Determination of SLR Station Coordinates Based on LEO, LARES

Total Page:16

File Type:pdf, Size:1020Kb

Determination of SLR Station Coordinates Based on LEO, LARES Strugarek et al. Earth, Planets and Space (2021) 73:87 https://doi.org/10.1186/s40623-021-01397-1 FULL PAPER Open Access Determination of SLR station coordinates based on LEO, LARES, LAGEOS, and Galileo satellites Dariusz Strugarek1* , Krzysztof Sośnica1, Daniel Arnold2, Adrian Jäggi2, Radosław Zajdel1 and Grzegorz Bury1 Abstract The number of satellites equipped with retrorefectors dedicated to Satellite Laser Ranging (SLR) increases simultane- ously with the development and invention of the spherical geodetic satellites, low Earth orbiters (LEOs), Galileo and other components of the Global Navigational Satellite System (GNSS). SLR and GNSS techniques onboard LEO and GNSS satellites create the possibility of widening the use of SLR observations for deriving SLR station coordinates, which up to now have been typically based on spherical geodetic satellites. We determine SLR station coordinates based on integrated SLR observations to LEOs, spherical geodetic, and GNSS satellites orbiting the Earth at difer- ent altitudes, from 330 to 26,210 km. The combination of eight LEOs, LAGEOS-1/2, LARES, and 13 Galileo satellites increased the number of 7-day SLR solutions from 10–20% to even 50%. We discuss the issues of handling of range biases in multi-satellite combinations and the proper solution constraining and weighting. Weighted combination is characterized by a reduction of formal error medians of estimated station coordinates up to 50%, and the reduction of station coordinate residuals. The combination of all satellites with optimum weighting increases the consistency of station coordinates in terms of interquartile ranges by 10% of horizontal components for non-core stations w.r.t LAGEOS-only solutions. Keywords: Satellite Laser Ranging (SLR), GNSS, Low Earth orbiters (LEOs), Galileo, Reference frame realization Introduction Hofmann et al. 2018), Very Long Baseline Interferom- Te International Association of Geodesy (IAG) estab- etry (VLBI; Schlüter and Behrend 2007), Global Naviga- lished services, which by using space geodetic tech- tion Satellite Systems (GNSS; Johnston et al. 2017), and niques, provide valuable infrastructure for observations Doppler Orbitography and Radiopositioning Integrated and products, used for description and understanding by Satellite (DORIS; Willis et al. 2010). Te IAG founded of the dynamic Earth system (Plag and Pearlman 2009). the Global Geodetic Observing System (GGOS; Plag and Four IAG services and their basic observation techniques Pearlman 2009; Gross et al. 2009) to provide the geodetic are used for deriving global geodetic parameters and expertise and infrastructure necessary for the monitoring the realization of the International Terrestrial Reference of the Earth system and global change research by inte- Frames (ITRF; Altamimi et al. 2016), including Satellite grating geodetic, geodynamic and geophysical commu- Laser Ranging (SLR; Pearlman et al. 2019a) and Lunar nities. Te GGOS requires 0.1 mm/year stable-in-time Laser Ranging (LLR, used in previous ITRF realizations; station velocities and the accuracy of 1 mm for the sta- tion coordinates. Te realization of the ITRF requires the *Correspondence: [email protected] position of geocenter (GCC), scale, and Earth orienta- 1 Institute of Geodesy and Geoinformatics, Wrocław University tion parameters determined with the accuracy of 1-mm of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland or better to appropriately realize the origin, metrics, and Full list of author information is available at the end of the article the orientation of the reference frame (Gross et al. 2009). © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. Strugarek et al. Earth, Planets and Space (2021) 73:87 Page 2 of 21 Table 1 Characteristics of diferent types of satellites with SLR retrorefectors used in the analysis Satellite Type Main mission Launch date Altitude (km) Retrorefector POD techniques Attitude objective (mission end) characteristics information LARES Spherical geo- Relativistic 02.2012 1450 Surface covered SLR – detic efects, gravity with 92 corner feld cubes LAGEOS-1 Spherical geo- ITRF, geocenter, 05.1976 10.1992 5850 5625 Surface covered SLR – LAGEOS-2 detic gravity feld, with 426 cor- ERPs ner cubes GRACE-A LEO Gravity feld, 03.2002 (10.2017) 450–330 Pyramid-shaped SLR, GNSS Quaternions, 5-s GRACE-B Ocean and Sea array,4 cubes interval monitoring SWARM-A LEO Earth Magnetic 11.2013 460 Pyramid-shaped SLR, GNSS Quaternions, 1-s SWARM-B feld, gravity 530 array,4 cubes interval SWARM-C feld 460 TerraSAR-X LEO Remote sensing 06.2007 