View of the Hydrolysis Ratio Is Unlikely to Be Predictable from Se- Coverage and Distribution of the Curated Set of 400 Ex- Quence Alone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Antifungal Chitosanase from Bacillus Subtilis SH21
molecules Article An Antifungal Chitosanase from Bacillus subtilis SH21 Yuanxiang Pang 1, Jianjun Yang 1, Xinyue Chen 1, Yu Jia 1, Tong Li 1, Junhua Jin 1, Hui Liu 1, Linshu Jiang 1, Yanling Hao 2, Hongxing Zhang 1,* and Yuanhong Xie 1,* 1 Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; [email protected] (Y.P.); [email protected] (J.Y.); [email protected] (X.C.); [email protected] (Y.J.); [email protected] (T.L.); [email protected] (J.J.); [email protected] (H.L.); [email protected] (L.J.) 2 Key Laboratory of Functional Dairy Science of Beijing and Chinese Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; [email protected] * Correspondence: [email protected] (H.Z.); [email protected] (Y.X.) Abstract: Bacillus subtilis SH21 was observed to produce an antifungal protein that inhibited the growth of F. solani. To purify this protein, ammonium sulfate precipitation, gel filtration chromatogra- phy, and ion-exchange chromatography were used. The purity of the purified product was 91.33% ac- cording to high-performance liquid chromatography results. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis revealed that the molecular weight of the protein is 30.72 kDa. The results of the LC–MS/MS analy- sis and a subsequent sequence-database search indicated that this protein was a chitosanase, and thus, we named it chitosanase SH21. -
Non-Homologous Isofunctional Enzymes: a Systematic Analysis Of
Omelchenko et al. Biology Direct 2010, 5:31 http://www.biology-direct.com/content/5/1/31 RESEARCH Open Access Non-homologousResearch isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution Marina V Omelchenko, Michael Y Galperin*, Yuri I Wolf and Eugene V Koonin Abstract Background: Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. Results: We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. -
Updating the Sequence-Based Classification of Glycosyl Hydrolases
Article Updating the sequence-based classification of glycosyl hydrolases HENRISSAT, Bernard, BAIROCH, Amos Marc Reference HENRISSAT, Bernard, BAIROCH, Amos Marc. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 1996, vol. 316 ( Pt 2), p. 695-6 PMID : 8687420 DOI : 10.1042/bj3160695 Available at: http://archive-ouverte.unige.ch/unige:36909 Disclaimer: layout of this document may differ from the published version. 1 / 1 Biochem. J. (1996) 316, 695–696 (Printed in Great Britain) 695 BIOCHEMICAL JOURNAL Updating the sequence-based classification of available. When the number of glycosyl hydrolase sequences reached C 480, ten additional families (designated 36–45) could glycosyl hydrolases be defined and were added to the classification [2]. There are at present over 950 sequences of glycosyl hydrolases in the data- A classification of glycosyl hydrolases based on amino-acid- banks (EMBL}GenBank and SWISS-PROT). Their analysis sequence similarities was proposed in this Journal a few years shows that the vast majority of the C 470 additional sequences ago [1]. This classification originated from the analysis of C 300 that have become available since the last update could be classified sequences and their grouping into 35 families designated 1–35. in the existing families. However, several sequences not fitting Because such a classification is necessarily sensitive to the sample, the existing families allow the definition of new families (desig- it was anticipated that it was incomplete and that new families nated 46–57) (Table 1). When the several present genome would be determined when additional sequences would become sequencing projects have reached completion, the number of Table 1 New families in the classification of glycosyl hydrolases Family Enzyme Organism SWISS-PROT EMBL/GenBank 46 Chitosanase Bacillus circulans MH-K1 P33673 D10624 46 Chitosanase Streptomyces sp. -
Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971). -
