Optics and Photonics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Monday, 08:00–10:00 CLEO: QELS-Fundamental Science
07:00–18:00 Registration, Concourse Level Executive Ballroom Executive Ballroom Executive Ballroom Executive Ballroom 210A 210B 210C 210D CLEO: QELS-Fundamental Science 08:00–10:00 08:00–10:00 08:00–10:00 08:00–10:00 FM1A • Quantum FM1B • Topological Photonics I FM1C • Novel Phenomena in FM1D • Coherent Phenomena Optomechanics & Transduction Presider: To Be Announced Classical Nano-Optics in Coupled Resonator Networks Monday, 08:00–10:00 Monday, Presider: Gabriel Molina Terriza; Presider: Mo Mojahedi; Univ. of Presider: To Be Announced Centro de Fisica de Materiales, Toronto, USA Spain FM1A.1 • 08:00 FM1B.1 • 08:00 FM1C.1 • 08:00 FM1D.1 • 08:00 Invited Ultralow Dissipation Mechanical Resona- Spin-Preserving Chiral Photonic Crystal Brightness Theorems for Nanophoton- Solving Hard Computational Problems with 1,2 1 1 tors for Quantum Optomechanics, Nils Mirror, Behrooz Semnani , Jeremy Flan- ics, Hanwen Zhang , Chia Wei Hsu , Owen Coupled Lasers, Nir Davidson1; 1Weizmann 1 1 2 2 2 1 1 Johan Engelsen , Sergey A. Fedorov , Amir nery , Zhenghao Ding , Rubayet Al Maruf , Miller ; Yale Univ., USA. We present nano- Inst. of Science, Israel. We present a new a 1 1 2,1 1 H. Ghadimi , Mohammad J. Bereyhi , Alberto Michal Bajcsy ; ECE, Univ. of Waterloo, photonic ‘’brightness theorems’’, a set of new system of coupled lasers in a modified 1 1 2 2 Beccari , Ryan Schilling , Dalziel J. Wilson , Canada; Inst. for Quantum Computing, power-concentration bounds that generalize degenerate cavity that is used to solve dif- 1 1 Tobias J. Kippenberg ; Ecole Polytechnique Canada. We report on experimental realiza- their ray-optical counterparts, and motivate ficult computational tasks. -
Frontier REGION NEWS
VOLUME 41 • ISSUE 1 • MARCH 2017 • THEINSTITUTE.IEEE.ORG 5G The New Wireless Frontier REGION NEWS REGION NORTHEASTERN I Student branch at University of Texas, San for Science and Technology, Mubarak Al- I Student branch at Universidade Fed- UNITED STATES Antonio, forms IEEE Ultrasonics, Ferroelec- Abdullah, Kuwait. eral do Rio de Janeiro forms IEEE Power & trics, and Frequency Control Society chapter. Energy Society chapter and IEEE WIE a n- I Student branch at New York I Student branch formed at Lebanese ity group. 1 City College of Technology forms University, Beirut. I IEEE Women in Engineering REGION WESTERN UNITED STATES I Student branch formed at Muscat Student branch at Londrina State (WIE) a nity group. I San Fernando Valley (Calif.) College, Oman. University, Brazil, forms IEEE Robotics Section forms IEEE Robotics and and Automation Society chapter. I Student branch formed at Shaheed 6 Automation Society chapter. I Student branch at Universidad de REGION SOUTHEASTERN Zul kar Ali Bhutto Institute of Science UNITED STATES I Student branch at Washington and Technology, Karachi, Pakistan. Concepción, Chile, forms IEEE Engineering State University, Vancouver, forms IEEE in Medicine and Biology Society chapter. I Student branch at Florida I Student branch at National Research Industry Applications Society chapter. I 3 Atlantic University, Boca Raton, University of Electronic Technology, Zele- Student branch at Escuela Tecnológica forms IEEE Power & Energy nograd, Russia, forms IEEE Engineering in Instituto Técnico Central, Bogotá, forms Society chapter. REGION CANADA Medicine and Biology Society chapter. IEEE WIE affinity group. I I Student branch formed at Florida I Montreal Section forms chap- I Saudi Arabia Section forms IEEE WIE Student branches formed in Colombia Polytechnic University, Lakeland. -
B.Sc. Mechatronics Specialization: Photonic Engineering