514 Pyramid-shaped SLR, GNSS Quaternions, 10-s array,4 cubes interval Jason-2 LEO Ocean surface 06.2008 (10.2019) 1336 Hemispheri- SLR, GNSS, Quaternions, 30-s topography cal surface, 9 DORIS interval cubes Sentinel-3A LEO Ocean and land 02.2016 815 Spherical surface, SLR, GNSS, Quaternions, 1-s monitoring, 7 cubes DORIS interval ocean topog- raphy Galileo (3 IOV 10 GNSS Positioning, navi- IOV 10.2011 FOC 17 178– 23 222 Arrays of 84 SLR, GNSS Yaw-steering FOC) gation, timing 08.2014 cubes (IOV) and 60 cubes (FOC) Tese requirements cannot be fulflled without a net- parameter GM, gravity feld parameters (Bloßfeld et al. work of high-quality observing, co-located GGOS sites, 2015; Sośnica et al. 2015a), and for the verifcation of gen- which provide the necessary infrastructure to detect eral relativity efects (Ciufolini et al. 1998). Te distribu- and reduce sources of systematic errors of observation tion of all normal points (NPs) collected by SLR stations systems, and to fully exploit the current constellation of in 2016–2018 reveals that in total 81% of all SLR observa- satellite missions. Nowadays, the combination of space tions were collected to LEOs, over 10% of the observa- geodetic techniques is based on co-located GGOS sites tions to GNSS satellites, and the remaining observations equipped with diferent techniques, however, the future comprising less than 9% of all SLR observations to spher- co-location onboard active satellites is foreseen, as well. ical geodetic satellites1. Only these latter were used so Co-location of space geodetic techniques onboard GNSS far for deriving global geodetic parameters, and for the satellites and active low Earth orbiters (LEOs) pave the computation of geodetic reference frames using the SLR way for new opportunities to future inter-technique con- technique. Te spacecraft and orbit characteristics of nections, for the ITRF realizations through the integra- diferent satellite types with the SLR retrorefectors are tion of various types of geodetic observation systems and summarized in Table 1 and Fig. 1. their products. SLR spherical geodetic satellites, such as LAGEOS-1/2 and LARES, are covered with corner cube retrorefectors, SLR observations to spherical geodetic, LEO, and GNSS with reduced area-to-mass ratios (Pearlman et al. 2019b). satellites Tose satellites are used to estimate geodetic parameters Te SLR technique employs optical range measurements because out of all artifcial satellites, their orbits are not to various types of satellites equipped with laser ret- very much afected by non-gravitational perturbations. rorefector arrays (LRA). Te main contribution of the Te mission main objectives include determining the ter- SLR technique to GGOS originates from measurements restrial reference frame and Earth rotation parameters to spherical geodetic satellites, such as LAGEOS-1/2, Etalon-1/2, which are used for the determination of GCC, global scale, station coordinates (Taller et al. 2011; Gla- 1 https:// ilrs. cddis. eosdis. nasa. gov/ netwo rk/ system_ perfo rmance/ global_ ser et al. 2019; Zajdel et al. 2019), standard gravitational report_ cards/ index. html. Strugarek et al. Earth, Planets and Space (2021) 73:87 Page 3 of 21 Fig. 1 Satellite missions equipped with various techniques onboard with their operation periods and altitudes (ERPs) and improving the gravity feld models. Te main Te worldwide GNSS constellations are: the Ameri- objective of the LARES satellite are the measurement of can GPS, the Russian GLONASS, the European Galileo, relativistic efects, including the Lense–Tirring efect, and the Chinese BeiDou. Te Galileo system is expected space geodesy and geodynamics (Ciufolini et al. 2015). to complete constellation deployment in 2022. In terms SLR measurements to active LEOs, such as GRACE- of GNSS satellites, the SLR observations already proved A/B (Tapley et al. 2004), Sentinel-3A/B (Donlon et al. to be useful for the determination of the GNSS orbits 2012), and Jason-2 (Lambin et al. 2010), or GNSS con- using combined GNSS and SLR observations (Bury stellations are typically employed for the validation of et al. 2021). Te International GNSS Service (IGS; John- microwave-based or DORIS-based orbits of active LEOs, ston et al. 2017) initiated the Multi-GNSS Experiment and microwave-based orbits of GNSS satellites. Te (MGEX; Montenbruck et al. 2017) to track, collate, and number of active LEO satellites, which were equipped analyze all available GNSS signals for providing high- with at least two diferent positioning techniques, i.e., precision products accessible to a wide range of engi- SLR+GNSS, SLR+GNSS+DORIS, or SLR+DORIS has neering and science communities. All active Galileo been increasing for the last 20 years.