Mannoside Recognition and Degradation by Bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese
Mannoside recognition and degradation by bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese To cite this version: Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese. Mannoside recognition and degradation by bacteria. Biological Reviews, Wiley, 2016, 10.1111/brv.12316. hal- 01602393 HAL Id: hal-01602393 https://hal.archives-ouvertes.fr/hal-01602393 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2016), pp. 000–000. 1 doi: 10.1111/brv.12316 Mannoside recognition and degradation by bacteria Simon Ladeveze` 1, Elisabeth Laville1, Jordane Despres2, Pascale Mosoni2 and Gabrielle Potocki-Veron´ ese` 1∗ 1LISBP, Universit´e de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France 2INRA, UR454 Microbiologie, F-63122, Saint-Gen`es Champanelle, France ABSTRACT Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. -
Pollen Morphology of Erythronium L. (Liliaceae) and Its Systematic Relationships
J. Basic. Appl. Sci. Res., 2(2)1833-1838, 2012 ISSN 2090-4304 Journal of Basic and Applied © 2012, TextRoad Publication Scientific Research www.textroad.com Pollen Morphology of Erythronium L. (Liliaceae) and its Systematic Relationships Sayed-Mohammad Masoumi Department of Plant Protection, Razi University, Kermanshah, Iran ABSTRACT Pollen morphology of three genus of Erythronium was studied by the Light Microscopy (LM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Sulcus long reaching the ends of the grains, with operculum (E. giganteum, E. sibiricum) or without it (E. caucasicum). With surface latticed ornamentation and large lattice, thickness of muri and size of Lumina in E. sibiricum are widely varied. Also, most palynomorphological characteristics of the data transmission electron microscopy (TEM) showed no strong differences between E. caucasicum and E. sibiricum, , but these species are well distinguished from E. giganteum according to ectexine thickness (thickness of the tectum and the foot layer), shape and diameter of the caput, height and width of the columella. KEY WORDS: Caput; Columella; Exine ornamentation; intine; Microrelief; Pollen grain; Tectum. INTRODUCTION Takhtajan, 1987 indicated that the genus of Erythronium in Tribe Tulipeae is of the Liliaceae family. Different sources have considered the species number of this genus varied from 24-30. Baranova (1999) introduced 24 species for this genus, of which 20 species were spread in North America. Allen et al. (2003) examined the genus of Erythronium, Amana, and Tulipa using the DNA sequences from the chloroplast gene matK and the internal transcribed spacer (ITS) of nuclear ribosomal DNA. Palynomorphological characters of 20 different pollen species of Erythronium were evaluated by different researchers (Ikuse, 1965; Beug (1963); Radulescu, 1973; Nakamura, 1980; Schulze, 1980; Kuprianova, 1983; Takahashi (1987); Kosenko, 1991b, 1992, 1996, 1999; Maassoumi, 2005a, 2005b, 2007). -
Hymenoptera) with Highly Specialized Egg Morphology
Systematic Entomology (2011), 36, 529–548 Maxfischeriinae: a new braconid subfamily (Hymenoptera) with highly specialized egg morphology ∗ ∗ CHARLES ANDREW BORING1 , BARBARA J. SHARANOWSKI2 andMICHAEL J. SHARKEY1 1Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky, Lexington, KY, U.S.A. and 2Department of Entomology, 214 Animal Science Bldg., University of Manitoba, Winnipeg, Canada Abstract. The tribe Maxfischeriini, previously placed in Helconinae, is emended to subfamily status based on morphological and biological evidence. Proposed autapomorphies for Maxfischeriinae include: the presence of a pronotal shelf, forewing vein 1a and 2a present, although 1a nebulous, ventral valve of the ovipositor with serrations from tip to base and specialized egg morphology. The novel, pedunculate egg morphology is described for Maxfischeria, representing a new life- history strategy among Braconidae. Based on egg and ovipositor morphology, we suggest that Maxfischeria is a proovigenic, koinobiont ectoparasitoid. Five new species of Maxfischeria Papp are described with an illustrated