COATING TRACES Coating

Total Page:16

File Type:pdf, Size:1020Kb

COATING TRACES Coating Backgrounder COATING TRACES Coating HIGH REFLECTION COATING TRACES ND:YAG/ND:YLF ..........................................................................................................T-26 TUNABLE LASER MIRRORS .........................................................................................T-28 Coating Traces MISCELLANEOUS MIRRORS ........................................................................................T-30 ANTI-REFLECTION COATING TRACES ANTI-REFLECTIVE OVERVIEW ....................................................................................T-31 0 DEGREE ANGLE OF INCIDENCE ............................................................................T-33 Material Properties 45 DEGREE ANGLE OF INCIDENCE ..........................................................................T-36 CUBES AND POLARIZING COMPONENTS TRACES .........................................................T-38 Optical Specifications cvilaseroptics.com T-25 HIGH REFLECTION COATING TRACES: Y1-Y4, HM AT 0 DEGREE INCIDENCE Optical Coatings and Materials Traces Y1 - 1064nm - 0 DEGREES Y2 - 532nm - 0 DEGREES Y3 - 355nm - 0 DEGREES Y4 - 266nm - 0 DEGREES HM - 1064/532nm - 0 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-26 cvilaseroptics.com Backgrounder Coating HIGH REFLECTION COATING TRACES: Y1-Y4, HM, YH, AT 45 DEGREE INCIDENCE Y1 - 1064nm - 45 DEGREES Y2 - 532nm - 45 DEGREES Coating Traces Material Properties Y3 - 355nm - 45 DEGREES Y4 - 266nm - 45 DEGREES Optical Specifications HM - 1064/532nm - 45 DEGREES YH - 1064/633nm - 45 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - cvilaseroptics.com T-27 HIGH REFLECTION COATING TRACES: TLM1 AT 0 DEGREE INCIDENCE Optical Coatings and Materials Traces TLM1 - 200nm - 0 DEGREES TLM1 - 400nm - 0 DEGREES TLM1 - 780nm - 0 DEGREES TLM1 - 800nm - 0 DEGREES TLM1 - 1030nm - 0 DEGREES TLM1 - 1550nm - 0 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-28 cvilaseroptics.com Backgrounder Coating HIGH REFLECTION COATING TRACES: TLM1 AT 45 DEGREE INCIDENCE TLM1 - 200nm - 45 DEGREES TLM1 - 400nm - 45 DEGREES Coating Traces Material Properties TLM1 - 780nm - 45 DEGREES TLM1 - 800nm - 45 DEGREES Optical Specifications TLM1 - 1030nm - 45 DEGREES TLM1 - 1550nm - 45 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - cvilaseroptics.com T-29 HIGH REFLECTION COATING TRACES TLMB, KRF, ARF Optical Coatings and Materials Traces TLMB - 800nm - 0 DEGREES KRF - 248nm - 0 DEGREES TLMB - 800nm - 45 DEGREES KRF - 248nm - 45 DEGREES ARF - 193nm - 45 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-30 cvilaseroptics.com Backgrounder Coating ANTI-REFLECTION COATING TRACES V-COATINGS CVI Laser Optics V-type Coatings are the best choice for a single laser wavelength or multiple, closely spaced DOUBLE-V AND TRIPLE-V COATINGS Coating Traces wavelengths. Examples are the principle argon laser Below the existing paragraph add: lines at 488nm and 514nm, the neodymium transitions Specifications for the standard CVI Laser Optics in a variety of host materials at 1047 – 1064nm and their Double-V and Triple-V Coatings (0° AOI): harmonics, and the individual excimer laser lines. Said X R ≤ 0.3% at 1064nm standard coatings are available for most laser lines. X R ≤ 0.6% at 532nm X R ≤ 1.5% at 355nm CVI Laser Optics will manufacture V-type AR coatings for wavelengths from 193nm to 2100nm. Center wavelengths with the aforesaid range can be optimized Material Properties for specific angles of incidence and polarizations by request. Standard CVI Laser Optics V-type AR coatings on Fused Silica, Crystal Quartz, Suprasil, and N-BK7 have a damage threshold of 15J/cm2 at 1064nm, 20ns, 20Hz. Typical performance can often exceed 20J/cm2. Other coating designs are available to increase and/or prioritize Optical Specifications the need for high laser damage threshold. Damage thresholds for AR coatings on N-SF11 and similar glasses are limited not by the coating, but by the bulk material properties. Our damage testing has shown a damage threshold for N-SF11 and similar glasses to be 4J/cm2. When ordering, be sure to specify the following: X Wavelength X Substrate Material X Angle of Incidence X Polarization X Fluence in J/cm2 Specifications for the standard CVI Laser Optics V-type AR Coating (≥ 266nm): X R ≤ 0.25% at 0°, ≤ 0.1% typical X R ≤ 0.75% for 45° P-Polarization X R ≤ 1.0% for 45° Unpolarized X R ≤ 1.3% for 45° S-Polarization Other coating designs and methods may be applied to significantly reduce reflectance. These designs may be applied by request. cvilaseroptics.com T-31 ANTI-REFLECTION COATING TRACES Optical Coatings and Materials Traces BROADBAND MULTILAYER HEBBAR™ COATINGS ANTIREFLECTION COATINGS HEBBAR coatings exhibit a characteristic double- Broadband antireflection coatings provide a very low minimum reflectance curve covering a spectral range of reflectance over a broad spectral bandwidth. These some 250 nm or more. The reflectance does not exceed advanced multilayer films are optimized to reduce 1.0%, and is typically below 0.6%, over this entire range. overall reflectance to an extremely low level over a broad Within a more limited spectral range on either side of spectral range. the central peak, reflectance can be held to well below 0.4%. HEBBAR coatings are relatively insensitive to There are two families of broadband antireflection angle of incidence. The effect of increasing the angle of coatings from CVI Laser Optics: BBAR and HEBBAR™. incidence (with respect to the normal to the surface) is to shift the curve to slightly shorter wavelengths and to BBAR-SERIES COATINGS increase the long wavelength reflectance slightly. These CVI Laser Optics offers seven overlapping broad band coatings are extremely useful for high numerical-aperture antireflection (BBAR) coating designs covering the (low f-number) lenses and steeply curved surfaces. In entire range from 193 nm to 1600 nm. This includes very these cases, incidence angles vary significantly over the broad coverage of the entire Ti:Sapphire region. The aperture. BBAR coatings are unique in the photonics industry by providing both a low average reflection of ≤ 0.5% over a The typical reflectance curves shown below are for N-BK7 very broad range and also providing the highest damage substrates, except for the ultraviolet 245 – 440 nm and threshold for pulsed and continuous wave laser sources 300-500 nm coatings which are applied to fused silica (10J/cm2, 20 ns, 20 Hz at 1064 nm and 1MW/cm2 cw at substrates or components. The reflectance values given 1064 nm respectively). Typical performance curves are below apply only to substrates with refractive indices shown in the graphs for each of the standard range ranging from 1.47 to 1.55. Other indices, while having offerings. If your application cannot be covered by a their own optimized designs, will exhibit reflectance standard design, CVI Laser Optics can provide a special values approximately 20% higher for incidence angles broad band antireflection coating for your application. from 0 to 15º and 25% higher for incidence angles of 30+º. X R < 0.5% average over bandwidth at 0° X R < 1.0% absolute over bandwidth at 0° All HEBBAR coatings are specialty coatings, these are X R < 0.5% average over bandwidth for 45°P designs available for prototype and OEM applications. X R < 1.5% average over bandwidth for 45°UNP X R < 3.0% average over bandwidth for 45°S To order a HEBBAR coating, append the coating suffix given in the table below to the product number. In some instances it will be necessary to specify which surfaces are to be coated. All HEBBAR coatings are specialty coatings, these are designs available for prototype and OEM applications. T-32 cvilaseroptics.com Backgrounder Coating ANTI REFLECTION COATINGS TRACES AT 0 DEGREE INCIDENCE 248nm - AR - 0 DEGREES 248-355nm - BBAR - 0 DEGREES Coating Traces Material Properties 266nm - AR - 0 DEGREES 355nm - AR - 0 DEGREES Optical Specifications 355-532nm - BBAR - 0 DEGREES 400nm - AR - 0 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - cvilaseroptics.com T-33 ANTI REFLECTION COATINGS TRACES AT 0 DEGREE INCIDENCE Optical Coatings and Materials Traces 415-700nm - BBAR - 0 DEGREES 532nm - AR - 0 DEGREES 633nm - AR - 0 DEGREES 633-1064nm - BBAR - 0 DEGREES 700-900nm - BBAR - 0 DEGREES 800nm - AR - 0 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-34 cvilaseroptics.com Backgrounder Coating ANTI REFLECTION COATINGS TRACES AT 0 DEGREE INCIDENCE 1030nm - AR - 0 DEGREES 1050-1600nm - BBAR - 0 DEGREES Coating Traces Material Properties 1064nm - AR - 0 DEGREES 1550nm - AR - 0 DEGREES Optical Specifications P-POL: UNP: - - - - - S-POL: 0°: - - - - - - cvilaseroptics.com T-35 ANTI REFLECTION COATINGS TRACES AT 45 DEGREE INCIDENCE Optical Coatings and Materials Traces 248-355nm - BBAR - 45 DEGREES 266nm - AR - 45 DEGREES 355nm - AR - 45 DEGREES 355-532nm - BBAR - 45 DEGREES 400nm - AR - 45 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-36 cvilaseroptics.com Backgrounder Coating ANTI REFLECTION COATINGS TRACES AT 45 DEGREE INCIDENCE 800nm - AR - 45 DEGREES 1064nm - AR - 45 DEGREES Coating Traces Material Properties Optical Specifications P-POL: UNP: - - - - - S-POL: 0°: - - - - - - cvilaseroptics.com T-37 CUBES AND POLARIZING COMPONENTS TRACES Optical Coatings and Materials Traces P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-38 cvilaseroptics.com Backgrounder Coating CUBES AND POLARIZING COMPONENTS TRACES Coating Traces Material Properties Optical Specifications P-POL: UNP: - - - - - S-POL: 0°: - - - - - - cvilaseroptics.com T-39 CUBES AND POLARIZING COMPONENTS TRACES Optical Coatings and Materials Traces P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-40 cvilaseroptics.com Backgrounder Coating CUBES AND POLARIZING COMPONENTS TRACES Coating Traces Material Properties Optical Specifications P-POL: UNP: - - - - - S-POL: 0°: - - - - - - cvilaseroptics.com T-41 CUBES AND POLARIZING COMPONENTS TRACES Optical Coatings and Materials Traces P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-42 cvilaseroptics.com.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Molecular Materials for Nonlinear Optics
    RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para­ physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam­ Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com­ is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal­ molecular solids mere aggregations of molecules held to­ line fIlms, and amorphous compositions. In these materi­ gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug­ solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic.
    [Show full text]
  • 25 Geometric Optics
    CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light.
    [Show full text]
  • Antireflective Coatings
    materials Review Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review Mehdi Keshavarz Hedayati 1,* and Mady Elbahri 1,2,3,* 1 Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kiel 24143, Germany 2 Nanochemistry and Nanoengineering, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany 3 Nanochemistry and Nanoengineering, School of Chemical Technology, Aalto University, Kemistintie 1, Aalto 00076, Finland * Correspondence: [email protected] (M.K.H.); mady.elbahri@aalto.fi (M.E.); Tel.: +49-431-880-6148 (M.K.H.); +49-431-880-6230 (M.E.) Academic Editor: Lioz Etgar Received: 2 May 2016; Accepted: 15 June 2016; Published: 21 June 2016 Abstract: Reduction of unwanted light reflection from a surface of a substance is very essential for improvement of the performance of optical and photonic devices. Antireflective coatings (ARCs) made of single or stacking layers of dielectrics, nano/microstructures or a mixture of both are the conventional design geometry for suppression of reflection. Recent progress in theoretical nanophotonics and nanofabrication has enabled more flexibility in design and fabrication of miniaturized coatings which has in turn advanced the field of ARCs considerably. In particular, the emergence of plasmonic and metasurfaces allows for the realization of broadband and angular-insensitive ARC coatings at an order of magnitude thinner than the operational wavelengths. In this review, a short overview of the development of ARCs, with particular attention paid to the state-of-the-art plasmonic- and metasurface-based antireflective surfaces, is presented. Keywords: antireflective coating; plasmonic metasurface; absorbing antireflective coating; antireflection 1.