Recommended publications
  • International Laser Ranging Service (ILRS)
    The International Laser Ranging Service (ILRS) http://ilrs.gsfc.nasa.gov/ Chairman of the Governing Board: G. Appleby (Great Britain) Director of the Central Bureau: M. Pearlman (USA) Secretary: C. Noll (USA) Analysis Coordinator: E. C. Pavlis (USA) Development ranging and ranging to the Lunar Orbiter, with plans to extend ranging to interplanetary missions with optical Satellite Laser Ranging (SLR) was established in the mid- transponders. 1960s, with early ground system developments by NASA and CNES. Early US and French satellites provided laser Mission targets that were used mainly for inter-comparison with other tracking systems, refinement of orbit determination The ILRS collects, merges, analyzes, archives and techniques, and as input to the development of ground distributes Satellite Laser Ranging (SLR) and Lunar Laser station fiducial networks and global gravity field models. Ranging (LLR) observation data sets of sufficient accuracy Early SLR brought the results of orbit determination and to satisfy the GGOS objectives of a wide range of station positions to the meter level of accuracy. The SLR scientific, engineering, and operational applications and network was expanded in the 1970s and 1980s as other experimentation. The basic observable is the precise time- groups built and deployed systems and technological of-flight of an ultra-short laser pulse to and from a improvements began the evolution toward the decimeter retroreflector-equipped satellite. These data sets are used and centimeter accuracy. Since 1976, the main geodetic by the ILRS to generate a number of fundamental added target has been LAGEOS (subsequently joined by value products, including but not limited to: LAGEOS-2 in 1992), providing the backbone of the SLR • Centimeter accuracy satellite ephemerides technique’s contribution to the realization of the • Earth orientation parameters (polar motion and length of day) International Terrestrial Reference Frame (ITRF).
    [Show full text]
  • Space Geodesy and Satellite Laser Ranging
    Space Geodesy and Satellite Laser Ranging Michael Pearlman* Harvard-Smithsonian Center for Astrophysics Cambridge, MA USA *with a very extensive use of charts and inputs provided by many other people Causes for Crustal Motions and Variations in Earth Orientation Dynamics of crust and mantle Ocean Loading Volcanoes Post Glacial Rebound Plate Tectonics Atmospheric Loading Mantle Convection Core/Mantle Dynamics Mass transport phenomena in the upper layers of the Earth Temporal and spatial resolution of mass transport phenomena secular / decadal post -glacial glaciers polar ice post-glacial reboundrebound ocean mass flux interanaual atmosphere seasonal timetime scale scale sub --seasonal hydrology: surface and ground water, snow, ice diurnal semidiurnal coastal tides solid earth and ocean tides 1km 10km 100km 1000km 10000km resolution Temporal and spatial resolution of oceanographic features 10000J10000 y bathymetric global 1000J1000 y structures warming 100100J y basin scale variability 1010J y El Nino Rossby- 11J y waves seasonal cycle eddies timetime scale scale 11M m mesoscale and and shorter scale fronts physical- barotropic 11W w biological variability interaction Coastal upwelling 11T d surface tides internal waves internal tides and inertial motions 11h h 10m 100m 1km 10km 100km 1000km 10000km 100000km resolution Continental hydrology Ice mass balance and sea level Satellite gravity and altimeter mission products help determine mass transport and mass distribution in a multi-disciplinary environment Gravity field missions Oceanic
    [Show full text]
  • The Lageos System
    NASA TECHNICAL NASA TM X-73072 MEMORANDUM (NASA-TB-X-73072) liif LAGECS SYSTEM (NASA) E76-13179 68 p BC $4.5~ CSCI 22E Thls Informal documentation medium is used to provide accelerated or speclal release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, my be re- vised, or may be incorporated in another publication. THE LAGEOS SYSTEM Joseph W< Siry NASA Headquarters Washington, D. C. 20546 NATIONAL AERONAUTICS AND SPACE ADMlNlSTRATlCN WASHINGTON, 0. C. DECEMBER 1975 1. i~~1Yp HASA TW X-73072 4. Titrd~rt. 5.RlpDltDM December 1975 m UG~SSYSEM 6.-0-cad8 . 7. A#umrtsI ahr(onninlOlyceoa -* Joseph w. Siry . to. work Uld IYa n--w- WnraCdAdbar I(ASA Headquarters Office of Applications . 