key to all species (Maxfischeria ameliae sp.n., Maxfischeria anic sp.n., Maxfischeria briggsi sp.n., Maxfischeria folkertsorum sp.n. and Maxfischeria ovumancora sp.n.). In addition to the identification key presented here, all known species of Maxfischeria can be separated using the barcoding region of cytochrome c oxidase subunit I (COI ). Based on molecular data, the phylogenetic relationships among the six known species of Maxfischeria are as follows: (M. folkertsorum sp.n. (M. ovumancora sp.n. (M. briggsi sp.n. (M. anic sp.n. (M. tricolor + M. ameliae sp.n.))))). Introduction in the forewing. However, Maxfischeria does not possess other features associated with Helconini, including a distinct Until now the braconid genus Maxfischeria included a lamella on the frons, two strongly developed lateral carinae single species, Maxfischeria tricolor Papp. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
A B Comea Oxaloacetate Decarboxylase, Beta Subunit C ATP
C ATP-binding cassette, subfamily B A ComEA WP 025028831 Bacillus mannanilyticus B oxaloacetate decarboxylase, beta subunit WP 041718914 Alkaliphilus oremlandii PKM81186 Firmicutes bacterium HGW-Firmicutes-14 WP 092588843 Acidaminobacter hydrogenoformans Bacillus spp. MZQ96192 Acidaminobacter sp. Paenibacillus spp. 100% WP 088775865 Carboxydothermus islandicus WP 152967700 Oxobacter pfennigii GAV25686 Carboxydothermus islandicus WP 057983007 Virgibacillus soli 70% WP 146620656 Enterococcus florum WP 049886177 Thermacetogenium phaeum WP 064467709 Bacillus galactosidilyticus WP 126109031 Jeotgalibaca sp. H21T32 WP 090886300 Bacillus caseinilyticus Tree scale: 0.1 Peptoclostridium spp. Trichococcus spp. WP 101330798 Halalkalibacillus sp. B3227 WP 156782411 Geosporobacter ferrireducens WP 078755654 Globicatella sulfidifaciens SFQ43799 Desemzia incerta WP 110940224 Geosporobacter subterraneus WP 051258417 Atopococcus tabaci WP 047393312 Carnobacterium sp. ZWU0011 SHI93557 Geosporobacter subterraneus DSM 17957 WP 156883193 Lacticigenium naphtae WP 051237935 Lacticigenium naphtae 100% Natranaerovirga spp. WP 017470521 Amphibacillus jilinensis WP 097004362 amygdalinum Enterococcus spp. 75% HBG15709 Firmicutes bacterium WP 092653112 Isobaculum melis WP 013780596 Mahella australiensis Thermoanaerobacter spp. WP 126780365 Vagococcus salmoninarum WP 087058768 Marinilactibacillus psychrotolerans WP 084110983 Caldanaerobius fijiensis WP 072693424 Marinilactibacillus sp. 15R 2503533728 Mahella australiensis 50-1 BON Caldicellulosiruptor spp. WP 129721893 -
Dispersal Patterns in Space and Time: a Case Study of Apiaceae Subfamily
Journal of Biogeography (J. Biogeogr.) (2013) 40, 1324–1335 ORIGINAL Dispersal patterns in space and time: ARTICLE a case study of Apiaceae subfamily Apioideae Łukasz Banasiak1, Marcin Piwczynski 2, Tomasz Ulinski 3, Stephen R. Downie4, Mark F. Watson5, Bandana Shakya5† and Krzysztof Spalik1* 1Department of Plant Systematics and ABSTRACT Geography, Faculty of Biology, Institute of Aim To analyse spatial and temporal patterns of dispersal events in the euapi- Botany, University of Warsaw, Warsaw, 2 oids (Apiaceae subfamily Apioideae). Poland, Department of Animal Ecology, Institute of Ecology and Environment Location Worldwide, with an emphasis on the Northern Hemisphere. Protection, Nicolaus Copernicus University, Torun, Poland, 3Netezza R&D Department, Methods A phylogeny of euapioids was inferred from 1194 nuclear ribosomal SWG Lab Poland, IBM Software Group, DNA internal transcribed spacer (nrDNA ITS) sequences using Bayesian meth- Warsaw, Poland, 4Department of Plant ods. The reconstruction of ancestral areas was performed simultaneously with Biology, University of Illinois at Urbana– phylogenetic inference using a Markov discrete phylogeographical model with Champaign, Urbana, IL, USA, 5Royal Bayesian stochastic search variable selection (BSSVS). Routes with significant Botanic Garden Edinburgh, Edinburgh, non-zero migration rates were identified using Bayes factors. For each signifi- Scotland, UK cant track and each tree, the distribution of dispersals in time was scored and the asymmetry of dispersals was evaluated. Results The root of the euapioid umbellifers was reconstructed at c. 44.51 Ma (95% highest posterior density interval: 39.11–51.55 Ma). The Eastern Asiatic Region was reconstructed as the most probable ancestral area for the root of the tree. Seventeen migration routes have significant non-zero migration rates. -