    [Show full text]
  • Fiber Optics Standard Dictionary
    FIBER OPTICS STANDARD DICTIONARY THIRD EDITION JOIN US ON THE INTERNET WWW: http://www.thomson.com EMAIL: [email protected] thomson.com is the on-line portal for the products, services and resources available from International Thomson Publishing (ITP). This Internet kiosk gives users immediate access to more than 34 ITP publishers and over 20,000 products. Through thomson.com Internet users can search catalogs, examine subject-specific resource centers and subscribe to electronic discussion lists. You can purchase ITP products from your local bookseller, or directly through thomson.com. Visit Chapman & Hall's Internet Resource Center for information on our new publications, links to useful sites on the World Wide Web and an opportunity to join our e-mail mailing list. Point your browser to: bttp:/Iwww.cbapball.com or http://www.thomson.com/chaphaWelecteng.html for Electrical Engineering A service of I ® JI FIBER OPTICS STANDARD DICTIONARY THIRD EDITION MARTIN H. WEIK SPRINGER-SCIENCE+BUSINESS MEDIA, B.v. JOIN US ON THE INTERNET WWW: http://www.thomson.com EMAIL: [email protected] thomson.com is the on-line portal for the products, services and resources available from International Thomson Publishing (ITP). This Internet kiosk gives users immediate access to more than 34 ITP publishers and over 20,000 products. Through thomson.com Internet users can search catalogs, examine subject­ specific resource centers and subscribe to electronic discussion lists. You can purchase ITP products from your local bookseller, or directly through thomson.com. Cover Design: Said Sayrafiezadeh, Emdash Inc. Copyright © 1997 Springer Science+Business Media Dordrecht Originally published by Chapman & Hali in 1997 Softcover reprint ofthe hardcover 3rd edition 1997 Ali rights reserved.
    [Show full text]
  • Fiber Optic Communications
    FIBER OPTIC COMMUNICATIONS EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and used to transmit signals over long distances. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optic Data Transmission Systems Fiber optic data transmission systems send information over fiber by turning electronic signals into light. Light refers to more than the portion of the electromagnetic spectrum that is near to what is visible to the human eye. The electromagnetic spectrum is composed of visible and near -infrared light like that transmitted by fiber, and all other wavelengths used to transmit signals such as AM and FM radio and television. The electromagnetic spectrum. Only a very small part of it is perceived by the human eye as light. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optics Transmission Low Attenuation Very High Bandwidth (THz) Small Size and Low Weight No Electromagnetic Interference Low Security Risk Elements of Optical Transmission Electrical-to-optical Transducers Optical Media Optical-to-electrical Transducers Digital Signal Processing, repeaters and clock recovery. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Types of Optical Fiber Multi Mode : (a) Step-index – Core and Cladding material has uniform but different refractive index. (b) Graded Index – Core material has variable index as a function of the radial distance from the center. Single Mode – The core diameter is almost equal to the wave length of the emitted light so that it propagates along a single path.
    [Show full text]
  • Antireflection Coatings for High Power Fiber Laser Optics Authors: Gherorghe Honciuc, Emiliano Ioffe, Jurgen Kolbe, Ophir Optics Group, MKS Instruments Inc
    Antireflection Coatings for High Power Fiber Laser Optics Authors: Gherorghe Honciuc, Emiliano Ioffe, Jurgen Kolbe, Ophir Optics Group, MKS Instruments Inc. INTRODUCTION Finally, a long service life of the optics is important for the High-power kilowatt-level fiber lasers (wavelength in spec- user in order to minimize downtime of the laser machine. tral range 1.0 – 1.1µm) are used in important applications This can be achieved only if absorption of the AR coatings in macro material processing, particularly for cutting and is very low. welding metal sheets. In these applications, optics (lenses, In this paper, we review the materials, coating technolo- protective windows) are needed to work properly at corre- gies and measurement techniques used at Ophir Optics spondingly high laser power and power density levels. For for high-performance low absorption fiber laser optics these optics, absorption losses are of crucial importance: manufacturing. absorption of laser radiation leads to increased tempera- ture and a correspondingly higher refractive index of the RAW MATERIAL optics. This changes the properties of the transmitted la- There are two material categories regarding the ser beam and can therefore impair the performance of the absorption of fused silica: manufacturing process. In addition, temperature increase • (a) Fused silica with absorption greater than 1 ppm/cm, can cause internal mechanical stress and eventually dam- e. g. Corning 7980 age the optics. To avoid this, optics with lowest possible • (b) Fused silica with absorption less than 1 ppm/cm, [1] absorption losses must be used. e. g. Suprasil 3001 . The most common raw material for these optics is fused Due to the high cost of material of category (b), it should silica which is available with sufficiently low absorption.