11. Caoa oc <irr* 16. i+ashingtcat, D. C. 20546 12TmdRlponrrd~~ 12!3mnm&@~nsnendAddrs Technical Memorandum 1Sati-1 Aeronautics and Space Adninistxation Washington, D. C. 20546 14. sponprip ~gmcvu 15. WDPa 18. The LAGEOS system is defined and its rationale is daveloped. This report was prepared in February 1974 and served as the basis for the LAGMS Satellite Program development. Key features of the baseline system specified then included a circular orbit at 5900 km altitude and an inclination of lloO, and a satellite 60 cm in diameter weighing same 385 kg and mounting 440 retro- reflectors, each having a diameter of 3.8 cm, leaving 30% of the spherical surface available for reflecting sunlight diffusely to facilitate tracking by Baker-Nunn cameras, The satellite weight was increased to 411 kg in the actual design thr~aghthe addition of a 4th-stage apogee-kick motor.
    [Show full text]
  • Lageos Orbit Decay Due to Infrared Radiation from Earth
    https://ntrs.nasa.gov/search.jsp?R=19870006232 2020-03-20T12:07:45+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server Lageos Orbit Decay Due to Infrared Radiation From Earth David Parry Rubincam JANUARY 1987 NASA Technical Memorandum 87804 Lageos Orbit Decay Due to Infrared Radiation From Earth David Parry Rubincam Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 1987 1 LAGEOS ORBIT DECAY r DUE TO INFRARED RADIATION FROM EARTH by David Parry Rubincam Geodynamics Branch, Code 621 NASA Goddard Space Flight Center Greenbelt, Maryland 20771 i INTRODUCTION The Lageos satellite is in a high-altitude (5900 km), almost circular orbit about the earth. The orbit is retrograde: the orbital plane is tipped by about 110 degrees to the earth’s equatorial plane. The satellite itself consists of two aluminum hemispheres bolted to a cylindrical beryllium copper core. Its outer surface is studded with laser retroreflectors. For more information about Lageos and its orbit see Smith and Dunn (1980), Johnson et al. (1976), and the Lageos special issue (Journal of Geophysical Research, 90, B 11, September 30, 1985). For a photograph see Rubincam and Weiss (1986) and a structural drawing see Cohen and Smith (1985). Note that the core is beryllium copper (Johnson et ai., 1976), and not brass as stated by Cohen and Smith (1985) and Rubincam (1982). See Table 1 of this paper for other parameters relevant to Lageos and the study presented here.
    [Show full text]
  • The Evolution of Earth Gravitational Models Used in Astrodynamics
    JEROME R. VETTER THE EVOLUTION OF EARTH GRAVITATIONAL MODELS USED IN ASTRODYNAMICS Earth gravitational models derived from the earliest ground-based tracking systems used for Sputnik and the Transit Navy Navigation Satellite System have evolved to models that use data from the Joint United States-French Ocean Topography Experiment Satellite (Topex/Poseidon) and the Global Positioning System of satellites. This article summarizes the history of the tracking and instrumentation systems used, discusses the limitations and constraints of these systems, and reviews past and current techniques for estimating gravity and processing large batches of diverse data types. Current models continue to be improved; the latest model improvements and plans for future systems are discussed. Contemporary gravitational models used within the astrodynamics community are described, and their performance is compared numerically. The use of these models for solid Earth geophysics, space geophysics, oceanography, geology, and related Earth science disciplines becomes particularly attractive as the statistical confidence of the models improves and as the models are validated over certain spatial resolutions of the geodetic spectrum. INTRODUCTION Before the development of satellite technology, the Earth orbit. Of these, five were still orbiting the Earth techniques used to observe the Earth's gravitational field when the satellites of the Transit Navy Navigational Sat­ were restricted to terrestrial gravimetry. Measurements of ellite System (NNSS) were launched starting in 1960. The gravity were adequate only over sparse areas of the Sputniks were all launched into near-critical orbit incli­ world. Moreover, because gravity profiles over the nations of about 65°. (The critical inclination is defined oceans were inadequate, the gravity field could not be as that inclination, 1= 63 °26', where gravitational pertur­ meaningfully estimated.