Study plan for: B.Sc. Mechatronics Specialization: Photonic Engineering Faculty of Mechatronics Study plan for reference only; may be subject to change. Semester 1 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 Patents and Intelectual Property 30 2 Optics and Photonics Applications 30 15 3 Calculus I 30 45 7 Algebra and Geometry 15 30 4 Engineering Graphics 15 30 2 Materials 30 2 Computer Science I 30 30 6 Engineering Physics 30 30 4 Total ECTS 30 Semester 2 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 Economics 30 2 Elective Lecture 1/Virtual and 30 3 Augmented Reality Calculus II 30 30 5 Engineering Graphics ‐ CAD 30 2 Computer Science II 15 15 5 Mechanics I i II 45 45 6 Mechanics of Structures I 30 15 4 Electric Circuits I 30 15 3 Total ECTS 30 1 Study Plan for B.Sc. Mechatronics (Spec. Photonic Engineering) Semester 3 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 0 Foreign Language 60 4 Elective Lecture 2/Introduction to 30 3 MEMS Calculus III 15 30 6 Mechanics of Structures II 15 15 4 Manufacturing Technology I 30 4 Fine Machine Design I 15 30 3 Electric Circuits II 30 3 Basics of Automation and Control I 30 15 4 Total ECTS 31 Semester 4 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 Foreign Language 60 4 Elective Lecture 3/Photographic 30 3 techniques in image acqusition Elective Lecture 4 30 3 /Enterpreneurship Optomechatronics 30 30 5 Electronics I 15 15 2 Electronics II 15 1 Fine Machine Design II 15 15 3 Manufacturing Technology 30 2 Metrology 30 30 4 Total ECTS 27 Semester 5 Course Lecture Tutorial Labs Pojects ECTS (hours) (hours) (hours) (hours) Physical Education and Sports 30 0 Foreign Language 60 4 Marketing 30 2 Elective Lecture 5/ Electric 30 2 2 Study Plan for B.Sc. -
Nonlinear Nanophotonic Devices in the Ultraviolet to Visible Wavelength
Nanophotonics 2020; 9(12): 3781–3804 Review Jinghan He, Hong Chen, Jin Hu, Jingan Zhou, Yingmu Zhang, Andre Kovach, Constantine Sideris, Mark C. Harrison, Yuji Zhao and Andrea M. Armani* Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range https://doi.org/10.1515/nanoph-2020-0231 1 Introduction Received April 7, 2020; accepted June 12, 2020; published online July 4, 2020 The past several decades has witnessed the convergence of novel nonlinear materials with nanofabrication methods, Abstract: Although the first lasers invented operated in enabling a plethora of new nonlinear optical (NLO) devices the visible, the first on-chip devices were optimized for [1–4]. Originally, the focus was on developing devices near-infrared (IR) performance driven by demand in tele- operating in the telecommunications wavelength band to communications. However, as the applications of inte- improve communications. One example of an initial suc- grated photonics has broadened, the wavelength demand cess is on-chip modulators and add-drop filters for has as well, and we are now returning to the visible (Vis) switching and isolating of optical wavelengths. While and pushing into the ultraviolet (UV). This shift has initial devices were fabricated from crystalline materials required innovations in device design and in materials as [5–7], the highest performing devices were made from well as leveraging nonlinear behavior to reach these organic polymers [8–16]. As nanofabrication processes wavelengths. This review discusses the key nonlinear improved, higher performance integrated devices were phenomena that can be used as well as presents several developed, such as high quality factor optical resonant emerging material systems and devices that have reached cavities, and higher order nonlinear behaviors became the UV–Vis wavelength range. -
Molecular Materials for Nonlinear Optics
RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal molecular solids mere aggregations of molecules held to line fIlms, and amorphous compositions. In these materi gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic. -
Download The
