotheLLandLLSScombinationsolutions,whichareequivalents.

Figure 2: RMSoftopocentriccoordinatesofSLRstations,accordingtoLLandLLSScombinationsolutions.

Figure(3)showsanexampleofthepositiontimeseriesoftwobeststations(7080McDonald,USA)and(7090Yarragadee, Australia). We focused on vertical component because it is important for the geodynamical studies since it holds 2/3 amplitudeofsignalsactingonthestationmotion[Coulot,2005].Seasonalsignalswithamplitudesofaboutfewmmwere

3 estimated.Since,theeffectsofoceanloadingwereconsideredinthemodelaprioriofrestitution,thesignalsdetectedare probablyrelatedtoresidualloadingeffects,whichtypicallyhaveamplitudesofmmlevel.

Station 7090 - Yarragadee LL Station 7080 M c Donald LL LLSS LLSS 0,04 0,06 0,02 0,04 0 0,02 -0,02 2002 2003 2004 2005 2006 0 North(m) North(m) -0,04 -0,02 2002 2003 2004 2005 2006 -0,06 -0,04 Y ear Y ear

LL LL 0,04 0,04 LLSS LLSS 0,03 0,02 0,02 0,01 0,00 0 2002 2003 2004 2005 2006 -0,02 East (m) East

East (m) East -0,01 2002 2003 2004 2005 2006 -0,02 -0,04 -0,03 -0,04 -0,06 Y ear Y ear

LL LL 0,04 0,06 LLSS LLSS 0,02 0,04 0 0,02 -0,02 2002 2003 2004 2005 2006 0 -0,04 -0,02 2002 2003 2004 2005 2006

(m) Up UP (m) UP -0,06 -0,04 -0,08 -0,06 -0,1 -0,12 -0,08 Y ear Y ear

Figure 3: CoordinatesTimeseriesofMcDonald(7080)andYarragadee(7090)stations. 3 Conclusion

Thisstudyhasshowed,inonehand,thefeasibilityofprecisecalculationofaSLRnetwork,Earthorientationparameters (EOP)andtransformationparameters,byusingfouryearsobservationsoflowsatellitesnamelyStarletteandStellaand,in otherhand,themethodologyofanalysisadoptedforthiswork.Itwillbeusefulandinterestingtoconsidermoreobservations of LEO satellites (such as, Ajisai, TopexPoseidon, Jason1&2,...), during a long period, for: (i) Contribution to the realisationofnewSLRreferenceframeandSLRsolutionforfutureversionofITRF,and(ii)Analysisofgeodeticproducts variations(Stationsmotions,EOP,Geocenter)withtheadoptedmethodology.

Acknowledgements SpecialthankstoGMCteam(Exertier,Berio,Deleflie,etc.)from(GEMINI/OCA,France)forscientificandtechnicalhelps.

References Chen, J. L., Wilson, C. R., Eanes, R. J. & Nerem, R. S, 1999:Geophysicalinterpretationofobservedgeocentervariations. JournalofGeophysicalResearch,104(B2):26832690. Coulot, D., 2005:Télémétrielasersursatellitesetcombinaisondetechniquesgéodésiques.Contributionsauxsystèmesde référenceterrestresetapplications.PhDthesis(inFrench),ObservatoiredeParis. Dong, D., Dickey, J. O., Chao, Y & Cheng, K., 1997:Geocentervariationscausedbyatmosphere,oceanandsurfaceground water.GeophysicalResearchLetters,24(15):18671870. Frède, V., 1999:Apportdel'analysenonlinéaireàl'étudegéophysiquedelarotationdelaTerre.PhDthesis(inFrench), ObservatoiredeParis,France. Gambis, D., 2004:Monitoringearthorientationusingspacegeodetictechniques:stateoftheartandprospective.Journalof ,78:295305. Lejba, P., Schillak, 2008:DeterminationoftheSLRstationcoordinatesandvelocitiesonthebasisoflaserobservationsof lowsatellites,Proceedingsofthe16 th InternationalWorkshoponLaserRanging,PoznańPoland,October1317. Lejba, P., Schillak, S., Wnuk, E., 2007: Determination of orbits and SLR stations' coordinates on the basis of laser observationsofthesatellitesStarletteandStella,AdvancesinSpaceResearch,Vol.40,Issue1,p.143149. Mignard, F., 2005:Guided'utilisationdulogicielFAMOUS.OCAInternalReport(inFrench)France.

4 Correspondence

BachirGOURINE CentredesTechniquesSpatiales,DivisiondeGéodésieSpatiale. BP n° 13, 31200, Arzew – Algérie. Tél. +213 41 472217, Fax. +213 41 473665. Email:[email protected]

5