    [Show full text]
  • Systematic Errors Between SLR and GNSS Due to the Omission of Atmospheric Pressure Loading
    Geophysical Research Abstracts Vol. 20, EGU2018-208-1, 2018 EGU General Assembly 2018 © Author(s) 2017. CC Attribution 4.0 license. Systematic errors between SLR and GNSS due to the omission of atmospheric pressure loading Grzegorz Bury and Krzysztof Sosnica´ Wroclaw University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, The Faculty of Environmental Engineering and Geodesy, Wrocław, Poland ([email protected]) Satellite Laser Ranging (SLR) is a precise space geodetic technique that contributes to Global Geodetic Observing System (GGOS) by providing e.g., the origin and the scale of the International Terrestrial Reference Frame, station coordinates, Earth rotation parameters, standard gravitational parameter – GM, and low-degree spherical harmonics of the Earth’s gravity field. Currently, all new active navigation satellites are equipped with laser retroreflectors for range measurements. Due to that fact, one can determine SLR-derived parameters based on the range measurements to multi-GNSS constellations: Galileo, GLONASS, BeiDou and QZSS. However, a full consistency between both SLR and GNSS techniques is required to obtain reliable global geodetic parameters. The current requirement imposed by GGOS demands a precise reference frame that is stable-in-time and accurate at the level of 1 mm. Atmospheric pressure loading (APL) plays an important role in precise space geodesy, due to the fact that it causes displacements of the geodetic stations of magnitude at the level of 1 cm both in vertical and horizontal directions. As a result, APL corrections should be considered if one would like to fulfill requirements imposed by GGOS. SLR is especially affected by APL due to the fact that range measurements can be performed only during cloudless conditions, which coincide with the high atmospheric pressure that deforms the Earth’s crust.
    [Show full text]
  • Draft American National Standard Astrodynamics
    BSR/AIAA S-131-200X Draft American National Standard Astrodynamics – Propagation Specifications, Test Cases, and Recommended Practices Warning This document is not an approved AIAA Standard. It is distributed for review and comment. It is subject to change without notice. Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Sponsored by American Institute of Aeronautics and Astronautics Approved XX Month 200X American National Standards Institute Abstract This document provides the broad astrodynamics and space operations community with technical standards and lays out recommended approaches to ensure compatibility between organizations. Applicable existing standards and accepted documents are leveraged to make a complete—yet coherent—document. These standards are intended to be used as guidance and recommended practices for astrodynamics applications in Earth orbit where interoperability and consistency of results is a priority. For those users who are purely engaged in research activities, these standards can provide an accepted baseline for innovation. BSR/AIAA S-131-200X LIBRARY OF CONGRESS CATALOGING DATA WILL BE ADDED HERE BY AIAA STAFF Published by American Institute of Aeronautics and Astronautics 1801 Alexander Bell Drive, Reston, VA 20191 Copyright © 200X American Institute of Aeronautics and Astronautics All rights reserved No part of this publication may be reproduced in any form, in an electronic retrieval
    [Show full text]
  • A Review of the Lunar Laser Ranging Technique and Contribution of Timing
    Review Article Timing systems for lunar laser ranging Page 1 of 9 A review of the lunar laser ranging technique and AUTHORS: contribution of timing systems Cilence Munghemezulu1,2 Ludwig Combrinck1,2 Joel O. Botai3 The lunar laser ranging (LLR) technique is based on the two-way time-of-flight of laser pulses from an earth station to the retroreflectors that are located on the surface of the moon. We discuss the ranging technique AFFILIATIONS: and contribution of the timing systems and its significance in light of the new LLR station currently under 1Centre for Geoinformation Science, Department of development by the Hartebeesthoek Radio Astronomy Observatory (HartRAO). Firstly, developing the LLR Geography, Geoinformatics station at HartRAO is an initiative that will improve the current geometrical network of the LLR stations and Meteorology, University of Pretoria, Pretoria, South Africa which are presently concentrated in the northern hemisphere. Secondly, data products derived from the 2Space Geodesy Programme, LLR experiments – such as accurate lunar orbit, tests of the general relativity theory, earth–moon dynamics, Hartebeesthoek Radio interior structure of the moon, reference frames, and station position and velocities – are important in better Astronomy Observatory, understanding the earth–moon system. We highlight factors affecting the measured range such as the effect Krugersdorp, South Africa 3South African Weather Service, of earth tides on station position and delays induced by timing systems, as these must be taken into account Pretoria, South Africa during the development of the LLR analysis software. HartRAO is collocated with other fundamental space geodetic techniques which makes it a true fiducial geodetic site in the southern hemisphere and a central point CORRESPONDENCE TO: Cilence Munghemezulu for further development of space-based techniques in Africa.