    [Show full text]
  • Chapter 19/ Optical Properties
    Chapter 19 /Optical Properties The four notched and transpar- ent rods shown in this photograph demonstrate the phenomenon of photoelasticity. When elastically deformed, the optical properties (e.g., index of refraction) of a photoelastic specimen become anisotropic. Using a special optical system and polarized light, the stress distribution within the speci- men may be deduced from inter- ference fringes that are produced. These fringes within the four photoelastic specimens shown in the photograph indicate how the stress concentration and distribu- tion change with notch geometry for an axial tensile stress. (Photo- graph courtesy of Measurements Group, Inc., Raleigh, North Carolina.) Why Study the Optical Properties of Materials? When materials are exposed to electromagnetic radia- materials, we note that the performance of optical tion, it is sometimes important to be able to predict fibers is increased by introducing a gradual variation and alter their responses. This is possible when we are of the index of refraction (i.e., a graded index) at the familiar with their optical properties, and understand outer surface of the fiber. This is accomplished by the mechanisms responsible for their optical behaviors. the addition of specific impurities in controlled For example, in Section 19.14 on optical fiber concentrations. 766 Learning Objectives After careful study of this chapter you should be able to do the following: 1. Compute the energy of a photon given its fre- 5. Describe the mechanism of photon absorption quency and the value of Planck’s constant. for (a) high-purity insulators and semiconduc- 2. Briefly describe electronic polarization that re- tors, and (b) insulators and semiconductors that sults from electromagnetic radiation-atomic in- contain electrically active defects.
    [Show full text]
  • Ophthalmic Optics
    Handbook of Ophthalmic Optics Published by Carl Zeiss, 7082 Oberkochen, Germany. Revised by Dr. Helmut Goersch ZEISS Germany All rights observed. Achrostigmat®, Axiophot®, Carl Zeiss T*®, Clarlet®, Clarlet The publication may be repro• Aphal®, Clarlet Bifokal®, Clarlet ET®, Clarlet rose®, Clarlux®, duced provided the source is Diavari ®, Distagon®, Duopal ®, Eldi ®, Elta®, Filter ET®, stated and the permission of Glaukar®, GradalHS®, Hypal®, Neofluar®, OPMI®, the copyright holder ob• Plan-Neojluar®, Polatest ®, Proxar ®, Punktal ®, PunktalSL®, tained. Super ET®, Tital®, Ultrafluar®, Umbral®, Umbramatic®, Umbra-Punktal®, Uropal®, Visulas YAG® are registered trademarks of the Carl-Zeiss-Stiftung ® Carl Zeiss CR 39 ® is a registered trademark of PPG corporation. 7082 Oberkochen Optyl ® is a registered trademark of Optyl corporation. Germany Rodavist ® is a registered trademark of Rodenstock corporation 2nd edition 1991 Visutest® is a registered trademark of Moller-Wedel corpora• tion Reproduction and type• setting: SCS Schwarz Satz & Bild digital 7022 L.-Echterdingen Printing and production: C. Maurer, Druck und Verlag 7340 Geislingen (Steige) Printed in Germany HANDBOOK OF OPHTHALMIC OPTICS: Preface 3 Preface A decade has passed since the appearance of the second edition of the "Handbook of Ophthalmic Optics"; a decade which has seen many innovations not only in the field of ophthalmic optics and instrumentation, but also in standardization and the crea• tion of new terms. This made a complete revision of the hand• book necessary. The increasing importance of the contact lens in ophthalmic optics has led to the inclusion of a new chapter on Contact Optics. The information given in this chapter provides a useful aid for the practical work of the ophthalmic optician and the ophthalmologist.