Depolymerization of Chitosan by Enzymes from the Digestive Tract of Sea Cucumber Stichopus Japonicus
African Journal of Biotechnology Vol. 11(2), pp. 423-428, 5 January, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.2803 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Depolymerization of chitosan by enzymes from the digestive tract of sea cucumber Stichopus japonicus Dong-Rui Yao, Ming-Qian Zhou, Sheng-Jun Wu and Sai-Kun Pan* School of Marine Science and Technology, Huaihai Institute of Technology, 59 Cangwu Road, Xinpu, 222005, China. Accepted 14 November, 2011 A complex of enzymes was isolated in a preparation derived from the digestive tract of sea cucumber, Stichopus japonicus . Hydrolysis of chitosan using this enzyme preparation decreased its molecular weight (Mw), increased its water solubility and produced water-soluble chitosan (WSC). The conditions for hydrolysis were optimized to pH 6.0, temperature 45°C, 16 mg enzyme preparation (22.08 U of chitosanase activity) in a reaction solution (500 ml) containing 5 g chitosan and total reaction time of 3 h. The Mw of hydrolyzed chitosan was 1260 Da, and the WSC content in the resulting product and the yield were 96.7 and 95.4% (w/w), respectively. The structure of WSC was characterized using Fourier transform infrared (FTIR) spectroscopy. Key words: Water-soluble chitosan, complex enzyme preparation, sea cucumber Stichopus japonicus , hydrolysis. INTRODUCTION Water-soluble chitosan (WSC) has many advantages 2007). when compared with ordinary chitosan; these include Furthermore, a number of enzymes, such as protease, antifungal, antibacterial and antitumor activities (Kang et lipase, esterase, glycosidase (amylase, cellulose, dis- al., 2007). WSC can be synthesized by either chemical or accharidases, invertase and chitinase) and phosphatase enzymatic hydrolysis. -
Bacillus Subtilis: a Universal Cell Factory for Industry, Agriculture, Biomaterials and Medicine Yuan Su1,2, Chuan Liu2,3, Huan Fang2,3 and Dawei Zhang2,3,4*
Su et al. Microb Cell Fact (2020) 19:173 https://doi.org/10.1186/s12934-020-01436-8 Microbial Cell Factories REVIEW Open Access Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine Yuan Su1,2, Chuan Liu2,3, Huan Fang2,3 and Dawei Zhang2,3,4* Abstract Due to its clear inherited backgrounds as well as simple and diverse genetic manipulation systems, Bacillus subtilis is the key Gram-positive model bacterium for studies on physiology and metabolism. Furthermore, due to its highly efcient protein secretion system and adaptable metabolism, it has been widely used as a cell factory for microbial production of chemicals, enzymes, and antimicrobial materials for industry, agriculture, and medicine. In this mini- review, we frst summarize the basic genetic manipulation tools and expression systems for this bacterium, including traditional methods and novel engineering systems. Secondly, we briefy introduce its applications in the production of chemicals and enzymes, and summarize its advantages, mainly focusing on some noteworthy products and recent progress in the engineering of B. subtilis. Finally, this review also covers applications such as microbial additives and antimicrobials, as well as bioflm systems and spore formation. We hope to provide an overview for novice researchers in this area, ofering them a better understanding of B. subtilis and its applications. Keywords: Bacillus subtilis, Genetic manipulation, Protein expression, Biochemicals, Enzymes, Antimicrobials, Bioflms Introduction fermentation cycle is shorter, usually, around 48 h, while Bacillus subtilis is an aerobic, Gram-positive soil bacte- the fermentation cycle of Saccharomyces cerevisiae is rium, which has been widely used for the production of around 180 h [2, 3].