    [Show full text]
  • Lunar Laser Ranging: the Millimeter Challenge
    REVIEW ARTICLE Lunar Laser Ranging: The Millimeter Challenge T. W. Murphy, Jr. Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424, USA E-mail: [email protected] Abstract. Lunar laser ranging has provided many of the best tests of gravitation since the first Apollo astronauts landed on the Moon. The march to higher precision continues to this day, now entering the millimeter regime, and promising continued improvement in scientific results. This review introduces key aspects of the technique, details the motivations, observables, and results for a variety of science objectives, summarizes the current state of the art, highlights new developments in the field, describes the modeling challenges, and looks to the future of the enterprise. PACS numbers: 95.30.Sf, 04.80.-y, 04.80.Cc, 91.4g.Bg arXiv:1309.6294v1 [gr-qc] 24 Sep 2013 CONTENTS 2 Contents 1 The LLR concept 3 1.1 Current Science Results . 4 1.2 A Quantitative Introduction . 5 1.3 Reflectors and Divergence-Imposed Requirements . 5 1.4 Fundamental Measurement and World Lines . 10 2 Science from LLR 12 2.1 Relativity and Gravity . 12 2.1.1 Equivalence Principle . 13 2.1.2 Time-rate-of-change of G ....................... 14 2.1.3 Gravitomagnetism, Geodetic Precession, and other PPN Tests . 14 2.1.4 Inverse Square Law, Extra Dimensions, and other Frontiers . 16 2.2 Lunar and Earth Physics . 16 2.2.1 The Lunar Interior . 16 2.2.2 Earth Orientation, Precession, and Coordinate Frames . 18 3 LLR Capability across Time 20 3.1 Brief LLR History .
    [Show full text]
  • Determination of the Geocentric Gravitational Constant from Laser
    VOL. 5, NO. 12 GEOPHYSICALRESEARCH LETTERS DECEMBER1978 DETERMINATION OF THE GEOCENTRI½ GRAVITATIONAL CONSTANT FROM LASER RANGING ON NEAR-EARTH SATELLITES 1 2 • Francis 3. Lerch, Roy E. Laubscher, Steven M. Klosko 1 1 David E. Smith, Ronald Kolenkiewicz, Barbara H. Putney, 1 2 James G. Marsh, and Joseph E. Brownd 1 GeodynamicsBranch, GoddardSpace Flight Center Computer Sciences Corporation, Silver Spring, Maryland 3EG&GWashington Analytical ServicesCenter, Inc., Riverdale, Maryland Abstract. Laser range observations taken on earth plus moon Ms/(Me + Mm) of 328900.50+ the near-earth satellites of Lageos (a -- 1.92 .03. Assuming the AU and the IAG value of c, e.r.), Starlette (a -- 1.15 e.r.), BE-C (a = 1.18 this yields a value of GM of 398600.51 + .03 when e.r.) and Geos-3 (a -- 1.13 e.r.), have been using an earth to moon mass ratio of 81.3007 combined to determine an improved value of the (Wong and Reinbold, 1973). geocentric gravitational constant (GM). The In this paper we use near-earth laser ranging value of GM is 398600.61 km3/sec2, based upon a in a new determination of GM. These results speed of light, c, of 299792.5 kin/sec. Using the basically confirm those obtained from inter- planetary and lunar laser experiments, but km/secIAGadopted scales valueGM to of 398600.44 c equallin• km /sec299792.458 2. The further reduces the uncertainty of GM. uncertainty in this value is assessed to be + .02 km3/sec2. Determinations of GM from the-data Near Earth Laser Ranging Experiment. The taken on these four satellites individually show experiment reported here was performed in the variations of only .04 km3/sec2 from the combined development of the recent Goddard Earth Models result.