    [Show full text]
  • RRPA Backgrounder
    The Rochester Regional Optics, Photonics, and Imaging Accelerator Backgrounder for Stakeholders The Center for Emerging and Innovative Sciences (CEIS) at the University of Rochester has been awarded a three-year $1.88M grant from a group of 5 federal agencies to accelerate the growth of small- and medium-sized optics, photonics, and imaging companies in the Finger Lakes region. The funded program is known as the Rochester Regional Optics, Photonics, and Imaging Accelerator (RRPA). The applicants for this award are the University of Rochester, High Tech Rochester (HTR), and the New York State Department of Economic Development, Division of Science, Technology, and Innovation (NYSTAR). A team consisting of the University of Rochester, the Rochester Regional Photonics Cluster (RRPC), the Rochester Institute of Technology, Monroe Community College*, and HTR will carry out the work. The 5 federal funding agencies are the Economic Development Administration (EDA), the National Institute for Science and Technology (NIST), the Department of Energy (DOE), the Employee and Training Administration (ETA), and the Small Business Administration (SBA). In addition to the federal funding, New York State Department of Economic Development is providing $200K, and the partnering organizations are contributing $700K in matching funds, bringing the total funding for the program to $2.6M. This RRPA award is part of the federal government’s Advanced Manufacturing Jobs and Innovation Accelerator Challenge and is one of only 12 made in the country this year. The goal of the Accelerator Challenge is to encourage the growth of regional industrial clusters throughout the US. The cluster of optics, photonics, and imaging (OPI) companies in the greater Rochester region is one of the oldest, largest, and most important industrial clusters in the country.
    [Show full text]
  • 3-Dimensional Microstructural
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS 3-DIMENSIONAL MICROSTRUCTURAL FABRICATION OF FOTURANTM GLASS WITH FEMTOSECOND LASER IRRADIATION TEO HONG HAI NATIONAL UNIVERSITY OF SINGAPORE 2009 3-DIMENSTIONAL MICROSTRUCTURAL FABRICATION OF FOTURANTM GLASS WITH FEMTOSECOND LASER IRRADIATION TEO HONG HAI (B. Eng. (Hons.), Nanyang Technological University) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2009 Acknowledgement ACKNOWLEDGEMENTS I would like to take this opportunity to express my appreciation to my supervisor, Associate Professor Hong Minghui for his guidance during the entire period of my Masters studies. He has been encouraging particularly in trying times. His suggestions and advice were very much valued. I would also like to express my gratitude to all my fellow co-workers from the DSI-NUS Laser Microprocessing Lab for all the assistance rendered in one way or another. Particularly to Caihong, Tang Min and Zaichun for all their encouragement and assistance as well as to Huilin for her support in logistic and administrative issues. Special thanks to my fellow colleagues from Data Storage Institute (DSI), in particular, Doris, Kay Siang, Zhiqiang and Chin Seong for all their support. To my family members for their constant and unconditioned love and support throughout these times, without which, I will not be who I am today. i Table of Contents TABLE OF CONTENTS ACKNOWLEDGEMENTS
    [Show full text]
  • Glass Fiber Optics Choosing Glass Or Plastic
    PHOTOELECTRIC FEATURED RECTANGLE RIGHT ANGLE BARREL Glass Fiber Optics • Solve numerous challenging sensing applications in the most hostile environments, including temperatures up to 480° C, corrosive materials and extreme moisture • Withstand severe shock and vibration • Ignore extreme electrical noise • Constructed of a combination of optical glass fiber, stainless steel, PVC, brass, molded thermoplastics and optical-grade epoxy Glass Choosing Glass or Plastic Sheath Plastic fibers are for general purpose use. They tolerate severe flexing, can be cut to length in the field and cost less than glass fibers. Glass fibers are the best choice for challenging environments such as high temperatures, corrosive materials and moisture. Core & cladding Glass fibers page 306 • Solve numerous challenging sensing requirements • Ideal for hostile environments such as high temperatures to 480° C, corrosive materials and extreme moisture Plastic • Withstand high levels of shock and vibration Jacket • Inherently immune to extreme electrical noise • Available with choice of sheathings: standard stainless-steel flexible conduit, Cladding PVC or other flexible tubing • Can be quickly custom designed Core Fiber Construction Plastic fibers page 286 • Inexpensive and easily cut to length during installation Core: Thin glass or plastic center of the • Bend for a precise fit fiber through which light travels • Available in high-flex models to withstand flexing Cladding: Outer optical material surrounding • Offered with special jackets that withstand corrosion,
    [Show full text]