J. Geod. Sci. 2019; 9:48–58 Research Article Open Access R. Pail*, J. Bamber, R. Biancale, R. Bingham, C. Braitenberg, A. Eicker, F. Flechtner, T. Gruber, A. Güntner, G. Heinzel, M. Horwath, L. Longuevergne, J. Müller, I. Panet, H. Savenije, S. Seneviratne, N. Sneeuw, T. van Dam, and B. Wouters Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space DOI: https://doi.org/10.1515/jogs-2019-0006 Abstract: As changes in gravity are directly related to mass Received October 5, 2018; accepted March 10, 2019 variability, satellite missions observing the Earth’s time varying gravity eld are a unique tool for observing mass transport processes in the Earth system, such as the wa- *Corresponding Author: R. Pail: Technical University of Munich, ter cycle, rapid changes in the cryosphere, oceans, and Institute of Astronomical and Physical Geodesy, Munich, Germany, solid Earth processes, on a global scale. The observation E-mail:
[email protected] of Earth’s gravity eld was successfully performed by the J. Bamber: University of Bristol, School of Geographical Sciences, GRACE and GOCE satellite missions, and will be contin- Bristol, UK ued by the GRACE Follow-On mission. A comprehensive R. Biancale: Centre National d’Études Spatiales (CNES), Toulouse, France team of European scientists proposed the next-generation R. Bingham: University of Bristol, School of Geographical Sciences, gravity eld mission MOBILE in response to the Euro- Bristol, UK pean Space Agency (ESA) call for a Core Mission in the C. Braitenberg: University of Trieste, Dptm.