LEADING THE FUTURE OF TECHNOLOGY 2016 ANNUAL REPORT TABLE OF CONTENTS 1 MESSAGE FROM THE IEEE PRESIDENT AND THE EXECUTIVE DIRECTOR 3 LEADING THE FUTURE OF TECHNOLOGY 5 GROWING GLOBAL AND INDUSTRY PARTNERSHIPS 11 ADVANCING TECHNOLOGY 17 INCREASING AWARENESS 23 AWARDING EXCELLENCE 29 EXPANSION AND OUTREACH 33 ELEVATING ENGAGEMENT 37 MESSAGE FROM THE TREASURER AND REPORT OF INDEPENDENT CERTIFIED PUBLIC ACCOUNTANTS 39 CONSOLIDATED FINANCIAL STATEMENTS Barry L. Shoop 2016 IEEE President and CEO IEEE Xplore® Digital Library to enable personalized importantly, we must be willing to rise again, learn experiences based on second-generation analytics. from our experiences, and advance. As our members drive ever-faster technological revolutions, each of us MESSAGE FROM As IEEE’s membership continues to grow must play a role in guaranteeing that our professional internationally, we have expanded our global presence society remains relevant, that it is as innovative as our THE IEEE PRESIDENT AND and engagement by opening offices in key geographic members are, and that it continues to evolve to meet locations around the world. In 2016, IEEE opened a the challenges of the ever-changing world around us. second office in China, due to growth in the country THE EXECUTIVE DIRECTOR and to better support engineers in Shenzhen, China’s From Big Data and Cloud Computing to Smart Grid, Silicon Valley. We expanded our office in Bangalore, Cybersecurity and our Brain Initiative, IEEE members India, and are preparing for the opening of a new IEEE are working across varied disciplines, pursuing Technology continues to be a transformative power We continue to make great strides in our efforts to office in Vienna, Austria. -
2008 Annual Report
2008 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Engineering Education 4 Center for the Advancement of Scholarship on Engineering Education 6 Technological Literacy 6 Public Understanding of Engineering Developing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 9 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project Engineering Equity Extension Service 10 Frontiers of Engineering Armstrong Endowment for Young Engineers-Gilbreth Lectures 12 Engineering and Health Care 14 Technology and Peace Building 14 Technology for a Quieter America 15 America’s Energy Future 16 Terrorism and the Electric Power-Delivery System 16 U.S.-China Cooperation on Electricity from Renewables 17 U.S.-China Symposium on Science and Technology Strategic Policy 17 Offshoring of Engineering 18 Gathering Storm Still Frames the Policy Debate 20 2008 NAE Awards Recipients 22 2008 New Members and Foreign Associates 24 2008 NAE Anniversary Members 28 2008 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 29 Catalyst Society 30 Rosette Society 30 Challenge Society 30 Charter Society 31 Other Individual Donors 34 The Presidents’ Circle 34 Corporations, Foundations, and Other Organizations 35 National Academy of Engineering Fund Financial Report 37 Report of Independent Certified Public Accountants 41 Notes to Financial Statements 53 Officers 53 Councillors 54 Staff 54 NAE Publications Letter from the President Engineering is critical to meeting the fundamental challenges facing the U.S. economy in the 21st century. -
Read About the Future of Packaging with Silicon Photonics
The future of packaging with silicon photonics By Deborah Patterson [Patterson Group]; Isabel De Sousa, Louis-Marie Achard [IBM Canada, Ltd.] t has been almost a decade Optics have traditionally been center design. Besides upgrading optical since the introduction of employed to transmit data over long cabling, links and other interconnections, I the iPhone, a device that so distances because light can carry the legacy data center, comprised of many successfully blended sleek hardware considerably more information off-the-shelf components, is in the process with an intuitive user interface that it content (bits) at faster speeds. Optical of a complete overhaul that is leading to effectively jump-started a global shift in transmission becomes more energy significant growth and change in how the way we now communicate, socialize, efficient as compared to electronic transmit, receive, and switching functions manage our lives and fundamentally alternatives when the transmission are handled, especially in terms of next- interact. Today, smartphones and countless length and bandwidth increase. As the generation Ethernet speeds. In addition, other devices allow us to capture, create need for higher data transfer speeds at as 5G ramps, high-speed interconnect and communicate enormous amounts of greater baud rate and lower power levels between data centers and small cells will content. The explosion in data, storage intensifies, the trend is for optics to also come into play. These roadmaps and information distribution is driving move closer to the die. Optoelectronic will fuel multi-fiber waveguide-to-chip extraordinary growth in internet traffic interconnect is now being designed interconnect solutions, laser development, and cloud services. -