    [Show full text]
  • A New Laser-Ranged Satellite for General Relativity and Space Geodesy IV
    A new laser-ranged satellite for General Relativity and Space Geodesy IV. Thermal drag and the LARES 2 space experiment 1,2 3 3 Ignazio Ciufolini∗ , Richard Matzner , Justin Feng , David P. Rubincam4, Erricos C. Pavlis5, Giampiero Sindoni6, Antonio Paolozzi6 and Claudio Paris2 1Dip. Ingegneria dell'Innovazione, Universit`adel Salento, Lecce, Italy 2Museo della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy 3Theory Group, University of Texas at Austin, USA 4NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 5Goddard Earth Science and Technology Center (GEST), University of Maryland, Baltimore County, USA 6Scuola di Ingegneria Aerospaziale , Sapienza Universit`adi Roma, Italy In three previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources in the LARES 2 experiment, its error budget, Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts per thousand in the test of frame-dragging, and we treated the error due to the uncertainty in the de Sitter effect, a relativistic orbital perturbation. Here we discuss the impact in the error budget of the LARES 2 frame-dragging experiment of the orbital perturbation due to thermal drag or thermal thrust. We show that the thermal drag induces an uncertainty of about one part per thousand in the LARES 2 frame-dragging test, consistent with the error estimates in our previous papers. arXiv:1911.05016v1 [gr-qc] 12 Nov 2019 1 Introduction: thermal drag and LARES 2 We recently described a new satellite experiment to measure the General Relativistic phenomenon know as frame dragging, or the Lense-Thirring effect.
    [Show full text]
  • LARES, Laser Relativity Satellite
    LARES,LARES, LaserLaser RelativityRelativity Satellite:Satellite: TowardsTowards aa OneOne PercentPercent MeasurementMeasurement ofof FrameFrame DraggingDragging byby LAGEOS,LAGEOS, LAGEOSLAGEOS 2,2, LARESLARES andand GRACEGRACE by ΙΙΙgnazio Ciufolini presented by Rolf Koenig (Univ. Salento) (GFZ) A. Paolozzi*, E. Pavlis* , R. Koenig* , J. Ries* , R. Matzner* , G. Sindoni*, H. Neumayer* *Sapienza Un. Rome, *Maryland Un ., *GFZ-German Research Centre for Geosciences-Potsdam, *Un. Texas Austin 17 Int. Workshop on Laser Ranging, Bad Kötzting, 16-3-2010 ContentContent BRIEF INTRODUCTION ON FRAME -DRAGGING and GRAVITOMAGNETISM EXPERIMENTS * The 2004 -2007 measurements using the GRACE Earth ’s gravity models and the LAGEOS satellites • * LARES: 2011 DRAGGINGDRAGGING OFOF INERTIALINERTIAL FRAMESFRAMES ((FRAMEFRAME --DRAGGINGDRAGGING asas EinsteinEinstein namednamed itit inin 1913)1913) The “local inertial frames ” are freely falling frames were, locally, we do not “feel ” the gravitational field, examples: an elevator in free fall, a freely orbiting spacecraft. In General Relativity the axes of the local inertial frames are determined by gyroscopes and the gyroscopes are dragged by mass -energy currents, e.g., by the Earth rotation. Thirring 1918 Braginsky, Caves and Thorne 1977 Thorne 1986 I.C. 1994-2001 GRAVITOMAGNETISM:GRAVITOMAGNETISM: ff ramerame --draggingdragging isis alsoalso calledcalled gravitomagnetismgravitomagnetism forfor itsits formalformal analogyanalogy withwith electrodynamicselectrodynamics InIn electrodynamicselectrodynamics
    [Show full text]