Merging Photonics and Artificial Intelligence at the Nanoscale
Intelligent Nanophotonics: Merging Photonics and Artificial Intelligence at the Nanoscale Kan Yao1,2, Rohit Unni2 and Yuebing Zheng1,2,* 1Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA 2Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA *Corresponding author: [email protected] Abstract: Nanophotonics has been an active research field over the past two decades, triggered by the rising interests in exploring new physics and technologies with light at the nanoscale. As the demands of performance and integration level keep increasing, the design and optimization of nanophotonic devices become computationally expensive and time-inefficient. Advanced computational methods and artificial intelligence, especially its subfield of machine learning, have led to revolutionary development in many applications, such as web searches, computer vision, and speech/image recognition. The complex models and algorithms help to exploit the enormous parameter space in a highly efficient way. In this review, we summarize the recent advances on the emerging field where nanophotonics and machine learning blend. We provide an overview of different computational methods, with the focus on deep learning, for the nanophotonic inverse design. The implementation of deep neural networks with photonic platforms is also discussed. This review aims at sketching an illustration of the nanophotonic design with machine learning and giving a perspective on the future tasks. Keywords: deep learning; (nano)photonic neural networks; inverse design; optimization. 1. Introduction Nanophotonics studies light and its interactions with matters at the nanoscale [1]. Over the past decades, it has received rapidly growing interest and become an active research field that involves both fundamental studies and numerous applications [2,3]. -
Experimental Photonics Multiple Post-Doctoral Positions Experimental Expertise in Any One of the Following Topics/Areas Is Highly Desired
Experimental Photonics Multiple Post-Doctoral Positions Experimental Expertise in any one of the following topics/areas is highly desired . Single photon level measurements , quantum communications . Computational imaging, super-resolution imaging, biomedical imaging . Quantum dots, 2D materials, quantum devices, quantum transport . Single molecule spectroscopy/imaging . Fluorescence microscopy . Optical manipulation of spin , ODMR, Magnetometry, NV centers . Nanofabication (Metasurfaces, plasmonics,silicon photonics) . Streak camera or time-correlated single photon counting experiments . Ultrafast spectroscopy, pump-probe measurements . Single nanoparticle/nanoantenna experiments . Coupling of single quantum emitters to nanophotonic structures . Cold atoms and quantum optics . Infrared spectroscopy, thermal emission measurements Please send your full CV and three representative publications to: [email protected] Prof. Zubin Jacob Birck Nanotechnology Center School of Electrical and Computer Engineering Purdue University, U.S.A. www.electrodynamics.org Zubin Jacob Research Group: Purdue University www.electrodynamics.org About the group Google Scholar Page: https://scholar.google.ca/citations?user=8FXvN_EAAAAJ&hl=en Main Research Areas: Casimir forces, quantum nanophotonics, plasmonics, metamaterials, Vacuum fluctuations, open quantum systems Weblink: www.electrodynamics.org Theory and Experiment Twitter: twitter.com/zjacob_group • Opportunity to closely interact with theorists and experimentalists within the group • Opportunity to travel -
25 Geometric Optics
CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light.